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1. Introduction to Nonlinear Systems

Objective The main goal of this course is to provide to the students a solid
background in analysis and design of nonlinear control systems

Why analysis? (and not only simulation)

• Every day computers are becoming more and more powerful to simulate complex
systems

• Simulation combined with good intuition can provide useful insight into system’s
behavior

Nevertheless

• It is not feasible to rely only on simulations when trying to obtain guarantees of
stability and performance of nonlinear systems, since crucial cases may be missed

• Analysis tools provide the means to obtain formal mathematical proofs
(certificates) about the system’s behavior

• results may be surprising, i.e, something we had not thought to simulate.
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1. Introduction to Nonlinear Systems

Why study nonlinear systems?

Nonlinear versus linear systems

• Huge body of work in analysis and control of linear systems

• most models currently available are linear (but most real systems are nonlinear...)

However

• dynamics of linear systems are not rich enough to describe many commonly
observed phenomena

3



1. Introduction to Nonlinear Systems

Examples of essentially nonlinear phenomena
• Finite escape time, i.e, the state can go to infinity in finite time (while this is

impossible to happen for linear systems)

• Multiple isolated equilibria, while linear systems can only have one isolated
equilibrium point, that is, one steady state operating point

• Limit cycles (oscillation of fixed amplitude and frequency, irrespective of the
initial state)

• Subharmonic, harmonic or almost-periodic oscillations;
• A stable linear system under a periodic input produces an output of the same frequency.
• A nonlinear system can oscillate with frequencies which are submultiples or multiples of

the input frequency. It may even generate an almost-periodic oscillation, i.e, sum of
periodic oscillations with frequencies which are not multiples of each other.

• Other complex dynamic behavior, for example: chaos, biforcations, discontinuous
jump, etc...
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1. Introduction to Nonlinear Systems

State-space model

State equation
ẋ = f(t, x, u)

Output equation
y = h(t, x, u)

x =

26664
x1

x2

...
xn

37775 , u =

26664
u1

u2

...
um

37775 , f(t, x, u) =

26664
f1(t, x, u)
f2(t, x, u)

...
fn(t, x, u)

37775
where x ∈ Rn is the state variable, u ∈ Rm is the input signal, and y ∈ Rq the output
signal. The symbol ẋ = dx

dt
denotes the derivative of x with respect to time t.
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1. Introduction to Nonlinear Systems

State-space model

State equation
ẋ = f(t, x, u) (1)

Output equation
y = h(t, x, u) (2)

Particular cases:

• Linear Systems, where the state model takes the form

ẋ = A(t)x+B(t)u

y = C(t)x+D(t)u

• Unforced state equation
ẋ = f(t, x)

i.e., it does not depend explicitly on the input u, e.g., consider the case that there
is a state feedback u = γ(t, x), and therefore the closed-loop system is given by
ẋ = f(t, x, γ(t, x)) = f̃(t, x)

• Unforced autonomous (or time-invariant) state equation

ẋ = f(x)
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1. Introduction to Nonlinear Systems

Example - Pendulum

There is a frictional force assumed to be proportional to the (linear) speed of the mass
m. Using the Newton’s second law of motion at the tangential direction

mlθ̈ = −mg sin (θ)− klθ̇

where m is the mass, l is the length of the rope and k the frictional constant.
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1. Introduction to Nonlinear Systems

Example - Pendulum

mlθ̈ = −mg sin (θ)− klθ̇

State model
x1 = θ

ẋ1 = θ̇

ẋ1 = x2

ẋ2 = − g
l

sin (x1)− k
m
x2

What are the equilibrium points?
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1. Introduction to Nonlinear Systems

Equilibrium point

A point x = x∗ in the state space is said to be an equilibrium point of

ẋ = f(t, x)

if
x(t0) = x∗ ⇒ x(t) = x∗, ∀t ≥ t0

that is, if the state starts at x∗, it will remain at x∗ for all future time.

For autonomous systems, the equilibrium points are the real roots of f(x) = 0.

The equilibrium points can be of two kinds:

• isolated, that is, there are no other equilibrium points in its vicinity

• continuum of equilibrium points.

Much of nonlinear analysis is based on studying the behavior of a system around its
equilibrium points.
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1. Introduction to Nonlinear Systems

Example - Pendulum

State model
ẋ1 = x2

ẋ2 = − g
l

sin (x1)− k
m
x2

Equilibrium points:

0 = x2

0 = − g
l

sin (x1)− k
m
x2

which implies that x2 = 0 and sin(x1) = 0. Thus, the equilibrium points are

(nπ, 0), n ∈ Z

What is the behavior of the system near the equilibrium points?
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1. Introduction to Nonlinear Systems

Qualitative behavior of 2nd order linear time-invariant systems

ẋ = Ax, x ∈ R2, A ∈ R2×2

Apply a similarity transformation M to A:

M−1AM = J, M ∈ R2×2

where J is the real Jordan form of A, which depending on the eigenvalues of A may
take one of the three forms»

λ1 0
0 λ2

–
,

»
λ k
0 λ

–
,

»
α −β
β α

–
with k being either 0 or 1.
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1. Introduction to Nonlinear Systems

Case 1: Both eigenvalues are real with λ1 6= λ2 6= 0

J =

»
λ1 0
0 λ2

–
What is M?
The associated eigenvectors v1, v2 ∈ R2×1 must satisfy

Av1 = λ1v1
Av2 = λ2v2

Thus,

A [v1|v2] = [v1|v2]

»
λ1 0
0 λ2

–
⇒ M = [v1|v2] ⇒ M−1AM =

»
λ1 0
0 λ2

–
= J

This represents a change of coordinates

z = M−1x

and we obtain in the new referential

ż1 = λ1z1
ż2 = λ2z2

Why?

ż = M−1ẋ = M−1Ax = M−1AMz =

»
λ1 0
0 λ2

–
z.
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1. Introduction to Nonlinear Systems

Case 1: Both eigenvalues are real with λ1 6= λ2 6= 0

ż1 = λ1z1
ż2 = λ2z2

For a given initial state (z1, z2)(0), the solution is given by

z1(t) = z1(0)eλ1t

z2(t) = z2(0)eλ2t

Eliminating time t,

z2(t) =
z2(0)

z1(0)λ2/λ1
z1(t)λ2/λ1

Why?
z1(t)

z1(0)
= eλ1t → t =

1

λ1
ln
z1(t)

z1(0)

and so,

z2(t) = z2(0)e
λ2
λ1

ln
z1(t)
z1(0) = z2(0)e

ln
z1(t)
z1(0)

λ2
λ1
.

At this point several combinations of the eigenvalues can arise...
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1. Introduction to Nonlinear Systems

Case 1: Both eigenvalues are real with λ1 6= λ2 6= 0

(a) λ1, λ2 < 0. In this case eλ1t, eλ1t → 0 and the curves are parabolic. Consider,
without loss of generality that λ2 < λ1.
Phase portrait

The equilibrium point x = 0 is called a stable node.
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1. Introduction to Nonlinear Systems

Case 1: Both eigenvalues are real with λ1 6= λ2 6= 0

(b) λ1, λ2 > 0. The phase portrait will retain the same character but with the
trajectories directions reversed. In this case the equilibrium point x = 0 is called
an unstable node.

(c) The eigenvalues have opposite signs. Consider for example the case λ2 < 0 < λ1.

z2(t) = z2(0)e
ln
z1(t)
z1(0)

λ2
λ1
.

The exponent λ2
λ1

is negative, thus we have hyperbolic curves.

In this case, the equilibrium point is called a saddle point.
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1. Introduction to Nonlinear Systems

Case 2: Complex eigenvalues λ1,2 = α± jβ, α, β ∈ R

J =

»
α β
−β α

–
Associated eigenvectors

v1 = u+ jv
v2 = u− jv, u, v ∈ R2

What is M?
A (u+ jv) = (α+ jβ) (u+ jv)
A (u− jv) = (α− jβ) (u− jv)

Thus,
real part → Au = αu− βv
imaginary part → Av = βu+ αv
Rearranging we have

A [u|v] = [u|v]
»

α β
−β α

–
= J

which implies that

M = [u|v]→M−1AM =

»
α β
−β α

–
Coordinate transformation
z = M−1x, then

ż1 = αz1 − βz2,
ż2 = βz1 + αz2
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1. Introduction to Nonlinear Systems

Case 2: Complex eigenvalues λ1,2 = α± jβ, α, β ∈ R

Better insight into the solution if we work in polar coordinates,

r =
q
z21 + z22 ,

θ = tan−1
“
z2
z1

”
.

where in this case we have the following system

ṙ = αr

θ̇ = β

The solution is given by
r(t) = r(0)eαt

θ(t) = θ(0) + βt
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1. Introduction to Nonlinear Systems

Case 2: Complex eigenvalues λ1,2 = α± jβ, α, β ∈ R

These equations represent the logarithmic spiral, and for different values of α we get

i) α < 0 is a stable focus

ii) α > 0 is an unstable focus

iii) α = 0 is a center.
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1. Introduction to Nonlinear Systems

Other cases

a) λ1 = λ2 = λ 6= 0

ż1 = λz1 + kz2, k = 0 or k = 1

ż2 = λz2

b) λ1 = 0, λ2 6= 0

ż1 = 0

ż2 = λz2

c) λ1 = λ2 = 0

ż1 = z2, (k = 1)

ż2 = 0

...
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1. Introduction to Nonlinear Systems

Extensions to nonlinear systems (2nd order)
Consider the 2nd order nonlinear time invariant system

ẋ1 = f1 (x1, x2)
ẋ2 = f2 (x1, x2)

where f = (f1, f2)T is continuously differentiable. Moreover assume that

x∗ =

»
x∗1
x∗2

–
is an isolated equilibrium point, i.e,

0 = f1
`
x∗1, x

∗
2

´
0 = f2

`
x∗1, x

∗
2

´
Expanding the right-hand side into its Taylor series around x∗

ẋ1 = f1
`
x∗1, x

∗
2

´
+ a11

`
x1 − x∗1

´
+ a12

`
x2 − x∗2

´
+H.O.T.

ẋ2 = f2
`
x∗1, x

∗
2

´
+ a21

`
x1 − x∗1

´
+ a22

`
x2 − x∗2

´
+H.O.T.

where

a11 =
∂f1(x∗1 ,x

∗
2)

∂x1

˛̨̨̨
x1=x∗1 ,x2=x∗2

a12 =
∂f1(x∗1 ,x

∗
2)

∂x2

˛̨̨̨
x1=x∗1 ,x2=x∗2

a21 =
∂f2(x∗1 ,x

∗
2)

∂x1

˛̨̨̨
x1=x∗1 ,x2=x∗2

a22 =
∂f2(x∗1 ,x

∗
2)

∂x2

˛̨̨̨
x1=x∗1 ,x2=x∗2
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1. Introduction to Nonlinear Systems

Extensions to nonlinear systems (2nd order)

Defining z = [z1, z2]T , zi = xi − x∗i , i = 1, 2,

A =

»
a11 a12

a21 a22

–
also denoted as the Jacobian Matrix and considering only the first order terms we
obtain the following linear system

ż = Az.

The question now is...

What can we conclude about the behavior of the nonlinear system around an
equilibrium point from the study of the linearized system?
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1. Introduction to Nonlinear Systems

Extensions to nonlinear systems (2nd order)

Consider the 2nd order nonlinear time invariant system

ẋ1 = f1 (x1, x2)
ẋ2 = f2 (x1, x2)

⇔ ẋ = f(x)

where f1, f2 are analytic (i.e., f1, f2 have convergent Taylor series representation) and
f(x∗) = 0. The linearization around the equilibrium point x = x∗ provides the
following linear system

ż = Az, A =
∂f

∂x

˛̨̨̨
x=x∗

where z = x− x∗.

• If the origin z = 0 of the linearized state equation is a stable (resp. unstable)
node, or a stable (resp. unstable) focus or a saddle point, then in a small
neighborhood of the equilibrium point, the trajectories of the nonlinear system
will behave like a stable (resp. unstable) node, or a stable (resp, unstable) focus
or a saddle point, respectively.
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1. Introduction to Nonlinear Systems

Extensions to nonlinear systems (2nd order)

However

If the Jacobian matrix A has eigenvalues on the imaginary axis, then the qualitative
behavior of the nonlinear state equation near the equilibrium point could be quite
distinct from that of the linearized state equation!

Example:

a) ẋ = x3, x ∈ R, is an unstable system

b) ẋ = −x3, x ∈ R is a stable system

But they have the same linearization! (i.e., ż = 0)
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1. Introduction to Nonlinear Systems

Example - Pendulum
State model

ẋ1 = x2

ẋ2 = − g
l

sin (x1)− k
m
x2

Equilibrium points
(nπ, 0), n ∈ Z

Jacobian matrix

∂f

∂x

˛̨̨̨
x=x∗

=

"
∂f1(x1,x2)

∂x1

∂f1(x1,x2)
∂x2

∂f2(x1,x2)
∂x1

∂f2(x1,x2)
∂x2

#˛̨̨̨
˛
x1=x∗1 ,x2=x∗2

=

»
0 1

− g
l

cos
`
x∗1
´
− k
m

–

1. x∗ = (0, 0)

A1 =
∂f

∂x

˛̨̨̨
x1=0,x2=0

=

»
0 1

− g
l
− k
m

–
→ λ1,2 = −

k

2m
±

1

2

s„
k

m

«2

−
4g

l

2. x∗ = (π, 0)

A2 =
∂f

∂x

˛̨̨̨
x1=π,x2=0

=

»
0 1
g
l
− k
m

–
→ λ1,2 = −

k

2m
±

1

2

s„
k

m

«2

+
4g

l
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1. Introduction to Nonlinear Systems

Example - Pendulum

Consider the case g
l

= 1 and k
m

= 0.5.

1. z1 = x− 0

ż1 = A1z1, A1 =

»
0 1
−1 −0.5

–
Eigenvalues: λ1,2 = −0.25± j0.97. Thus the equilibrium point x∗ = (0, 0) is a
stable focus.

2. z2 = x− π

ż2 = A2z2, A2 =

»
0 1
1 −0.5

–
Eigenvalues: λ1 = −1.28, λ2 = 0.78. Thus the equilibrium point x∗ = (π, 0) is a
saddle point.

If k = 0, λ1,2 are on the imaginary axis and therefore we cannot determine the
stability of the origin through linearization!
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1. Introduction to Nonlinear Systems

Example 3

Consider the following system

ẋ1 = x2,
ẋ2 = −x1 − εx2

1x2

The linearization around x = 0 yields»
ż1
ż2

–
=

»
0 1
−1 0

– »
z1
z2

–
where the eigenvalues are ±j.
Is it a center?
The answer is NO, for ε > 0 is stable and for ε < 0 is unstable.

How do we conclude its stability?
Tip: check the evolution of the “energy”

d

dt

`
x2
1 + x2

2

´
= −2εx2

1x
2
2
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1. Introduction to Nonlinear Systems

Example 4

Consider the following system
ẋ1 = µ− x2

1
ẋ2 = −x2

2

where µ ∈ R is a small parameter.

a) For µ > 0 there exist two equilibrium points at (
√
µ, 0) and (−√µ, 0).

Performing the linearization we get

A =

»
−2
√
µ 0

0 −1

–
for (
√
µ, 0), which is a stable node and

A =

»
2
√
µ 0

0 −1

–
for (−√µ, 0), which is a saddle point.

b) For µ < 0 there are no equilibrium points.

27



1. Introduction to Nonlinear Systems

Example 4

Phase portraits:

• We are in the presence of a bifurcation, that is, a change in the equilibrium points
or periodic orbits or in their stability properties, as a parameter is varied.

• In this example we have a saddle-node bifurcation because it results from the
collision of a saddle and a node. µ is the bifurcation parameter and µ = 0 is the
bifurcation point.

• There exist other types of bifurcations, e.g. transcritical bifurcation,
super/subcritical pitchfork bifurcation and super/subcritical Hopf bifurcation.
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