
Automatic segmentation of the lungs using robust level sets

Margarida Silveira, Jacinto Nascimento and Jorge Marques
Instituto Superior T́ecnico - Instituto de Sistemas e Robótica
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Abstract— This paper presents a method for the automatic
segmentation of the lungs in X-ray computed tomography (CT)
images. The proposed technique is based on the use of a
robust geometric active contour that is initialized around the
lungs, automatically splits in two, and performs outlier rejection
during the curve evolution. The technique starts by grey-level
thresholding of the images followed by edge detection. Then the
edge connected points are organized into strokes and classified
as valid or invalid. A confidence degree (weight) is assigned
to each stroke and updated during the evolution process with
the valid strokes receiving a high confidence degree and the
confidence degrees of the outlier strokes tending to zero. These
weights depend on the distance between the stroke points and
the curve and also on the stroke size. Initialization of the curve
is fully automatic. Experimental results show the effectiveness
of the proposed technique.

I. INTRODUCTION

X-ray computed tomography (CT) is the most commonly
used diagnosis technique for the analysis of the pulmonary
region and the number of CT evaluations of the lungs has
been steadily increasing. In most pulmonary CT image analy-
sis applications the first step is the segmentation of the lungs.
Some examples include airway analysis [7], emphysema
detection [6], evaluation of lung ventilation [8], segmentation
of the lobes [13] and the detection of lung nodules [10], [11].

Several algorithms have been proposed for the segmenta-
tion of the lungs. Most methods start with grey-level thresh-
olding followed by region segmentation based on a sequence
of morphological operations [4], [5], [10]. For instance in [5]
the step of grey-level thresholding is performed using optimal
thresholding to select the threshold automatically. Then con-
nected components labelling is performed, the background
air is eliminated by deleting regions that are connected to
image borders and only the two larger regions are retained.
Some methods include a priori anatomical knowledge [7],
[8] which makes them more powerful but at the cost of
more computational load. For instance in [8] anatomical
knowledge stored in a semantic network is used to guide
the low level image processing and a lung separation step
based on dynamic programming is also included. Recently,
an algorithm using marker based watershed transform was
proposed [9] that eliminates the tasks of finding an optimal
threshold and separating the attached left and right lungs.
However, the identification of internal and external markers
which is based on morphological operations relies on heuris-
tics.

Active contours have also been proposed for the segmen-
tation of the lungs. In [1] two independent ACM’s based on
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Fig. 1. Difficulties with the outlier features that prevent the contour
from reaching the boundaries of the lungs; a) image with the level set
segmentation superimposed b) associated edges.

geodesic gradient vector flow are used. Although this method
works well on concavities it is unable to bridge anatomical
structures such as the trachea or bronchi in case of adverse
initialization. In [12] again two active contours are used that
compete for the lungs boundaries using the EM algorithm.

The class of geometric active contours known as level sets
has become very popular for medical image segmentation
because of their independence from parametrization and the
ability to automatically change topology during deformation.
However, level set methods usually produce over segmented
images of the lungs due to the presence of outliers features
like the trachea or bronchi. The outlier features are produced
by intensity transitions far from the lungs boundaries. Fig. 1
illustrates this difficulty.

In this paper we propose a level set method that overcomes
this difficulty because it is robust with respect to outliers. The
proposed technique is based on the use of a geometric active
contour that is initialized around the lungs, automatically
splits in two, and performs outlier rejection during the curve
evolution. Image features are classified as valid or invalid
making the curve stop only at valid features and allowing
it to bridge the invalid ones. Our algorithm organizes edge
points into strokes and classifies each stroke as valid or
invalid. A confidence degree (weight) is assigned to each
stroke and updated during the evolution process with the
valid strokes receiving a high confidence degree and the
confidence degrees of the outlier strokes tending to zero.

This paper is organized as follows: section II revises level
set theory, section III describes the proposed algorithm for
lung segmentation, section IV presents experimental results
and section V concludes the paper.



II. L EVEL SET AND STOPPING FORCE THEORY

In the level set formulation [14], the active contour is a
moving front denoted byC which is represented implicitly
by the zero level setC(t) = {(~x)|φ(t, ~x) = 0} of a level
set functionφ(t, ~x). If the curveC evolves along its normal
direction with speedV then the evolution of the level set
function φ is governed by the following equation

∂φ

∂t
= F |∇φ| (1)

with φ(0, ~x) = φ0(~x) defining the initial contour. A
particular case is the motion by mean curvature with F given
by

F = div

( ∇φ

|∇φ|
)

For the curve to stop propagating at the shape boundaries
the speed function is multiplied by a stopping forcec which
approximates zero at the image features.

∂φ

∂t
= c(~x)

(
v + div

( ∇φ

|∇φ|
))

|∇φ| (2)

A common choice is a stopping term based on the image
gradient∇I such as [15]

c(~x) =
1

1 + |∇Gσ(~x) ∗ I(~x)|2 (3)

whereGσ(~x) ∗ I(~x) is the convolution of the image with a
gaussian kernel with standard deviationσ.

When the object boundary is indistinct or has gaps the
contour tends to leak or bleed through the boundary. To
address this problem a second type of stopping term based
on edge strength has been proposed [16], [18] that pulls back
the contour if it passes the boundary

∂φ

∂t
= c(~x)

(
v + div

( ∇φ

|∇φ|
))

|∇φ|+∇c.∇φ (4)

wherev is a constant.
A third type of stopping function based on area mini-

mization has been proposed in [17] to further prevent the
boundary leaking problem

∂φ

∂t
= c(~x)

(
v + div

( ∇φ

|∇φ|
))

|∇φ|+∇c.∇φ

+ (
V0

2
~x.∇c) |∇φ|

(5)

These stopping forces deal with the problem of boundary
gaps but don’t address the problem of spurious or outlier
edges. To deal with this difficulty we propose a stopping
force that classifies image features as valid (inlier) or invalid
(outlier) making the curve stop only at the valid features
and allowing it to bridge the invalid ones. Contrary to the
above forces that are constant the proposed stopping force is
adaptive and varies during the deformation process.

III. ROBUST LEVEL SETS

In this section we introduce the proposed adaptive stop-
ping force which allows the contour to bridge the invalid
features and stop only at the valid ones. Our approach builds
on the work of [19] that proposed a robust parametric active
contour able to discard outlier features. The features used
are connected sets of edge points, called strokes, which are
more reliable than edge points.

We will start by introducing some notation. Lety be
the set of all edge points detected in an image and let us
assume thaty is organized in connected components, called
strokes,yj , j = 1, ..., N where yj = {yj

1, ..., y
j
n} is the

set of edge points belonging to the j-th stroke. A standard
edge linking algorithm is used to compute the image strokes.
Each stroke is assigned a confidence degree (weight)wj

verifying 0 ≤ wj ≤ 1, the valid strokes should receive a high
confidence degree and the confidence degrees of the outlier
strokes should tend to zero. These confidence degrees depend
on the distance between the stroke points and the contour and
also on the stroke size. Letx be a contour model defined by
a sequence of 2D pointsxi, i = 1, . . . , M .

Our stopping function depends on the weights assigned
to each stroke. Since we want the curve to stop at the
valid strokes (with higher weights) and to bridge the invalid
ones (with lower weights), the stopping function should
be inversely proportional to the weights. We propose the
following

c(x) =
1

1 + |Gσ(x) ∗ w(x))|2 (6)

where w(x) is the image of the weights calculated for
all the edge points (points that are not edges have zero
weight), andw(x) is convolved with the gaussian kernelGσ.
This stopping function is adaptive because it depends on the
weights w(x) and they vary during the estimation process
since they depend on the distance between the stroke points
and the contour.

Therefore our algorithm is a two step iterative algorithm.
In one step the contour is implicitly evolved using the
evolution equation presented in eq. 4 and in the other step
the stopping function is recalculated.

We will now explain how the weights are calculated. It
is not easy to define a set of criteria to distinguish valid
from invalid strokes. In this paper we will adopt two simple
criteria, we assume that the invalid strokes are located far
from the object’s boundary and that they have usually a
smaller length. The weights are derived in a probabilistic
framework. Letkj be a set of stroke binary labelskj =
{k1, ..., kN}; kj = 1 if the j-th stroke is valid,kj = 0
otherwise. We assume thaty, x andk are random variables
with a probability density function. We also assume that the
strokes detected in the image are independent

p(y|x) =
∏

j

p(yj |x) (7)

and that each stroke has i.i.d. edge points



p(yj |x) =
∏
n

p(yj
n|x) (8)

It is assumed that the contribution from an edge point of a
valid stroke to the density is Gibbs distribution whose energy
depends on a distance function between that edge point and
the contour

p(yj
n|kj = 1, x) = βje

−P
i

d(yj
n,x)

(9)

whereβj is a normalization term related to the partition
function. The following distance function was used [19]

d(yj
n|x) = −

∑

i

N(yj
n; xi, σ

2I) (10)

where N(y; µ,R) denotes the normal density function
with meanµ and covariance R.

Substituting (9) and (10) into (8) we get

p(yj |kj = 1, x) = βje

P
i

P
n

N(yj
n;xi,σ

2I)
(11)

In case a stroke is classified as invalid the contribution of
its edge points to the density is considered a constantLj .

p(yj
n|kj = 0, x) = γje−Lj

(12)

whereγj is a normalization term. We usedLj = − V
nj ;

since this contribution is inversely proportional to the size
of the corresponding stroke, the smaller strokes will tend to
be classified as outliers.

Substituting (11) into (8) we get

p(yj |kj = 0, x) = γjeV M (13)

The weights are given by the probability that a stroke is
classified as valid.

wj = p(kj = 1|yj , x) =
p(yj

n|kj = 1, x)p(kj = 1)
p(yj

n|kj = 1, x)p(kj = 1) + p(yj
n|kj = 0, x)p(kj = 0)

(14)

substituting equations (11) and (13) into (14) and assuming
that the a priori probabilities verifyp(kj = 1) = γj

βj p(kj =
0) we derive the weights

wj =
e

P
i

P
n

N(yj
n;xi,σ

2I)

e

P
i

P
n

N(yj
n;xi,σ2I)

+ eV M

(15)

Contour initialization

The contour is automatically initialized at the outer chest
wall, by a very simple yet effective method. The binary im-
age obtained by gray-level thresholding using Otsu’s method
that was used to detect edges is processed by a morphological
flood filling operation to remove holes. Then, the region with
the largest area is retained and the initial contour is placed
around this region. Furthermore, the edges outside this region
are removed to prevent them from attracting the contour.
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Fig. 2. Segmentation of the lungs; a) segmentation with the classical
method b) segmentation with the proposed method c) detected edges and
d) final inlier/ outlier classification.

IV. EXPERIMENTAL RESULTS

This section presents examples to illustrate the perfor-
mance of the proposed method. The input data consists of
stacks of chest CT slices with X-ray attenuation ranging
from -1024 to 3071 Hounsfield units, corresponding to a 12
bit quantization. Images are 512x512 with slice thickness
of 1.0 millimeters. Edges were obtained with the Canny
edge detector and strokes were obtained with a connected
components labelling algorithm.

The first example illustrates performance of the algorithm
in the middle pulmonary region and shows the robustness of
the method with respect to the initialization.

Figures 2 and 3 compare the results of the classical
edge based level set segmentation method with the results
of the proposed method. On the top row of each of the
figures the segmentation results are displayed, the initial
contours superimposed in yellow and the final contours in
red. The bottom row shows the edge points detected and the
final classification of the strokes obtained by the proposed
method, outliers in gray and inliers in black. It can be seen
that in both situations the proposed algorithm was able to
split the contour in two and to bridge the smaller strokes
corresponding to other structures in the chest region until
it reached the borders of the lungs. The classical method
originated an extra region in the example of Fig. 2 and failed
to converge to the lungs boundaries in the example of Fig.
3 because it was stopped by the outlier edges.

Fig. 4 compares the 3D reconstructions from the segmen-
tation of the complete stack of 2D slices obtained using the
classical edge based level set method with the ones obtained
using the proposed method. The oversegmentation produced
in the classical method by outlier features like the trachea
or bronchi jeopardizes the 3D reconstruction of the lungs
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Fig. 3. Segmentation of the lungs; a) segmentation with the classical
method b) segmentation with the proposed method c) detected edges and
d) final inlier/ outlier classification.

(a) (b)

Fig. 4. Reconstruction obtained from the Segmentation of a complete data
set. a) Results of the classical method b) segmentation with the proposed
method.

surface. This difficulty is overcome by the proposed method.

V. CONCLUSIONS

This paper proposes a method for the automatic segmenta-
tion of the lungs in X-ray computed tomography (CT) images
using level set segmentation. Level set methods usually pro-
duce over segmented images of the lungs due to the presence
of outliers features. The proposed method overcomes this
difficulty by performing outlier rejection during the curve
evolution. Image features are classified as valid (inlier) or
invalid (outlier) making the curve stop only at the valid
features and allowing it to bridge the invalid ones. It is
shown that level set segmentation with the proposed stopping
force is robust and able to segment the lungs bridging other
anatomical structures such as the trachea or bronchi. No user
intervention in required to initialize the contour since the
initialization is fully automatic.
Future work will focus on lung separation and lobe identi-
fication and also on a quantitative comparison between the
results obtained with the proposed method and those obtained
by other methods in the literature, using for instance the
metrics proposed in [4].
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