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Abstract
Many elementary mathematics teachers believe that
learning improves significantly when students are in-
structed with physical objects such as coins, called ma-
nipulatives. Unfortunately, teaching with manipulatives
is a time consuming process that is best with person-
alized 1-to-1 tutoring. In this paper, we explore the
feasibility of an automated physical and personal tutor-
ing solution. We collect, annotate and analyze a rich
video data set of teaching sessions. We demonstrate that
there is significant structure in the data that can be cap-
tured in formal computational decision making mod-
els such as Partially Observable Markov Decision Pro-
cesses. Specifically, we identify the actions the teachers
use and how those are conditioned and manipulate dif-
ferent states, such as mood states, mathematical concept
states, and coin configuration states. We identify good
metrics of teaching performance, as well as define an
observation space. We finally present early prototype
systems.

Introduction
The use of physical objects, such as coins, rods, cubes,
patterns and other concrete objects called manipulatives,
is a widely accepted approach for teaching abstract and
symbolic mathematical concepts in kindergarten and early
grades (Piaget and Szeminska 1941; Bruner 1966; Montes-
sori 1964; Sowell 1989). These researchers showed that
interaction with concrete objects provides the basis for ab-
stract thoughts. For example, a child might construct an un-
derstanding of the meaning of a 5 cent coin by counting a set
of 5 pennies and then associating the value of 5 cents with
the physical characteristics of a nickel. The child will also
be able understand the meaning of the number 5 through the
process of grouping the pennies one by one.

Unfortunately, teaching early mathematics with coin ma-
nipulatives is a time consuming process and ideally occurs
as a personal 1-on-1 tutoring with a teacher. Each session
may last up to 30 minutes and may have to be repeated
many times through the school season before the student
finally develops cognitive structures for the different con-
cepts, which include naming the coins, sorting them by size
and value, counting them, and adding their values.
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In general, personalized tutoring systems have the poten-
tial to radically alter the quality of education by offering
a unique learning experience to each student in the class-
room (Anderson and Reiser 1985). Bloom (Bloom 1984)
reports that students tutored 1-to-1 outperform their peers
taught in classroom settings by as much as two standard
deviations. In the 25 years since Bloom’s report, 2σ has
become the gold-standard goal against which tutoring tech-
nologies are measured. So far, personalized tutoring sys-
tems have found success in areas such as high school math
and computer programming (Koedinger and Anderson 1997;
Corbett 2001). Unfortunately, for earlier education the de-
velopment of personalized tutoring systems has not been as
successful yet, due to the fact that during those years learn-
ing is not just about mentally manipulating abstract and sym-
bolic structures, but also involves physical object manipula-
tion as well as intense student and teacher social interaction.

Dealing with physical objects and social interaction can
be challenging, because in addition to the tutoring difficul-
ties, it requires rich data-driven technologies of machine per-
ception and planning under uncertainty. There are video
archives of teachers instructing their students that could be
analyzed by these technologies (Pea, Lindgren, and Rosen
2006). However, to our knowledge, there are no data sets
of teaching interactions specifically using mathematics ma-
nipulatives in a 1-to-1 setting. Our goal in this paper is to
explore wether is feasible to collect rich data of teaching in-
teractions, annotate them sufficiently and investigate wether
there is structure in the data that can be modeled in some
formal computational decision making models. Specifically,
using our data we identify the actions the teachers use and
how those are conditioned and manipulate different states,
such as mood states, mathematical concept states and coin
configuration states. We identify good metrics of teaching
performance, as well as demonstrate machine perception al-
gorithms for perceiving the different states. We show how
these dimensions of actions, states, metrics and perceptions
formulate a sequential decision making process under un-
certainty, which can be captured formally with the mathe-
matical framework of Partially Observable Markov Decision
Processes (POMDPs).

In the rest of the paper, we first describe our data set.
We then illustrate the different structured parts of the data
that formulate the POMDP parameters, such as the ac-



tions, states, reward function, and observations. Finally, we
present early prototype systems.

The 2σ Dataset
To understand the design dimensions of creating a real-
world tutoring system, we collected data of tutoring sessions
between a primary education teacher and students. Because
this tutoring in this dataset was 1-to-1, we named it the 2σ
Dataset, reflecting the challenge and promise of powerful
personalized tutoring technologies. In all, there were 10 ses-
sions with different students spanning K–2. In each session,
the teacher taught skill-appropriate math problems involv-
ing manipulating coins. For Kindergartners, such problems
might be “Can you show me all the Pennies?” while for
second graders they might be complicated subtraction prob-
lems. Each tutoring session lasted approximately 20 min-
utes, and was recorded using 4 simultaneous camera views
and audio (Figure 1). During the study, we also interviewed
the teacher regarding appropriate curricula for the K–2 age
groups, about her own teaching habits, and about her assess-
ment of each child’s learning after a tutoring session.

Figure 1: The 2σ Dataset. Recordings were made of 1-to-1
tutoring sessions. Four video cameras simultaneously cap-
tured the interaction from four angles: the whole scene, the
table workspace, the student’s face, and he teacher’s face. A
video annotating tool shown in the picture above, allowed
to annotate the video frames-by-frame with labels including
child’s mood and teacher’s behavior.

Our research team, which consisted of the teacher, a de-
velopmental psychologist, and a couple of machine learning
and perception researchers agreed on a common set of labels
for the teacher actions and child moods. These labels were
chosen in such a fashion that would be general enough and

common sense that would be hard to dispute. For example,
some of the teacher actions included setting up coins, rein-
forcing the child, by saying “good job” and watching and
listening. Some of the child behaviors included thinking,
tired, and confused. Furthermore, the labels were chosen for
the most part to be mutually exclusive in order to make the
domain easier to annotate as well as being sufficient enough
to explore the possibility of the existence of structure in the
data. Detailed definitions and results on the labels are pre-
sented in later sections of the paper.

Our experiments include data from all 10 of the teaching
sessions, with very detailed annotations for 2 of the children
that we refer to in this paper as child “A” and child “B”. Both
of them were at the same level and knew little about coins.
In both cases, the teacher taught the students using a similar
sequence of lessons that included coin names, coin values,
sorting, and counting by 1s, 5s and 10s. In later sections we
give detailed diagrams of the lesson sequences and concepts.

Actions
From careful observation of the video data we extracted a
set of representative teacher actions. Below we give names
to these teacher actions and give examples to define their
meanings.
• Set up coins. The teacher collects the coins in a single

group and may separate some out.
• Diagnose. The teacher asks question to diagnose whether

the child masters some of the concepts that need to be
taught. For example, the teacher asks, “do you know what
these are?” and points to pennies.

• Illustrate/teach task. For example the teacher says, “this
is a penny”.

• Ask to do a task. For example the teacher says, “can you
separate all the pennies out?”

• Hint: point/question/inform/explain. During a task the
teacher sometimes intervenes when the child is not mak-
ing progress towards the correct solution. For example, if
the child moved a dime in a group of pennies the teacher
might just point to it and explain that this is not a penny
and should be moved away.

• Watch nod/shake head. During a task the teacher watches
and either gives positive or negative feedback through fa-
cial expressions.

• Reinforce. After a task is finished the teacher says “good
job!” or “Excellent” or sometimes gives a high-five.

• Explain final result. For example, once the child separates
all the pennies out, the teacher points to them and says
“these are all the pennies”.

• Motivate to continue. For example, the teacher says
“you are a Rock star, would you like to play some more
games?”
Figures 2 show graphs of the sequence and frequency of

teacher actions and how they relate to each other. The graphs
are for the two children A and B. It is striking to see that both
exhibit very similar transition dynamics and structure, which
is evidence that the teacher uses similar teaching strategies



Figure 2: These are graphs of the teacher actions for child A (on the left) and child B (on the right). The darker arrows indicate
dominant transitions and are the same in both graphs. The numbers are the transition probabilities observed in the data. We
only included edges that had more than 0.09 probability. The graphs shows that the teacher initially diagnoses and sets up
coins, which eventually lead to either some teaching or directly asking the child to perform a task. When the task begins the
teacher interleaves watching and hinting. When the task finishes the teacher reinforces, sometimes explains the final result and
eventually goes back to setting up a new task. The dotted edges are specific to each graph, but have very weak probabilities.
The thin continuous edges have stronger probabilities and are specific to each graph too. It is obvious that the teacher strategy
has structure that can be seen across different children, which we were able to elicit despite the fact that the data was annotated
by two separate people.

across all the children. It also validates the objectiveness of
our teacher action definitions.

States
Student mood states
From careful observation of the video data we extracted a set
of key situations that represent the mood state of the child.
Below we describe these states and give example scenarios
to define their meaning.
• Interested. In this state the child is either looking at the

coin or teacher and listening, but not necessarily thinking
about any math concept, but rather being ready to play
math games with the coins.

• Thinking. In this state the child is manipulating coins to
solve one of the assigned tasks.

• Tired/bored. In this state the child has already had enough
lessons in the session and is beginning to lose her interest
and visibly not paying attention to either the coins or the
teacher.

• Confused. In this state the child, seems to be making the
wrong moves with the coins on the table. Other signs are
hovering over the coins and being undecided as to what to
do and also looking up at the teacher trying to get hints as
to what is the right thing to do.

• Confident/proud. In this state the child is smiling, moves
coins correctly and fast, and when she finishes a task sits
back with a smile and lets the teacher look at her accom-
plishment. She smiles even more when the teacher gives
her reinforcement after a successful task completion.

• Distracted. In this state the child momentarily switches
her attention to different objects and situations other than
coins and the teacher. These would be the cameras for
example or the chair.

• Frustrated. In this state the child is unsure how to make
progress, and has stopped trying.

Examples of the above mood states are shown in Figure
3.

Concept states

According to the California department of education, by the
end of kindergarten students should be able to count, rec-
ognize, represent, name and order up to 30 objects. By the
end of grade one, students should be able to identify and
know the value of coins and show how different combina-
tions of coins equal the same value. They should be able to
count by 2s, 5s and 10s to 100 (Cal 1999). In this paper we
target kindergarten and first grade concepts. To elicit the re-
lationships between the different concepts that a child needs
to learn and how each concept allows for new concepts to
be built upon, we examined our data. We looked at the se-
quence of lesson being taught and how the teacher was able
to progress to harder lesson while interleaving those with
diagnosing concepts from previous lessons. In Figure 4 we
show the order of lessons and how they relate in terms of
concepts and in Figure 5 we derive a cleaner concept space
graph.
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Figure 3: These images describe visually the different mood states that can be observed in the data for child A on the left and
child B on the right. Images are surprisingly similar. This result is again a visual evidence that there is significant structure in
the data that can be easily annotated and used in our system.

Coin states
From video observations (as can be seen in Figure 3) it was
clear that the coin operations involved were mainly group-
ings on a table of the various types of coins. Therefore, we
decided that the coin states are the number of different clus-
ters of coins and the types of coins within the clusters.

Transition dynamics
From our data. we also explored the transition probabilities
among the different types of state variables conditioned on
the teacher actions.

Mood state dynamics: For the mood state dynamics
we counted the frequency of change among the variables for
different actions. We did this for child A and B as shown
in Table 1 . These tables show sample results for the action
Reinforce. It is interesting that this action in both students
elevates pride, especially when the child is thinking, or is
interested. It can also lead to distraction when the student
is interested, because the student becomes so confident that
she begins to lose her focus. When reinforcement is given
while the child is still proud it elevates the interest in both
cases, but with some danger of creating confusion. When
the child is frustrated the reinforce action motivates her to
start thinking again. Similar tables and conclusions as these
can be drawn for the rest of the actions.

Concept state dynamics: In figures 4 and 5 is obvious
that there is not a single, chain-structured learning trajec-
tory. By choosing the “Ask a question” action, the teacher
initiates a learning activity that may ultimately help the child
switch forward to a more advanced understanding within a
single topic. By choosing the “Diagnose” action, the teacher
tests whether the child has mastered a concept.

Coin state dynamics: For the coin state dynamics, coins
start from some initial setup and end up in some goal config-
uration. Each action such as setting up the coins and hinting
along the way leads to goal configurations, as can be seen
from Figures 8 and 7.

The reward function
In the teaching sessions, we observed the teacher often waits
until the child is clearly on the wrong track and won’t re-
cover before interfering. From this, we concluded that she
tries to minimize the number of hints that she gives. She
also tries to get the student to learn as many lessons as pos-
sible. These are two quantities that should be part of our
reward function. Additionally, there are intermediate states
that seem good to be always on such as interest and confi-
dence. A simple goal-based reward function that penalizes
hints and tries to cover as many concepts as possible should
automatically provide for a policy that boosts confidence to
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Figure 4: The circles describe the lessons that were observed in one of the video sessions. The order of the lessons was given
from left to right and top to bottom. The arcs indicate the fact that in order to be able to do a lesson one needs to know concepts
leant from a previous lesson. The teacher often traversed those arcs backward every time a new lesson was about to start, to
diagnose and make sure that the building concepts were already in place. This graph was extracted by observing the lesson
sequence for child B and clearly demonstrates that there is a structured lesson order.

promote interest for example, while diagnosing as needed
the true concept level of the student.

Observations
Mood state perception
Perceiving the mental states that we described earlier can
be achieved through facial expression recognition. Facial
expression recognition can be understood by characterizing
the individual muscles in the face and their appearance when
they move. A taxonomy of these movements is described by
the Facial Action Coding System (FACS) (Ekman, Friesen,
and Hager 2002). FACS based expression recognition sys-
tems have shown dramatic progress recently. In some cases,
are as accurate at predicting mental states as human experts
trained in facial analysis and much better than untrained hu-
mans (Littlewort, Bartlett, and Lee 2009).

We used the Computer Expression Recognition Toolbox
(CERT) (Bartlett et al. 2006) to measure 106 frame-by-
frame indices of facial information, including information
about facial expression, head position, gaze direction, and so
on (Figure 6B). We used a linear-regression-based model to
predict the focus of the student’s attention from these facial
indices. Using this method, the computer was able to cor-

rectly predict where the student was attending over 90% of
the time. More importantly, there was a systematic 80% cor-
relation between actual attentional shifts and predicted atten-
tional shifts (Figure 6D). As the student becomes fatigued,
the system perceives a dramatic rise in attention shifts. Such
a signal could readily be used by to judge when to infer the
Tired/boredom mood state.

Coin state perception
Coin detection Coins are essentially circular objects. A
traditional Computer Vision approach would leverage this
geometrical observation by using the simple and mathemat-
ically elegant Hough Transform approach. This approach
first searches an image for edges, and then considers the
mathematical space of all possible circles to which each
edge component might belong (Yuen et al. 1990). Where
a large number of edges could belong to the same circle, we
decide that this circle is a coin.

A more recent class of approaches to finding any object
in a scene is called the Cascaded Classifier approach, and it
was originally used to find faces very quickly in images (Vi-
ola and Jones 2001). While the Hough Transform approach
is rooted in Geometry, the Cascaded Classifier is based on
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Figure 5: From Figure 4, one can derive a concept space
and the order in which the concepts need to be taught. This
graph shows concepts learnt during kindergarten and first
grade. They involve concepts such as coin names, largest
versus smallest, sorting, association of coin names with val-
ues, understanding coin values trough counting and learning
to count by 1s, 5s and 10s.

Probability Theory and is expected to be more robust to
uncertainty and ambiguity in images. Our results showed
that the Cascaded Classifier approach has about 10-100x
fewer false alarms for any level of misses compared to the
Hough Transform approach, while analyzing the image over
six times faster.

Coin grouping We implemented a fast spectral clustering
method similar to (Shi and Malik 2000) that combines sta-
bility criteria from both eigenvalues and eigenvectors to esti-
mate the number of clusters and identify the clusters. Com-
pared to older clustering techniques like k-means clustering
and mixture-of-Gaussians, spectral clustering makes groups
that match human agreement better (Ng, Jordan, and Weiss
2001). Examples of the groups tracked by our system are
shown in Figure 7.

Still, even two humans may look at the coins and disagree
on how many groups the student has made. New techniques
allow us to quantify this ambiguity in the number of groups
(Lewis 2009). Here, the 2σ Dataset gave us an important
insight. We observed an interesting group refinement teach-
ing behavior: the teacher would refine the groups made by
the student so that they would be less ambiguous (Figure 7,
bottom right). A future research avenue will be to identify
ambiguous groups and encourage the student to make them
clearer, helping to improve her illustrative communication
skills.

Prototypes
As an ongoing part of our explorations we have implemented
two major prototypes. The first one, in Figure 8 shows the
physical coin detection and grouping of our system..

Table 1: This a sample of transition probabilities that can be
estimated from the data. This was done for the action Rein-
force for children A and B. Each row of the table shows the
probability distribution of the mood changing to the moods
in the different columns. The probability support show re-
markable similarity across the children despite the fact that
labels came from two different people. The names of the
moods are abbreviated versions of the moods defined in the
student mood states section.

ChldA Intr Thnk Tird Conf Prd Distr Frst
Intr 0.1 0.1 0.1 0.5 0.2

Thnk 0.43 0.14 0.29 0.14
Tird 0.2 0.2 0.6
Conf 0.4 0.40 0.2
Prd 0.33 0.13 0.20 0.07 0.27

Distr 0.33 0.17 0.5
Frst 1.0

ChlldB
Intr 0.5 0.17 0.17 0.17

Thnk 0.13 0.87
Tird

Conf.
Prd 0.27 0.73

Distr 0.5 0.5
Frst

The second, in Figure 9 shows a first POMDP-based ver-
sion. This version assumed that coin perception was com-
pletely observable and that the concept space was linear
from easier to hardest concept. In addition, it only consid-
ered a single mood state of distracted. This model was im-
plemented in the factored framework of algebraic decision
diagrams, where the policy was computed using the Sym-
bolic Perseus package (Poupart 2005).

We tested this model in a virtual coin manipulative plat-
form combined with the facial expression recognizer. We
implemented five lessons where each one was about sepa-
rating a particular type of coin, starting from pennies then
nickels, dimes, quarters and dollars. Each lesson included
the additional type of coin that needed to be separated out.
Each lesson was split into two, where in one lesson there
was detailed hinting (a teaching lesson), and in the next les-
son the child was asked to do the task without any hints (a
testing lesson). The number of levels was equal to the num-
ber of lessons. The policy that emerged when the POMDP
was solved would first try to diagnose the students level and
then try to guide her through the completion of all lessons,
by first teaching and then testing, and falling back to teach-
ing when the student could not finish a testing lesson. When
the student attention faded off, the tutor tried to bring it back
by asking the student to pay attention.

Summary and Conclusions
In this paper we proposed to build a mathematical math coin
tutoring system. Unlike previous work on intelligent tutor-



Figure 7: Groups of coins identified by our system. In the bottom right two examples, the student has made four groups of
coins that could be seen as three groups (left). The teacher then helps her separate the groups to become more clear (right).
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Figure 9: The Figure above on the left shows the 2 time-slice POMDP model, which takes as inputs observations about the
progress of tutoring and student facial expressions. The actions decide what lesson to give next and whether it should be
accompanied with detailed visual and text to speech hints. The actions can also ask the student to pay more attention. The
model reasons about the student level, and whether she is paying attention. The reward function is positive only when the
current lesson matches the student level and negative otherwise. The intuition is that a student would not learn if the lesson was
too easy or too difficult. The figure on the right shows a virtual coin platform where this POMDP was tested at. Due to the
virtual platform the progress variable was completely observable.

ing solutions we faced the challenge of solving the prob-
lem of physical object interaction as well as the problem of
student mood recognition through non-invasive sensors such
as cameras. By collecting video teaching sessions and ana-
lyzing them, we showed throughout the paper that there is
remarkable structure in the data, that can be captured in the
form of a Partially Observable Markov Decision Process. Fi-
nally, we showed a preliminary POMDP model that has be-
gun to exhibit intelligent teaching strategies and was able to
reason about simple child moods, diagnose the child’s level
and advance it.

Still much work remains in completing this system with a
thorough elicitation of all the parameter of the domain and
computing and evaluating a POMDP tutoring policy that re-
sembles complete teacher strategies. In the coming months
we plan on collecting and analyzing data with more students,
learn the POMDP transition dynamics for the different states

and actions, using machine learning to improve and augment
the prediction of POMDP observations, and finally validat-
ing the whole system in actual classrooms.
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