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Abstract

This paper addresses the problem of estimating the 3-D trajectory and associated uncertainty of an underwater
autonomous vehicle from a set of images of the seabed taken by an onboard camera. The presented algorithms
resort to the use of video mosaics and build upon previous work on image registration and visual pose estimation.
The pose estimation is accomplished in two steps. Firstly a video mosaic is created automatically, covering a
region of interest of the seabed. Then, after associating a 3D referential for the mosaic, the estimation of the
camera position from a new view of the scene becomes possible.

The main contribution of this paper lies on the assessment of the performance of the 3D pose algorithms.
In order to do this, an image sequence with available ground-truth is used for precise error measuring. A first
order error propagation analysis is presented, relating the uncertainty in the location of the match points with
the uncertainty in the pose parameters. The importance of predicting the estimate uncertainty is emphasized
by the fact that it can be used for comparing algorithms and for the on-line monitoring of the vehicle trajectory
reconstruction quality.

Several iterative and non-iterative pose estimation methods are discussed, differing both on the criteria being
minimized and on the required information about the camera intrinsic parameters. This information ranges from
the full knowledge of the parameters, to the case where they are estimated using self-calibration from an image
sequence under pure rotation.

The implemented pose algorithms are compared for the accuracy and estimate covariance.

Keywords: Underwater computer vision; video mosaics; trajectory reconstruction, uncertainty estimation

1. Introduction

In the last few years, computer vision has in-
creasingly been used as a sensing modality for
underwater vehicles used in tasks where accurate
measures at short range are needed [1]. A con-
siderable amount of research interest has been di-
rected towards providing autonomy to underwa-
ter vehicles using vision, namely in self-location
and motion estimation.
The work described in this paper addresses the

issues of vehicle self-location and uncertainty esti-
mation using video mosaics as visual maps. Hav-
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ing such maps referenced to a world coordinate
system, enables a camera-equipped autonomous
vehicle (in an unknown position and orientation)
to locate itself once it has found the correct map-
ping from the mosaic to the image frame. The
approach for automatic creation of video mosaics
builds upon our previous work[2] and is based on
image motion estimation in a robust and auto-
matic way. We deal with the issue of determining
the 3D position and orientation of a vehicle from
new views of a previously created mosaic. The
problem of pose estimation is addressed, using
the available information on the camera intrin-
sic parameters. This information ranges from the
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full knowledge, to the case where they are esti-
mated using a self-calibration technique, based on
the analysis of an image sequence captured under
pure rotation. Direct pose estimation methods
are presented based on the initial computation of
the image-to-world homography, which are suit-
able for real-time operations on setups of limited
computing power. These methods are further re-
fined using iterative optimization, applied to the
minimization of explicit error functions both on
the matched coordinates space or on the elements
of the image-to-world homography. One of the
benefits of using such error functions lies on the
fact that it enables the analysis of uncertainty
propagation, using a first order Taylor series ap-
proximation of the mapping between observations
and estimated pose parameters.
The importance of the uncertainty propagation

prediction is threefold. Firstly, it provides quan-
titative measures for the comparison of different
pose estimation algorithms. Secondly, it allows
the detection of eventual degenerate parameter
configurations. Thirdly, for practical setups, it
allows the on-line monitoring of the quality of
trajectory reconstruction. This last aspect is of
utmost importance in situations where the risk of
loosing a vehicle, due to poor positioning, bears
very high costs.
Trajectory recovery results are presented for an

image sequence for which ground-truth is avail-
able. The presented techniques are suitable for
autonomous underwater vehicle (AUV) naviga-
tion near a flat oceanic floor, where a planar map
is an accurate representation of the environment.
A possible application scenario for these methods
is in underwater archeological site exploration or
in marine geological surveys, where an AUV is re-
quired to do an initial area mapping followed by
periodic inspections.
A method for 3D motion estimation and mosaic

construction was proposed by Xu et al. [3] and
tested on a floating platform. The use of mosaics
as a tool to provide visual maps for navigation has
been explored by Zheng et al.[4], in the context
of land robotics and route recognition. In their
work, a visual memory of the motion of a mobile
robot is created in the form of panoramic mosaics
that are later used for robot positioning. How-

ever, the visual representations are used solely for
navigation purposes and the panoramic views cre-
ated do not correspond to geometrically and visu-
ally correct mosaics. Over the years, the problem
of camera pose estimation has been thoroughly
addressed in the Computer Vision literature. For
recent progress in linear methods in pose estima-
tion refer to [5] and the references there in. The
direct, non-iterative, pose estimation algorithms
presented in this paper decompose an image-to-
mosaic homography matrix, in order to find the
rotation matrix and displacement vector relating
the camera frame to a world frame (extrinsic pa-
rameters). In this sense, it relates to the work
by Ganapathy[6], where the extrinsic parameters
are recovered directly from a camera projection
matrix.
The paper is organized as follows. Section 2 de-

scribes the camera model decomposition, the pro-
cess of creating video mosaics, and the notation
required for the methods described later. Section
3 is devoted to the registration of new views on a
previously constructed mosaic and to the problem
of estimating the camera pose. Finally, Section 6
summarizes and draws some conclusions on the
performance and applicability of the methods.

2. Geometric background

2.1. Camera Model
For the purposes of this paper, an useful de-

composition of the standard (3 × 4) camera ma-
trix P is P = K [CWR C

Wt], where K is the (3× 3)
upper-diagonal intrinsic parameter matrix, C

WR is
the rotation matrix relating the orientation of the
3D camera and world frame, and C

Wt is the location
of the world origin in camera frame coordinates.
The intrinsic parameter matrix has the form

K =

 fku fkθ u0

0 fkv v0

0 0 1


where ku and kv are scaling factors (along u and
v), and (u0, v0) is the location of the principal
point and f is the focal length. The additional
parameter kθ gives the skew between axes. For
the most commonly used CCD cameras, kθ can
be considered zero on applications not relying on
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highly accurate calibration. The intrinsic param-
eter matrix can be estimated from P by means of
the QR factorization[7].

2.2. Mosaic Creation
The mosaicing techniques used in this paper

are detailed in [7], and are summarized in this
section.
The mosaic creation evolves from the analy-

sis of point correspondences in order to estimate
the homographies between pairs of consecutive
frames of the video sequence. For each pair of
images, a set of points is selected from one im-
age and matched over the other, minimizing the
sum of squared differences of the pixel intensi-
ties of the neighboring areas around the points.
Due to the error prone nature of this matching
process, it is expectable that a number of point
correspondences will not relate to the same 3-
D point. Therefore, a robust selection of the
matched points is essential for the accurate image
motion estimation. For this, a random sampling
algorithm was implemented[8], using a minimiza-
tion criteria based on the median of the error dis-
tances between the point projections and their
expected locations using the estimated homogra-
phy.
After estimating the frame-to-frame homogra-

phies, these are cascaded to form a global regis-
tration, where all frames are mapped into a com-
mon, arbitrarily chosen, reference frame. For the
purposes of this paper, the reference frame is com-
puted using some manually selected world points
with known metric coordinates.
The following step consists in merging the im-

ages. On overlapping regions, some method has
to be established in order to determine the unique
intensity value that will be used on the final mo-
saic. The most commonly used is the median
operator, which is adequate for underwater se-
quences of the seabed where moving fish or algae
are captured. Figure 1 presents a mosaic from a
sequence of images captured by a surface-driven
ROV, on a pipeline inspection task. Although the
original sequence presents noticeable perspective
distortion effects, a reference frame was chosen
as to make the contour lines of the pipeline ap-
proximately parallel, yielding a top view of the

floor.

3. Pose Estimation from Planar Scenes

We will now describe two sets of methods for
the pose estimation, which differ on the minimiz-
ing criteria and on the required intrinsic parame-
ter information.
The first set comprises non-iterative methods

which provide fast pose estimates, adequate for
real-time applications on vehicles with limited
computational capabilities. These methods are
based on the initial estimation of a image-to-
world homography Timage,World.
The methods of the second set refine the es-

timates of the first, by using iterative optimiza-
tion procedures to minimize explicit cost func-
tions. These methods have considerable higher
computational requirements, but allow a first or-
der analysis of the error propagation and the com-
putation of the pose parameters uncertainty.
The Timage,World homography can be obtained

by cascading an image-to-mosaic homography
Timage,mosaic (computed using the techniques de-
scribed above for the mosaic creation) with a
Tmosaic,World homography, that relates the mo-
saic image frame with their metric counterparts
on the world. In this paper we do not address the
problem of finding the appropriate Tmosaic,World,
but take into account the effect of both its nom-
inal value and uncertainty, in the form of a co-
variance matrix of its elements. Also we assume,
without loss of generality, that the world frame is
such that all the points in the planar scene have
null −→z coordinate.

3.1. Non-iterative Methods
3.1.1. Known intrinsic parameter matrix
For the case where the intrinsic parameter ma-

trix is known, a simple and useful decomposition
can be obtained for the homography Timage,World
which relates planar world points with their cam-
era projections. Let L be a (3×3) matrix contain-
ing the first two columns of C

WR, and the vector,
C
Wt. Then Timage,World can be decomposed as

Timage,World = λKL (1)
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Figure 1. Underwater pipeline mosaic example. A useful reference frame was chosen yielding a top view
of the sea floor.

where λ is an unknown scale factor. In order to
recover the pose information embedded in L, one
has first to estimate the unknown scale factor λ.
By taking into account the fact that the first two
columns of L have unit norm, a constraint can be
imposed on ‖λ‖. A straightforward estimator for
‖λ‖ is the average of the norms of the first two
columns of λL = K−1Timage,World.
For the recovery of C

WR, one has to impose or-
thogonality on the first two columns, and com-
pute their cross product to obtain the last col-
umn. Let C

WR1 and C
WR2 be the two candidates

for C
WR, corresponding respectively to the scaling

by + ‖λ‖ and −‖λ‖. The matrices C
WR1 and C

WR2

relate by C
WR1 =

 −1 0 0
0 −1 0
0 0 1

 C
WR2

The corresponding optical centre locations are
given by

W
Ct1= − 1

‖λ‖
C
WRT1

 t1
t2
t3



and WCt2=
1

‖λ‖
C
WRT2

 t1
t2
t3



where
[

t1 t2 t3
]T is the last column of λL.

The locations of the optical centres differ by the
last coordinate which is symmetric. Both so-
lutions for C

WR and W
Ct are in accordance with

Timage,World, and are geometrically valid. In the
application of this work, we are only interested
in the positive −→z axis solution for WCt, which cor-
responds to the camera being above the plane of
the floor.

3.1.2. Known principal point and skewing
An alternative method for estimating the cam-

era pose can be devised if only the principal point
location and the skewing ratio fkθ

fkv
are known, in-

stead of the full K matrix. Let us decompose K
as the product of an upper triangular matrix U ,
with ones on its diagonal, by a diagonal matrix
A, such that

K
.= UA =

 1 fkθ

fkv
u0

0 1 v0

0 0 1

 fku 0 0
0 fkv 0
0 0 1


Since U is invertible, one can extend Equation (1)
to

U−1Timage,World
.= AL (2)

The left side of Equation (2) can be computed
from image measurements. As we are interested
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in estimating the unknown intrinsic parameters in
the A matrix, we will start by explicitly including
an unknown scale factor λ, in order to remove the
equality up to scale. Let M = U−1Timage,World.
Equation (2) can thus be written as A(λL) = M .
By considering the first two columns of this equal-
ity, where the unknown scale factor λ has been
multiplied to the elements of L, and by imposing
the additional conditions of equal norm and vec-
tor orthogonality, a system of equations on fku
and fkv can be written in the form of

[
m11 · m12 m21 · m22

m2
11 − m2

12 m2
21 − m2

22

] [
1

(fku)2

1
(fkv)2

]

= −
[

m31 · m32

m2
31 − m2

32

]
After estimating fku and fkv the pose can be

recovered using the method described above, for
known K matrix. For the experimental part of
this work, the skew was assumed to be zero.

3.1.3. Self-calibration from a rotating cam-
era

A self-calibration method can be used for the
estimation of the K matrix, if a sequence of im-
ages taken by a camera with constant intrinsic pa-
rameters and undergoing pure rotation, is avail-
able. This method does not require any knowl-
edge on the scene structure, nor the rotation of
the camera frame between images. Therefore, it
is specially suited to applications where on-line
calibration is required and the camera can be ro-
tated around its optical center.
The theory behind this method is presented by

Hartley in [9]. For the case of stationary cameras
(where no translation is allowed), the mapping
between corresponding points in two views is rep-
resented by a 2D homography Ti,j = KRj,iK

−1.
The homography can be computed directly from
image measurements, and depends only on the
intrinsic parameter matrix and on the camera ro-
tation Rj,i between the two images. As noted in
[9], Tj,i is only meaningfully defined up to scale,
but taking into account the fact that the product
KRj,iK

−1 has unit determinant, the exact equal-
ity Ti,j = KRjiK

−1 will hold if Ti,j is scaled by

an appropriate factor.
A linear system of equations, not depending on

the rotation matrices, can be constructed on the
elements of the symmetrical matrix C = KKT ,
and solved using the SVD [9]. The recovery of
K can be achieved if C is positive-definite, by
means of the Choleski decomposition[10] and is
unique if K is assumed to have positive diagonal
entries. For noise-free data, C is positive-definite
by construction, and for noisy data it might not
be so.

3.2. Iterative Methods
For the iterative estimation of the image-to-

mosaic homography Ti,mosaic, we define the fol-
lowing scalar error function

F (X,Θ) =
N∑
n=1

[d2 (xn, Ti,mosaic · x′
n)

+d2
(
x′
n, T

−1
i,mosaic · xn

)
]

where d (xn, Ti,mosaic · x′
n) is the euclidean dis-

tance between the point xn and the projection
of the corresponding point of the mosaic x′

n. The
coordinate vector X contains the coordinates of
the matched points, and Θ is the estimate vector
containing a parameterization of the elements of
Ti,mosaic. The use of the two distance terms has
to do with the fact that the point projections,
on the image and on the mosaic, do not play a
symmetric role. By using the two terms under
the assumption of independent Gaussian noise on
the coordinates, the residuals of this criteria are
approximately Gaussian thus yielding an approx-
imation to a maximum likelihood estimate.
In order to estimate Θ, F (X,Θ) needs to be

minimized using the coordinates of at least 4
matched points. We have chosen a parame-
terization Θ, allowing unconstrained minimiza-
tion, in which the first 8 elements of Ti,mosaic
are considered, after normalizing by dividing by
Ti,mosaic(3, 3). This parameterization does not
represent an homography that maps the origin
of the mosaic image frame onto the infinity in
the other image frame, but this condition was not
found to be of practical importance.
As a starting point for the minimization of
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F (X,Θ), the result of the least squares compu-
tation of the homography is used, for the initial
value of the parameter vector.

3.2.1. Pose from the Image-to-World Ho-
mography

For the case of pose estimation, the used error
function is

F (X,Θ) = ‖Ti,World −Ψ(K,Θ)‖Frob
where Ψ(K,Θ) is an image-to-world homogra-
phy constructed using the pose parameters Θ
and the camera intrinsics. The pose param-
eters are represented by the 6-vector Θ =[

α β γ W
Ctx

W
Cty

W
Ctz

]
containing the 3

camera rotation angles and the location of the
camera centre in world coordinates. For this cal-
culation the input data X consists of the first 8
elements of the normalized Ti,World.
When only the location of the principal point

and skew is known, instead of the complete in-
trinsic parameter matrix, the above error func-
tion can be used with minor modifications. In
this case

F (X,Θ) = ‖Ti,World −Ψ(u0, v0, fkθ,Θ)‖Frob
and the parameter vector also contains the un-
known intrinsics,

Θ =
[

α β γ W
Ctx

W
Cty

W
Ctz fku fkv

]
.

3.2.2. Pose from Matched Points
The use of an optimization procedure for min-

imizing an error function allows for the pose esti-
mation directly from the matches between image
point projections and their world coordinates. In
this case the following error function can be used,
with a minimum of 3 matched points coordinates,

F (X,Θ) =
N∑
n=1

[d2 (xn,Ψ(K,Θ) · x′
n)

+d2
(
x′
n,Ψ

−1(K,Θ) · xn
)
]

(3)

where the pose parameters are represented by the
6-vector Θ =

[
α β γ W

Ctx
W
Cty

W
Ctz

]
. If

only the principal point and skew is known, then
the same modification as above can be applied
to the error function and the parameter vector,
yielding

F (X,Θ) =
N∑
n=1

[d2 (xn,Ψ(u0, v0, fkθ,Θ) · x′
n)

+d2
(
x′
n,Ψ

−1(u0, v0, fkθ,Θ) · xn
)
]

where
Θ =

[
α β γ W

Ctx
W
Cty

W
Ctz fku fkv

]
.

3.2.3. Self-Calibration
For the iterative estimation of the intrinsic pa-

rameters directly from the coordinates of matched
points, an error function can be constructed us-
ing the particular structure of the homography
between pure rotated views. The homography be-
tween two images captured by two cameras whose
frames relate by the rotation matrix Ri+1,i is
Ti,i+1 = K.Ri+1,iK

−1. By taking into account
the distance errors on the coordinates of points
matched over pairs of consecutive rotation images
the following error function can be used,

F (X,Θ) =
M−1∑
i=1

Ni∑
n=1

[d2
(
xin,K.Ri+1,iK

−1 · xi+1
n

)
+d2

(
xi+1
n ,K.Ri,i+1K

−1 · xin
)
]

where M is the number of images, Ni is the
number of matched points between images i and
i + 1, and K and Ri,j are functions of Θ. Here
both the intrinsic parameters and theM−1 rota-
tion matrices are simultaneously estimated. Un-
der the assumption of constant intrinsics, a pa-
rameter vector allowing unconstrained minimiza-
tion will be

Θ =
[

fku fkv fkθ u0 v0 α1 · · · γM−1

]
4. Propagating Uncertainty

We will now address the problem of estimat-
ing how the uncertainty is propagated over the
various steps involved in the pose estimation. Al-
though not considered during the mosaic creation
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process, one of the sources of error in the esti-
mated pose is due to the limited resolution of
the feature extraction and matching, during the
image-to-mosaic registration. In this work, we
have considered that the perturbations affecting
the coordinates of the matched points projections
are the result of independent additive normal dis-
tributed noise with the same properties on every
point projection.
Several authors have addressed the problem of

estimating the error propagation in mosaicing ap-
plications. Recently, Kanatani[11] has presented
a theoretically optimal algorithm for the compu-
tation of the homography between two images,
using the framework of statistical optimization.
Criminisi et al.[12] have shown how an homogra-
phy estimate and the covariance of its elements
can be used for measuring distances in the scene
and estimate the associated uncertainties.
In our work, the methods used for the un-

certainty propagation follow closely the one de-
scribed by Haralick in [13]. In this paper, the au-
thor presents a general method for propagating
the covariance matrix through any kind of linear
or non-linear calculation, provided that a scalar
function F (X,Θ) is defined which is minimized by
the noisy calculation estimate Θ̂ and noisy data
X̂, and that the calculation can be well approxi-
mated by a first order Taylor series expansion for
the level of noise involved.
An estimator for the covariance Σ∆Θ of the

noise in Θ̂ = Θ +∆Θ, is given by

Σ∆Θ =
[
∂2F
∂Θ2

(
X̂, Θ̂

)]−1 [
∂2F
∂X∂Θ

(
X̂, Θ̂

)]T
·

·Σ∆X · ∂2F
∂X∂Θ

(
X̂, Θ̂

) [
∂2F
∂Θ2

(
X̂, Θ̂

)]−T (4)

4.1. Experimental Validation
In order to test whether the error propagation

for the functions defined above could be satis-
factorily approximated by a first order series ex-
pansion, an experimental validation was carried
out. The results regarding the case of pose esti-
mation from matched image-to-world coordinates
will now be presented.
A reference pose was chosen, from which two

lists of noise-free coordinates of matches between

the image and the world were obtained. A typical
experimental level of 0.5 pixels for the standard
deviation of the additive Gaussian noise was con-
sidered for creating instances of noisy image coor-
dinates. It is here assumed that the noise involved
in real imagery is caused by the limited resolu-
tion of the matching procedure and from slight
non-planarities in the scene. Therefore, the con-
sidered level of noise was obtained by measuring
the residuals resulting from the estimation of an
homography between two real underwater images
during the creation of the mosaic shown above.
The noise level affecting the world coordinates

was set by measuring the statistics of the pro-
jections of the noisy image points, when back-
projected onto the world, using the reference
pose.
For each noisy instance of the matched coordi-

nates, the corresponding pose was estimated us-
ing the minimizing criteria (3). The statistics of
500 pose instances where then compared with the
predicted values, given by the estimator of Equa-
tion (4). The predicted covariance was computed
around the mean value of the pose estimates.
The Gaussian behavior of the pose estimate is
depicted on Figure 2, with a superimposed nor-
mal density fit and predicted values. It can be
seen that, for this level of noise the prediction is
accurate.
An additional test was conducted, with differ-

ent levels of noise, aimed at gaining insight on
the limits of the approximation validity. In order
to compare the real and the predicted covariance
matrices, a criteria was devised based on the nor-
malization of the real covariance matrix. By using
Principal Components Analysis, one can find the
linear transformation on the parameter space that
maps the real covariance matrix onto the identity,
provided the uncertainty spans all the parame-
ter space. By applying the same transformation,
both on the real and on the predicted covariance
matrices, the criteria returns the Frobenius norm
of their difference. The results for noise levels
ranging from 0.25 to 20 pixel standard deviation
and 500 instances each, are depicted on Figure 3.
Based on this plot, one can conclude that the co-
variance prediction for the pose estimation, using
matched coordinates, is accurate up to noise lev-
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Figure 2. Testing results for the validity of the
first order approximation in predicting the co-
variance. The pose parameter histograms where
created with 500 instances of noise contamined
coordinates, with a noise level of 0.5 pixels (stan-
dard deviation). The superimposed lines account
for a normal density fit (full line) and predicted
distribution (dotted line).

els of 6 pixel standard deviation, which is consid-
erably higher than the experimentally measured
noise of 0.5 pixel.

5. Pose Estimation Results

The performance of the pose estimation was ex-
perimentally evaluated by testing the camera tra-
jectory reconstruction using ground-truth data.
The test results presented in this section assume
constant intrinsic parameters in time and differ
both on the amount of intrinsic parameter infor-
mation used, and on the nature of the observa-
tion data. Six methods have been implemented
and tested. They are:

• Pose from Ti,World with completely known
intrinsic parameter matrix.

• Pose from Ti,World with known principal
point and skewing.
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Figure 3. Evolution of the validity criterion for
covariance estimation with increasing noise levels.

• Pose from Ti,World with unknown intrinsic
parameter matrix, but estimated using self-
calibration from rotating scenes.

• Pose from image-to-World correspondences
and completely known intrinsic parameter
matrix.

• Pose from image-to-World correspondences
and known principal point and skewing.

• Pose from image-to-World correspondences
and unknown intrinsic parameter matrix,
but estimated using self-calibration.

The third and the sixth methods build upon
of the first and fourth, respectively. Under the
former two, the self-calibration scheme described
earlier is used to estimate the K matrix and its
uncertainty. In practical applications, this im-
plies the ability for an additional manoeuvre us-
ing a pan and tilt head mounted on the vehicle, or
the possibility of the vehicle rotating maintaining
the camera optical center approximately at the
same position.
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5.1. Experimental Setup
5.1.1. Original sequences
In order to evaluate the performance of the

pose estimation algorithms, accurate ground-
truth is required. For this reason we have used
the mosaic of Figure 1 and synthesized new views
according to a specified camera matrix and tra-
jectory. These images are then used to retrieve
the camera and position parameters. The mosaic
was set to cover an area of 6 by 14.5 meters. The
sequence comprises 40 images of 320× 240 pixels
taken by a camera on a moving vehicle combining
3D motion and rotation. The camera is point-
ing downwards with a tilt angle of approximately
150 degree with respect to the horizontal. The
used intrinsic parameters matrix K accounts for
a skewless camera with the following intrinsics,

K =

 480 0 160
0 480 120
0 0 1


In order to simulate the vehicle drift induced by

water currents, perturbations have been added to
the nominal forward motion of 0.23 meters/frame
and to a nominal height above sea floor of 3
meters. The perturbations account for periodic
drifts of around 0.4 meters in position and 15
degrees in orientation. For each frame, the com-
bined movement of the camera is depicted on Fig-
ure 4, where the camera is represented with its
optical axis.
For the self-calibration method, an additional

set of 20 images was produced, in which the cam-
era undergoes pure rotation. The optical centre
remained fixed at 4 meters above the sea bottom,
while the camera faced down, and rotated around
the 3 axes (pan, tilt and yaw). For each axis, the
angle range is ±5 degrees. The intrinsic parame-
ters matrix K used for creating this sequence was
the same as the one used for the other sequence.
The estimation of correspondences between ad-

jacent images constitutes the starting point for
the self-calibration procedure. The iterative self-
calibration method described earlier was used
for estimating both the intrinsic parameters and
their associated uncertainty. Here a skewless, 4-
parameter camera model was adopted during the
minimization process. The recovered intrinsic pa-

Figure 4. 3–D view of the camera positions and
corresponding optical axes used for generating the
sequence with available ground–truth. The origin
of the 3–D world referential is represented by the
system of three axes on the lower right, where
each axis is drawn at 1 meter length.

rameter matrix which is used later on, is

Krec =

 479.0 0 158.7
0 487.7 125.7
0 0 1


5.1.2. Algorithm for new registration on

the mosaic
Next, we will deal with the problem of find-

ing point correspondences relating a sequence
of newly acquired images to a previously con-
structed mosaic. In this, we explicitly take ad-
vantage of the timely order nature of the image
sequence, to reduce the computational burden of
finding correspondences on the mosaic. By as-
suming sufficiently large image overlap over ad-
jacent image frames, the feature matching search
can be restricted to a neighboring area of the lo-
cation predicted by the last image-to-mosaic ho-
mography. Also image warping of the feature is
performed before correlation.
The implemented algorithm requires an esti-

mate of the first image-to-mosaic homography,
which needs not to be very accurate. For each
image, the algorithm tries to find a reliable image-
to-mosaic correspondences set. Reliability is in-
sured by the specification of a minimum accept-
able number of correct matches. If it fails to find
that number, the algorithm uses the homography
with the previous image to compute an approxi-
mation of the current image-to-mosaic homogra-
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phy, in order to narrow the search area for the
correspondences. The advantage of registering
each frame directly on the mosaic (as opposed to
computing by sequentially cascading the homo-
graphies Ti−1,i, between previous images), is due
to the fact that small estimation errors on Ti−1,i

are not accumulated.
Once the image-to-mosaic correspondences

have been found and the mosaic is referenced to
a world frame, the camera pose can be estimated
with respect to the selected world frame.

5.2. Pose Estimation Results
The synthetic images from the sequence con-

taining camera translation were registered di-
rectly on the mosaic, using the algorithm de-
scribed above. This algorithm was run with a
specified acceptable minimum of eight matched
pairs per homography. In each frame it was able
to find between 16 and 39 pairs. For the set of
40 images, 2 homographies were computed with
matched pairs from a second attempt, while the
other 38 were computed at the first attempt.
For all experiments, the uncertainty in the im-

age point correspondences was modeled as addi-
tive Gaussian noise, independent for each coordi-
nate. A value of 0.5 pixel standard deviation was
used as the input for the covariance prediction of
the elements of the homographies and pose. This
value was chosen as a conservative approximation
to the real standard deviation that was measured
from the residuals of an homography computation
between two real underwater images.
For each of the six methods, an initial estimate

was found using the non-iterative solutions pro-
vided by the corresponding methods of Section
3.1. Next, a quasi-Newton nonlinear optimization
algorithm[14] was used for minimizing the corre-
sponding cost function as detailed in Section 3.2.
The pose covariance prediction in all the meth-

ods takes into account the uncertainty on the in-
trinsic parameters, being these provided before-
hand or estimated using self-calibration. How-
ever, for the experiments reported here, only
the methods using self-calibration take into ac-
count the predicted uncertainty for theK matrix.
The experiments for the other methods, assuming
known K and known principal point, use error-
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Figure 5. Position error for all the pose recovery
methods using mosaic registration.

free intrinsic parameters.
Statistics for the reconstruction errors are pre-

sented in Table 1. The position errors were mea-
sured by taking the Euclidean distance between
the ground-truth position and the estimated po-
sition. As for the orientation, the error was mea-
sured by computing the angle between the true
and estimated camera frame orientations. For
each image and method, the position errors are
plotted on the left side of Figure 5. On the right
side, the predicted uncertainty is represented by
the volume of the ellipsoid accounting for 50% of
the uncertainty.
In these results, the lowest position and orien-

tation errors correspond to the trajectory recov-
ery methods for known K matrix. This is not
surprising, as these methods use the most prior
information. The second best class of methods
are for the pose estimation using self-calibration
for which the average distance of the position er-
ror is four times the one of the previous methods.
The methods yielding poorer results in terms of
average error are the ones using just the principal
point information.
Within each class of intrinsic information used,

the methods presenting the best results are the
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Method Position Errors (meters) Angular Errors (degrees)
Avg. Norm Avg. Unc. (×10−3) Avg. Norm Avg. Unc. (×10−3)

Pose from TiW , known K 0.038 0.185 0.350 0.001
Pose from Coord., known K 0.016 0.051 0.252 0.001
Pose from TiW , known PP 0.135 1.558 1.151 0.003
Pose from Coord., known PP 0.142 0.315 1.209 0.004
Pose from TiW , Self–Calib. 0.126 0.482 0.814 0.002
Pose from Coord., Self–Calib. 0.097 0.116 0.982 0.003
Table 1
Trajectory recovery results for the methods using known K matrix, known principal point, and self–
calibration. The average norm refers to the mean value of the error distances, while the average uncer-
tainty refers to the mean value of the 50% uncertainty volume.
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Figure 6. Estimated uncertainty for the position
for all the pose recovery methods using mosaic
registration.

ones estimating the pose from point correspon-
dences instead of using the intermediate image-
to-World homography, with the exception of the
methods using known principal point for which
the average error norm is approximately the
same. A justification for this condition lies on the
fact that a larger set of observation data is used
in pose from coordinates when compared with the
pose from the Ti,World homography.
For all six methods, the corresponding 3-D

views of the recovered trajectories are depicted in
Figure 7. Again, it can be seen that the methods
using the Ti,World homography produce larger un-
certainty volumes. Also, for certain positions and
orientations, the uncertainty volumes are much
larger than the average. Although not exper-
imentally verified, this condition is likely to be
the result of pose configurations where the used
parameterization for Ti,World amplifies the noise
in certain directions of the space spanned by its
components.

5.3. Pose from inter-image homographies
An additional experiment was conducted in or-

der to compare the following image registration
schemes:

- Image-to-mosaic homographies computed by
direct mosaic registration

- Image-to-mosaic homographies computed by
cascading inter-images homographies

The first scheme refers to the first method of
Section 5.2, which makes use of the mosaic regis-
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(a) Pose from TiW , known K (b) Pose from Coordinates, known K

(c) Pose from TiW , known PP (d) Pose from Coordinates, known PP

(e) Pose from TiW , Self Calib. (f) Pose from Coordinates, Self Calib.

Figure 7. VRML views of the estimated trajectory positions and uncertainty ellipsoids for the pose
recovery experiments. Only one out of every two recovered camera positions, is plotted. The original
camera axes are drawn in a darker colour (blue), while the recovered camera axes are drawn in a lighter
colour (red). The size of the ellipsoids was set for a 50% probability. For better visual perception, the
ellipsoids for methods (a), (b), (e) and (f) have been enlarged by 5 times, while for (c) and (d) they retain
the original size.
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tration algorithm described in 5.1.2. In the sec-
ond, the true camera position and orientation is
used for computing the first image-to-mosaic ho-
mography TM,1. The subsequent homographies
are calculated by,

TM,i = TM,1 ·
i∏
k=2

Tk−1,k i > 1

where Tk−1,k are the inter-images homographies
and the matrix product is computed by right-
multiplying for each increment of the index k.
The set of Tk−1,k was estimated from the same
sequence of images, and the number of used
matched points varied from 10 to 76 pairs, with
an average of 60.
Figure 8 and Figure 9 present, respectively, the

plot of the positions errors for each frame, and a
3-D reconstruction of the two trajectories. It can
be seen that the second scheme produces much
less accurate results, due to the fact that small
errors, inherent to the inter-image homography
estimation, are accumulated. This phenomena is
in many ways comparable to the positioning er-
rors arising from the use of dead-reckoning during
navigation.

6. Conclusions

We have presented an approach for the use
of underwater video mosaics as visual reference
maps for vehicle localization. Key issues for the
mosaicing process are the robust selection of cor-
respondences and the use of geometric models ca-
pable of registering any view of a planar scene.
Methods for pose estimation were presented,

which allow the estimation of the 3D position
and orientation of a vehicle from a new view of
a previously created mosaic. For each method,
the associated uncertainty in the pose parame-
ters, as a function of the uncertainty in the ob-
servations, was implemented using a first order
approximation. For the levels of noise involved in
the experimental part of this work, the approxi-
mation was validated by the good fit between the
predicted and measured statistics. Apart from
providing criteria for comparing different meth-
ods, the importance of the covariance prediction
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Figure 8. Position error for the pose recovery
methods using direct mosaic registration, and
inter–image homography cascading.

Figure 9. Estimated trajectory positions and un-
certainty ellipsoids for pose recovery using inter–
image homographies. Only one, out of every two
recovered camera positions, is plotted. The el-
lipsoids are set for a 50% probability, but due to
their rapid growth, only the first half are drawn.
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is also apparent from the fact that it can be used
for the detection of degenerate configurations and
it enables the monitoring of position uncertainty
during navigation.
The different pose estimation methods were

evaluated using an image sequence with ground-
truth. The performance was compared both in
terms of pose error and in terms of predicted es-
timate covariance.
An emphasis was put on using several degrees

of available information on the camera intrinsic
parameters, including self-calibration. The pos-
sibility of calibrating a camera on-line can be
of practical importance for a number of visually
guided tasks, specially if the camera parameters
are subject to change slowly in time. This paper
illustrated how relevant information for the pose
estimation process can be obtained by the analy-
sis of rotation images. These images are easier to
acquire than having to resort to calibration grids.
By automatically creating visual representa-

tions of the sea floor and using them for navi-
gation, the methods described in this paper pro-
vide an important step towards the autonomous
operation of submersibles.

Acknowledgments

The work described in this paper has been sup-
ported by the Portuguese Foundation for Science
and Technology PRAXIS XXI BD/13772/97, and
by NARVAL Esprit-LTR Proj. 30185.

REFERENCES

1. J. Santos-Victor, J. Sentieiro, The role of vi-
sion for underwater vehicles, in: Proc. of the
1994 Symposium on Autonomous Underwater
Vehicle Technology, Cambridge, MA, USA,
1994, pp. 28–35.

2. N. Gracias, J. Santos-Victor, Automatic mo-
saic creation of the ocean floor, in: Proc. of
the IEEE OCEANS’98, Nice, France, 1998.

3. X. Xu, S. Negahdaripour, Vision-based mo-
tion sensing for underwater navigation and
mosaicing of ocean floor images, in: Proc. of
the Oceans ’97 Conference, Vol. 2, Halifax,
Canada, 1997, pp. 1412–17.

4. J. Zheng, S. Tsuji, Panoramic representation
for route recognition by a mobile robot, In-
ternational Journal of Computer Vision 9 (1)
(1992) 55–76.

5. J. Batista, H. Araújo, A. Almeida, Itera-
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