
A Bayesian Method for Learning POMDP Observation Parameters for Robot
Interaction Management Systems

Amin Atrash
School of Computer Science

McGill University
Montreal, QC H3A 1A8
aatras@cs.mcgill.ca

Joelle Pineau
School of Computer Science

McGill University
Montreal, QC H3A 1A8
jpineau@cs.mcgill.ca

Abstract

Technology has allowed robots to enter more personal set-
tings in our society, appearing in environments alongside hu-
mans. These new situations provide a new set of problems,
including the interaction and control of the robot by untrained
humans, as well as adapting to an unconstrained world de-
signed for humans. In this paper, we address the issue of
robot learning in these environments while taking advantage
of a user working alongside the robot. We present a frame-
work for gradually learning a model of the user through a
parametric observation function. This type of framework al-
lows us to begin with a rough model of the world and adjust
it from experience. By relying on an oracle providing opti-
mal policy information, we are able to learn the observation
model and adjust the robot’s behavior to match that of the or-
acle. We address the problems of learning and modifications
necessary to handle the observation function and learning for
rare events. We demonstrate the feasibilty of the algorithmon
a robot-interaction domain and compare against a model-free
method for action-selection.

INTRODUCTION
Personal robots have become increasingly ubiquitious over
the last ten years. That trend is unlikely to slow down. From
robotic vehicles, to intelligent wheelchairs, to social and
cognitive assistants, the opportunities are immense. Design-
ing personal robots however requires a profound paradigm
shift, compared to their industrial predecessors. In partic-
ular, it is imperative that these robots be able to learn and
adapt to the environment and humans that surround them.
Without the ability to learn, robots are condemned to use
preset models of the environment and humans, which are in-
variably brittle, incomplete, and often inaccurate, especially
when it comes to modelling the humans in the environment.
This clearly suggests there are exciting opportunities forde-
veloping learning methods that can provide personal robots
with the flexibility necessary to adapt to their domain.

Consider the case of an autonomous wheelchair which
must work alongside a user for an extended period of time.
This scenario presents several interesting challenges. As
with any robot, the wheelchair must account for noise from
the sensors and environment. In particular, the wheelchair

ICAPS 2010 POMDP Practitioners Workshop, May 12, 2010,
Toronto, Canada.

must handle input from the user through a user interface
which are notoriously noisy and suffer from ambiguity due
to human communication. In the case of speech input, When
issuing a command, words are often transcribed incorrectly.
Even when recognition is perfect, the user may not have pro-
vided enough information to determine the exact intention.
For example, the user may say “move” without specifying
a direction or “go to the office” without specifying a spe-
cific office. The wheelchair must be able to properly handle
this type of noise and ambiguity to perform robostly and in
a manner comfortable to the user.

This paper focuses on developing a system which is able
to adapt to the environment while working alongside a user
by taking advantage of information provided by the user. By
consulting with the user, the robot is able to gain additional
information which allows it to adjust the internal representa-
tion of the environment. This is a similar idea as work in im-
itation learning (Atkeson and Schaal 1997), as well as meth-
ods which learn model parameters from data (Rabiner 1990).
To this end, we present an algorithm which relies heavily on
Bayesian reinforcement learning (Dearden, Friedman, and
Andre 1999; Duff 2002; Jaulmes, Pineau, and Precup 2005;
Poupart et al. 2006; Ross, Chaib-draa, and Pineau 2007;
Doshi, Pineau, and Roy 2008). This provides us with sev-
eral advantages from the reinforcement learning paradigm,
mainly the interleaving of execution and learning. We are
able to use the models for execution and decision-making
during the learning process. This is in contrast to some other
learning algorithms which require batch data for training.
Furthermore, the learning can be directed towards finding a
model which s consistent with the policy, rather than simply
focusing on the parameters themselves. We take advantage
of the optimal policy information provided by an oracle to
help infer the model parameters. This mechanism lends it-
self ideally to a human-robot interaction domain.

Our previous work (Atrash and Pineau 2009) presented
an algorithm using these ideas for learning the reward for
taking actions to adapt the robot behavior to match the in-
tentions of the user. In this paper, we focus on extending
the framework to learn the observation dynamics. We will
present the framework and the modifications necessary to
learn observations. Observations require a different repre-
sentation and a corresponding change to the learning mech-
anism. We will also propose a mechanism for compensat-

ing for rare events. This allows the models to learn the less
frequent events, which are often the more important. Oth-
erwise, the models risk learning to repeat the most common
action repeatedly. We validate this learning on a wheelchair
interaction manager. To highlight the importance of model
learning in such domains, we show that our approach com-
pares favorably with model-free supervised learning meth-
ods, such as SVMs. We show that the models are adapt-
ing over time and provide an advantage over the model-free
methods. Finally, we discussion extensions to the learning
method to allow learning of other model parameters.

BACKGROUND
This section reviews the technical material necessary to un-
derstand our approach. Our approach assumes the robot’s
task domain can be represented probabilistically, in the form
of a POMDP model, as defined in this section. The learning
component of our approach follows the Bayesian reinforce-
ment learning paradigm, also described below.

POMDPs
Partially Observable Markov Decision Processes
(POMDPs) (Kaelbling, Littman, and Cassandra 1998)
are stochastic models used to model non-deterministic
decision-making problems. POMDPs consist of a set of
states,S, a set of actions,A, and a set of observations,
Z. When an action,a, is execute in states, the system
transitions to states′ with probability Pr(s′|s, a). The
agent then receives a reward,R(s, a) and an observation
z is emitted with probabilityPr(z|s′). The agent has an
initial belief distribution across the states,Pr(st=0).

At any point in time, the underlying state,s, is not nec-
essarily observable by the agent. Therefore a distribution
across all states must be maintained. The belief distribution
Pr(st) is updated recursively each time the agent executes
an actiona and receives an observationz:

Pr(st = s
′) =

∑
s
Pr(z|s′)Pr(s′|s, a)Pr(st−1 = s)∑

s′′

∑
s
Pr(z|s′′)Pr(s′′|s, a)Pr(st−1 = s)

(1)

Given a POMDP problem, an action-selection policyπ
can be determined which maps belief states to actions:

π(b) → a.

Solving a POMDP means finding the policy that maximizes
the expected discounted return:

E[

T∑

t=0

γ tR(st, at)|b0].

This presumes of course that the reward function (as well
as the transition and observation paramters) is known.

Efficient approximate solution methods are available to
solve this optimization problem, though details of these al-
gorithms are beyond the scope of this paper. For our ex-
periment, we use the Point-Based Value Iteration (PBVI) al-
gorithm which approximates the policy by using stochastic

trajectories to select belief points (Spaan and Vlassis 2005;
Pineau, Gordon, and Thrun 2003). This method allows us
to solve relatively large POMDPs in a reasonable amount of
time.

The algorithms here focus on learning the observation
functionPr(z|s′). The observation function is particularly
important in human-machine interaction tasks at the obser-
vation function helps capture the error and ambiguity that
occurs from the input. For a given state,s, the observation
function is a multinomial. The Dirichlet distribution is the
conjugate prior of the multinomial distribution. This fact
will be useful to maintain a Bayesian posterior over the pa-
rameters as required by the Bayesian reinforcement learning
framework.

Bayesian Reinforcement Learning
The aim of Bayesian reinforcement learning(Dearden,
Friedman, and Andre 1999; Duff 2002) is to maintain a pos-
terior distribution over possible model parameters, and to
compute an action selection policy which is optimal with re-
spect to this posterior.

A key step in all Bayesian RL methods is thus to com-
pute the posterior over the transition and reward parameters
that define domain model. This is usually done by maintain-
ing Dirichlet distributions over possible models and updat-
ing the hyper-parameters of the Dirichlet as new events are
experienced. A separate Dirichlet distribution is maintained
for every(s, a) transition and observation probability distri-
bution. It is straight-forward to update the posterior overthis
distribution whenever new experience is acquired if the state
is known. If the new experience does not provide complete
information, the update becomes more difficult.

While updating the posterior can be done easily in closed-
form, it is not so easy to compute an optimal policy with
respect to this posterior. Existing methods take differentap-
proaches to this problem. Some of the most recent meth-
ods (Jaulmes, Pineau, and Precup 2005; Doshi, Pineau, and
Roy 2008) approximate the posterior by sampling a small
set of candidate models, and solving those. The posterior
over models continues to be updated, as new experience is
acquired. Periodically, the set of sampled models can be re-
sampled. Thus there are two mechanisms for learning: up-
dating of the hyper-parameters, and re-sampling of models.

A Bayesian Approach for Online Learning
The Overall Approach
Our framework is presented in Algorithm 1. First, the sys-
tem initializes the Dirichlet distribution based on any avail-
able prior knowledge. This can be a uniform prior if no in-
formation is available. Second, a set of models is sampled
from the distributions and the optimal policy computed for
each. The learning phases consists of iterations of execution
and learning. An oracle is queried to obtain the optimal pol-
icy action. This actions is then executed, and the Dirichlet
parameters updated. Periodically, new models are sampled
and old models removed. As the Dirichlet parameters im-
prove over time, these new models result in policies closer
to the optimal policy.

Algorithm 1 Algorithm
Initialize Dirichlet Distribution
Samplen POMDPsP1, P2, ...Pn from Dirichlet
SolveP1, P2, ..., Pn using approximate POMDP method
loop

Get action from oracle
Execute Action
Obtain Observation
Update Belief States
For each POMDP,Mi whose policy agreed with the oracle
action
α(s, z)← α(s, z) + λf(z)PrM (z|s) ∀s ∈ S, z ∈ Z

if resamplePOMDP()then
Removek worst performing POMDP
Samplek new POMDP from Dirichlets
Find policy for new POMDPs

end if
end loop

Policy Oracle

One of the key elements in our framework is the use of an
oracle to provide an optimal policy action. This provides the
learning component of our framework with information to
control the update the Dirichlet parameters by only consid-
ering sample models which selected the same action. Con-
ceptually, the models which selected the correct action are
more “correct” and provide us with an estimate of the direc-
tion towards the optimal parameters

Previous work on learning using an oracle (Jaulmes,
Pineau, and Precup 2005) relied on the oracle for full state
information. While this is sometimes feasible, in many sce-
narios it is not realistic to have an oracle to provide such
detailed information. Often, measurements for ground truth
state information would be expensive and tedious. In the
case of human-robot interaction, the underlying state may
not be attainable or represents an abstract concept. Instead,
we believe it is much more reasonable to request the correct
action to take at the time, basically what the user would have
done in that situation. This type of information is more nat-
ural and intuitive for a human to provide. For example, for
robot navigation, while determining the exact robot position
would be difficult, a human operator could easily joystick
the robot to the destination. In the case of human-robot in-
teraction, a user could suggest to the robot how it should
have responded to his commands.

Note that we do not assume the oracle and agent maintain
the same representation of the world, for example, if both
are using POMDPs, they do not necessarily have the same
belief state. In fact, it is not necessary for both to be using
the same type of representation. At any time, the agent can
request an action from the oracle. The oracle will return
the optimal action,az, for the current time. The agent will
then execute the action and use the information to learn as
described in the following section.

Representing and Learning Observations
Our primary objective is to learn the observation model as-
suming the reward and transition functions are known. Thus,
P (s′|s, a) andR(s, a) are known, but notP (z|s). The ob-
jective is to determine an observation model which repli-
cates the policy of the oracle. It is important to note that this
may not be the same observation model necessarily used by
the oracle. Different observations functions can result inthe
same policy, although the policies may have different ex-
pected rewards.

We associate with each state a Dirichlet distribution over
the possible observations. This acts as a prior over a multi-
nomial which becomes the observation distribution for the
state. When a POMDP is created, a multinomial is sampled
from the Dirichlet distribution for each state. The resulting
multinomial becomes the observation distribution.

Because the environment is partially observable, the exact
state is never known so the observation probabilities cannot
be updated directly. Instead, the observation distribution of
the models is used to adjust the Dirichlet hyper parameters.
After quering the oracle, we perform the following update
for each model,Mi, which agreed with the oracle:

α(s, z)← α(s, z) + λf(z)PrM(z|s) ∀s ∈ S, z ∈ Z (2)

whereλ is the learning rate andf is a frequency correc-
tion. This update rule acts as a gradient ascent, moving the
Dirichlet parameters in the direction of models which have
proven to have a policy similar to the oracle’s policy. The
frequency correction is used to emphasize less frequently
occuring actions and is defined as:

f(z) = 1−
times z has occured
total observations

(3)

This correction helps put more weight on the correct mod-
els when a rare action occurs. Otherwise, the system risks
being dominated by very frequent actions. This helps avoid
local minima by emphasizing all the actions, rather than lo-
cating a set of models which only issue the most common
action repeatedly. Often times, the selection of the least fre-
quent actions is the most important, such as dialogue system
where the system can choose to request more information
from the user before determining the final action. In this
case, the system may choose to repeatedly request more in-
formation from the user as this is the most common action
executed by the oracle. Instead, the final action after re-
questing more information is the important action, but will
happen less frequently.

Experiments
The Smartwheeler(Atrash et al. 2009) autonomous
wheelchair project aims to develop an autonomous
wheelchair for us by patients with mobility issues. The goal
of the project is to build a wheelchair which can aid with
mobility by removing the physical and cognitive load from
users who would have difficulty operating a standard elec-
tric wheelchair due to physical impairments, fatigue, or sen-
sory impairments. Our research focuses primarily on the

Figure 1: Autonomous Wheelchair

higher-level interaction and decision-making elements ofthe
system. By shifting autonomy away from the user to the
wheelchair, the user can control the system using high-level
commands and take advantage of the low level robot control.

An interactive system was designed consisting of several
components. A user speaks to a speech recognition system
which attempts to transcribe the audio. This transcription
is passed to a semantic parser which attaches semantic and
grammar information if possible. This annotated informa-
tion is now handled by the Interaction Manager, which is
the decision-making component of the system and will be
the focus of these experiments. Feedback is provided to the
user through a mounted display. Details of this system are
beyond the scope of this paper and can be found in (?).

The full wheelchair interaction manager is based on com-
plex POMDP. The parameters for the current system used
on the wheelchair are determined by hand labelling much
of the training data, as well as data gathered from multiple
user tests. Due to computational constraints, for these exper-
iments, we use a simplified model with 7 actions: 6 actions
that directly control the robot (move forward, move back-
ward, turn left, turn right, turn around, and stop), as well
as one query action requesting additional information. The
goal is to learn the observation parameters automatically,as
opposed to the model used in the current system which was
constructed using labelled data and adjusted by hand.

For these experiments, the handcrafted POMDP acts as
the oracle. This model has been constructed using man-
ually adjusted parameters and data accumulated from user
tests. The policy for the POMDP is determined using a
point-based appoximation method, and the belief state main-
tained during execution. When the oracle is queried for the
policy information, the action for the current belief stateof
the ground truth POMDP is returned. In a deployed sys-
tem, these actions would be provided by a user. Using the
model as an oracle allows us to run repeated simluation ex-
periments rapidly.

Throughout these experiments, 20 POMDPs are sampled
and maintained from the Dirichlet distributions. Every 1000
steps, the three POMDPs with the least likelihood are re-
moved, and three new POMDPs are sampled from the cur-
rent Dirichlet. Experiments were repeated 10 times, with

the average results reported. The initial set of experiments
assume the oracle is queried at every step. This allows us
to explore the effects of the learning on the system. Reduc-
ing the number of queries is addressed later. The prior in
this experiment is very roughly approximated by selecting
initial counts in proportion to the ground truth distribution.
This approximates a situation where a rough model of the
world is known. To speed up learning, parameter tying is
also applied.

The rate of resampling and the number of models resam-
pled are parameters which can be adjusted for the experi-
ments. Generally, resampling more often and resampling
more models results in faster movement through the model
space, while sampling less frequently maintains the direc-
tion of search.

Because we are interested in the behavior of the resulting
POMDPs, the observation parameters values are not com-
pared directly. Instead, a simple evaluation phase is run pe-
riodically during the experiment to measure how often the
learned models select the same action as the oracle. Be-
ginning with the initial belief state, at every step, an action
is selected by the oracle, the action executed, an observa-
tion is returned, and the belief state is updated. The action
which would have been selected at each step by the sampled
POMDPs is compared to the true action. The number on
which they agree is tallied. For our experiments, this simu-
lation is run every 1000 iterations, and is run for 1000 steps.

As a baseline for comparison, a model-free method using
support vector machines (Mitchell 1997)) was also imple-
mented. Instead of learning a full predictive model of user
observations, previous systems have used a model-free su-
pervised learning approach to predict action choices from
past user observations. We have applied such a method to
our problem. During the learning phase, the history of ac-
tions and observations is recorded as a set of(at, zt) pairs.
At the beginning of the evaluation, a sliding window is
passed over the(at, zt) pairs to create a training set. An
SVM is training over these pairs. During evaluation, a re-
cent history(at−k, zt−k, ..., at−1, zt−1) is maintained. At
each step, an action is selected by passing the recent history
to the SVM and using the classification as the action. Dif-
ferent history lengths were explored to allow the SVM to
look further into the past to determine the action. Shorter
windows only provide information about the more immedi-
ate context, while longer windows provide more informa-
tion but make generalization more difficult. Experiments
were conducted for different history lengths,k = 2 and
k = 4. Larger window lengths led to computational con-
straints due to the quadratic programming step involved in
SVM training. This method represents a model-free method
to learn the policy directly from the actions and observations
recorded.

Figure 2 shows the results of learning on this interaction
manager using the Bayesian method described (POMDP),
as well as the SVM method for different values ofk. The
results show that learning is occuring using the POMDP
method. The SVMs, however, have difficulty learning the
domain. This is a result of the nature of the problem. For
the task domain used here, looking at a very short history

0 5 10 15 20 25 30 35 40 45 50
100

200

300

400

500

600

700

800
Performance of Learning Methods

Iterations (x1000)

M
at

ch
in

g
P

ol
ic

y
A

ct
io

ns
 (

x1
00

0)

POMDP

SVM k=2

SVM k=4

Figure 2: Performance of methods based on Interaction
Manager domain.

is sufficient for determining the next action. However, as
the model becomes more complex, more history information
is needed to determine context. Because the SVM method
must be explicitly told the history to consider, it has no way
to determine the optimal length. This is further exasperated
by the SVMs attempting to generalize over too much in-
formation. By considering information too far back in the
history, the SVMs are trying to incorporate this irrelevant
information into the model, resulting in problems with the
classification. The POMDPs, however, maintain history au-
tomatically through the use of the belief states and are less
affected by this problem.

An example of this occurs because the dialogue system
essentially resets itself after each completed action. It is
assumed that after one task is complete, the user can re-
quest any task. This information is easily encoded into the
POMDP through the transition function. A typical dialogue
may begin with the user issuing a “turn left” command. The
system issues a query, as “turn left” is easily confused with
“turn right.” The user issues another “turn left” command at
which time the system commits to turning left. In another
case, the user issues a “stop” command which the system
immediately identifies as the correct action, as no other ac-
tion sound similar. In the first case, the dialogue involved
two iterations. In the second case, only one. The POMDPs
are able to encode this as one continous input, due to the in-
formation in the transition models. However, the SVM ap-
proach assumes a fixed history length. Examining a history
which is too short may not capture enough of the context to
make the correct decision, while a history which is too long
captures too much information, looking into a previous iter-
ation which is not relevant to the current action. While this
can be handled using domain-specific heuristics, the model-
based system is able to capture this information implicity.

There are other advantages to explicitly maintaining a
model as opposed to using a supervised learning strategy.
Models can be transfered between users, either by starting
with the model themselves or converting the model into pri-
ors and restarting the learning process. An interaction man-

ager trained on one user can be transfered to another user.
While this new model may not necessarily be tuned for the
new user, it maybe much closer than a rough hand crafted
initial model, especially for elements of the problem which
are not user dependant such as noise from the speech recog-
nition. Similarly learning the model allows for adapation
if the dynamics of the environment change over time. The
preferences of the user may change over time or or, in our
target domain, the wheelchair may be moved to a new en-
vironment. Modules in the robot might be changed, such
as a new microphone or new speech recognition software.
By maintaining a model, we can adapt the parameters to
accomodate for the changes without disregarding the previ-
ously learned information. Finally, the SVM method only
provides information about experiences which have been
explicitly encountered as direct matches need to be found
in the history. By using model, generalization can occur
more easily to novel experiences. POMDPs maintain a be-
lief state, which encodes the information from the transition
and observation models. These belief states are continuous,
so belief states which are never explicitly encountered still
have policy information as a result of the way policies are
maintained.

RELATED WORK
Learning models in a partially observable environment is
a difficult task. Conceptually, the lack of visible state
makes it difficult to assign credit when a transition occurs
or when an observation is received. The Baum-Welch algo-
rithm (Rabiner 1990) is an expectation-maximization algo-
rithm (Dempster, Laird, and Rubin 1977) traditionally used
for learning parameters in hidden Markov models (HMMs)
given only a sequence of observations. Hidden Markov
models are similar to POMDPs in that they have an unob-
served underlying state which must be inferred through a se-
ries of observations. The main difference being that HMMs
are used for monitoring processes without decision mak-
ing. Baum-Welch has become a popular method for training
HMMs and is used extensively in many applications. How-
ever, it tends to require a large amounts of data for training,
especially as the models become more complex.

Due to the close nature of HMMs and POMDPs, Baum-
Welch can be applied almost directly to learn POMDP pa-
rameters, although due to the addition of actions, more data
is required for training. Early work (Chrisman 1992) on the
application of Baum-Welch to general POMDPs used the
same mechanisms of expected counts to re-estimate the pa-
rameters iteratively after data is collected. This work con-
sidering the idea of a predictive model and also presented
mechanisms to adjust the number of underlying states as
needed to maximizes the predictive power of the model.
Baum-Welch has been used to train POMDPs for robot nav-
igation and localization for the Xavier robot (Koenig and
Simmons 1996). Here, POMDPs were used to represent the
physical layout of a building. The transition and observa-
tion parameters were learned based on traces of the robot
moving through the environment using sliding window of
history over which the parameters were refined at intervals.
The topology of the environment was learned by maintain-

ing several potential distances of each hallway over which
the model is learned. Baum Welch was again used to learn
navigation POMDPs (Shatkey and Kaelbling 1997), this
time with less constraints on than topology. Both of these
works took advantage of the domain to aid in learning.

Active learning (Cohn, Ghahramani, and Jordan 1995)
has also been explored as a method for learning probabilis-
tic models. Under active learning, the system itself guides
the learning by determining which samples provide the most
information using heuristics such as predicted variance. Ef-
ficient algorithms for active learning in HMMs have been
presented (Anderson and Moore 2005). In this work, sam-
ples are selected to minimize model uncertainty, as well as
considering the cost of misclassification. Recently work has
extended active learning to POMDPs. The MEDUSA al-
gorithm (Jaulmes, Pineau, and Precup 2005) uses an oracle
which provides state information to update a Bayesian prior
over model parameters. Queries are issued based on a set
of heuristics which examine the current state of the models
as well as potential information gain from the query. Similar
work (Doshi, Pineau, and Roy 2008) also relies on an oracle
to provide information, but instead learns a the reward func-
tion of the user. Queries are issued based on minimizing the
Bayes-risk of an action. Many of these heuristics are easily
incorporated into our framework.

DISCUSSION AND FUTURE WORK
We have demonstrated an algorithm for learning the obser-
vation function of a probablistic model based on the feed-
back from an oracle. We have shown that by maintaining a
distribution over the potential parameters and updating that
distribution based on feedback from the user, more accu-
rate models can be sampled over time within a Bayesian re-
inforcement learning framework. Finally, we have demon-
strated this algorithm on a basic robot interface domain.

This paper focused specifically on learning the observa-
tion parameters. However, it would be straightforward to
extend the same learning mechanism to learn the transition
parameters as well. The current work assumes the system
dynamics are known. In the case of an interaction manager,
much of this comes from the frequency of the commands
used by the user, as well as the order in which different com-
mands are typically requested. Ideally, the agent would be
able to learn these parameters as well as the observations
and rewards. We would like to continue this direction and
integrate our previous work which learned the reward pa-
rameters as well, resulting in a system which is able to learn
the complete model.

References
Anderson, B., and Moore, A. 2005. Active learning for hid-
den Markov models: Objective functions and algorithms.
In International Conference on Machine Learning, 9–16.
Atkeson, C., and Schaal, S. 1997. Robot learning from
demonstration. InInternational Conference on Machine
Learning, 12–20.
Atrash, A., and Pineau, J. 2009. A Bayesian reinforcement
learning approach for customizing human-robot interfaces.

In International Conference on Intelligent User Interfaces,
355–360.
Atrash, A.; Kaplow, R.; Villemure, J.; West, R.; Yamani,
H.; and Pineau., J. 2009. Development and validation of a
robust speech interface for improved human-robot interac-
tion. International Journal of Social Robotics1:345–356.
Chrisman, L. 1992. Reinforcement learning with percep-
tual aliasing: The perceptual distinctions approach. InNa-
tional Conference on Artificial Intelligence, 183–188.
Cohn, D.; Ghahramani, Z.; and Jordan, M. 1995. Active
learning with statistical models. InAdvances in Neural In-
formation Processing Systems, 705–712.
Dearden, R.; Friedman, N.; and Andre, D. 1999. Model
based Bayesian exploration. InUncertainty in Artifical In-
telligence, 150–159.
Dempster, A.; Laird, N.; and Rubin, D. 1977. Max-
imum likelihood from incomplete data via the EM algo-
rithm. Journal of Royal Statistical Society39:1–38.
Doshi, F.; Pineau, J.; and Roy, N. 2008. Reinforcement
learning with limited reinforcement: Using Bayes risk for
active learning in POMDPs. InInternational Symposium
on Artificial Intelligence and Mathematics.
Duff, M. 2002. Optimal learning: Computational proce-
dures for bayes-adaptive markov decision processes. Ph.D.
Dissertation. Director-Andrew Barto.
Jaulmes, R.; Pineau, J.; and Precup, D. 2005. Active learn-
ing in partially observable Markov decision processes. In
European Conference on Machine Learning.
Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and acting in partially observable stochastic domains.
In Artificial Intelligence, 99–134.
Koenig, S., and Simmons, R. 1996. Unsupervised learning
of probabilistic models for robot navigation. InInterna-
tional Conference on Robotics and Automation.
Mitchell, T. M. 1997. Machine Learning. New York:
McGraw-Hill.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based
value iteration: An anytime algorithm for POMDPs. In
International Joint Conference on Artificial Intelligence,
1025–1032.
Poupart, P.; Vlassis, N.; Hoey, J.; and Regan, K. 2006. An
analytic solution to discrete Bayesian reinforcement learn-
ing. National Conference on Artificial Intelligence1.
Rabiner, L. R. 1990. A tutorial on hidden Markov models
and selected applications in speech recognition. InRead-
ings in Speech Recognition, 267–296.
Ross, S.; Chaib-draa, B.; and Pineau, J. 2007. Bayes-
adaptive POMDPs. InNeural Information Processing Sys-
tems.
Shatkey, H., and Kaelbling, L. 1997. Learning topological
maps with weak local odometric information. InInterna-
tional Joint Conference on Artificial Intelligence, 920–929.
Spaan, M., and Vlassis, N. 2005. Perseus: Randomized
point-based value iteration for POMDPs. InJournal of Ar-
tificial Intelligence Research, 195–220.

