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Abstract

In this article we explore the use of methodologies for
3D reconstruction from multiple images to recognize faces.
We try to devise a strategy to tackle the problem of recog-
nizing faces from images exhibiting strong pose (rotation
and occlusion) and without prior knowledge (uncalibrated
cameras, images from different sources). We do so by fram-
ing the recognition in the context of 3D structure from mo-
tion with missing data problems. In fact,recently, there has
been a strong trend towards using 3D information to ver-
ify and recognize faces. However most of the state of the
art works are developed over 3D sensors (3D range find-
ers, stereo).Here we propose to do recognition by measur-
ing the likelihood that one or more images were generated
by a given 3D shape. In other words, given the subject’s 3D
shape, we compute the required transformation to match the
probe images and measure its deviation from rigidity. This
process is not straightforward due to the strong pose: face
points are not visible in all images so there is a "missing
data” problem intrinsic to the formulation. One key as-
sumption is that all images (and shape) correspond to neu-
tral expression. Though limited in scale due to lack of large
databases, a set of tests demonstrate the adequacy and good
performance of the approach.

1. Introduction

Face recognition has attracted significant attention in
commercial and research communities due to an explo-
sion of applications in security related issues multimedia,
human-computer interaction and others. Summarizing the
research area in the most classic framework, one can say
that “face recognition” is used in many contexts such as
recognition from video streams [2] or person identification
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by a single or a set of images (known as probes’), knowing
a priori a face database (referred as ”gallery”). Currently,
this last context is split into two different tasks: “authentica-
tion” or “verification” and “’recognition” or “identification”.

To achieve this goal, the matching process (the compari-
son between the probe set and the gallery sets) is one-to-one
in authentication scenario and is one-to-many in another
one. In this paper, the proposed approach is applied in the
identification case (more complex) but it can be used in the
verification as well. In recent years, the effort into build-
ing robust and user-friendly face recognition system, was
concentrated on dealing with the following main issues: il-
lumination changes, head pose variation and different facial
expressions.

Early works [3,21] use 2D images as the input data and
can be classified as template-based/apearence-based meth-
ods [11]. These algorithms are holistic but its performance
decrease significantly with small pose changes. To handle
pose variations, geometric-model based methods [10] use
2D deformable models. Before calculating the similarity
between the probe face image and the gallery ones, these
methods build face models and fit the model to the given
image. Another 2D strategy for dealing with the pose vari-
ation problem is using images with multiple views of the
same face in the gallery [12,14] or synthesizing new images
from a given image and 3D face prior knowledge [4,22].

In recent years, 3D “images” are used as input data for
many algorithms because new 3D sensing devices allow
better recognition performance than 2D [5, 18]. This fact is
true because the 3D data overcome difficulties due to pose
and illumination variations. When the 3D data is available,
these methods can cope with pose and illumination changes
because it is possible to estimate the face surface curva-
ture [15,23]. Due to the isomorphism between the face’s
surface and R?, the method proposed in [6] deals with the
face expression problem, by measuring the intrinsic dis-
tance between facial feature points. 3D scans of the face
can also be used to built detailed face models [1]. The 3D
data can be obtained through 3D sensors or two calibrated
cameras [17]. This alternative way allows us to obtain a 3D



dense reconstruction by a stereo preprocessing.

In this paper we want to take advantages of modeling the
human face as a 3D object using 2D images, such as [9,17],
but avoiding expensive 3D sensors. Unlike these two works,
the method proposed in this paper needs a few feature points
and can be used with uncalibrated cameras. Since we use
point features and do not require calibration our method can
use images of different sources (like cameras, press and In-
ternet) and avoids computationally heavy matching prepro-
cess. Also, in general feature points are more reliable to
illumination changes and finally, since we can cope with
partial data (missing data), unreliable points can be elimi-
nated (declared invisible). In summary, we propose here a
face recognition method with the following main character-
istics:

e uses 2D images from uncalibrated cameras
e images can display large pose variations

e models explicitly scaling factors allowing images cap-
tured at different distances from the subject.

These main features must be understood in a constrained
context. In other words, there are some underlying assump-
tions:

e face expression is close to neutral.
e images are well modeled by orthographic projection.
e at least 3 images for training.

e position of feature points are known (matching is
solved).

Our methodology hinges on the rigid (3D) relation be-
tween different views of the same object. By using a 3D
reconstruction algorithm that can handle missing data, we
compute the 3D shape (3D location up to scale) of a set of
face points (training). With the available test images (one
or more) recognition/verification is performed by verifying
the deviation of these images from a rigid transformation
followed by a projection.

2. Problem and Notation

The human face is represented by a set of point features
which image position we consider known. In our notation,
the human face is thus represented by P points viewed in F'
frames. We can define a data matrix built by stacking the
image coordinates as follows:
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Figure 2. Orthographic projection

where u? and v? are the p point projection in frame f. In
this paper we will consider 13 points shown in figure 1'):
eyes corners (4 points), mouth corners (2 points), tip of
the nose and 2 points in the nose base and targus and
lobule in the ear (4 points).

Of course, the approach is independent of point type and
its number. These were chosen on one hand due to the its
near-rigidity (except the mouth) and on the other because
they are the most identifiable feature points, providing good
discrimination [24]. There are no restrictions to adding
other feature points.

If the size of the head is small relative to its distance
from the camera, as in [9], we can assume the scaled-
orthographic camera model for the data. Then, W can be
written according to the following equation (see figure 2):
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W = MS+t'1 (3)

where Moy 3] is the motion matrix, S(3x p) the shape ma-

trix and t = [tot]. t5t]] " the translation vector. Rows
2¢ — 1 and 27 of M are orthogonal.

Note that vectors 7/ and J f. which represent the camera
axis in image f, are not unit-norm vectors. Their norm is

Uhttp://www.kyb.tuebingen.mpg.de/bu/people/volker/audrey. MPG



[[if||? = ||j¥||*> = of. This models the image scale fac-
tor. In fact faces can be obtained at any distance from the
camera, and if orthography is adequate, this scale factor re-
lates directly to depth. Each pair of stacked vectors i/ and
jf form a Stiefel matrix (two rows of a 3x3 rotation matrix)
multiplied by the scale factor.

If all point projections are known in all f frames, the
shape matrix (3) can be calculated in closed-form [19].
However this is not the case if images have strong pose.
In almost any images there will be a subset of points that
are not visible (occluded), as figures 1 and 3 show.

Mathematically, we do not know all the data matrix val-
ues (1) but only a set of them given by the known data ma-
trix 7, written as:

Z=WoD “

where  represents the Schur (elementwise) product and D
is the mask matrix. This matrix is a binary matrix identify-
ing the known data with 1 and unknown data with 0.

3. Recognizing using 3D Shape

The whole face recognition process hinges on 3D shape
computation. In other words, there are two main steps in
the whole process: First we must compute the 3D shape of
the feature points from incomplete data (missing points due
to pose). Matrix S (shape) thus defines uniquely each sub-
ject. Second, the goal in the recognition process amounts
to finding the shape that after some rotation, translation and
projection is more likely to explain the 2D data (one or more
test images). This process is also done with some data miss-
ing.

In summary, we recognize by seeking the best rigid ex-
planation for the data. It is clear now that estimating shape
from incomplete data is a key procedure in the whole pro-
cess, so next sections will be devoted to this task.

3.1. The missing data problem and shape estimation

In this section, we explain how to estimate the face’s
shape knowing the 2D projections of 13 feature points in
F images with a partial view (4). Considering the human
face (with neutral expression, in this case) as a rigid object
and verifying the orthographic model equation (3), we can
easily conclude that W has at most rank 4 [19]. We can
estimate Z’s unknown values in the following way: Among
all rank 4 matrices choose the one that best approximates
(in the LSE sense) the known data. In other words, solve
the following problem:
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Figure 3. Left - Frontal pose: the viewed features are represented
by the green squares Right - Cyan triangles are the the missing
features, estimated by a state of the art rank-based algorithm.
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Figure 4. Visible features are represented by green squares. Esti-
mates of occluded features using [7] are represented by cyan trian-
gles. Features represented by red circles were computed using our
rigid factorization algorithm. Left - The cyan triangles correspond
to features of the right ear and, in this case, data is not degenerate.
Right - Frontal pose: a typical degenerate case.

where S, is the space of matrices with rank equal to 4.

There are several iterative algorithms [7, 13] to solve the
missing data problem with rank constraint, such as Prob-
lem 1. After solving it through this approach - the rank-
based approach -, the Tomasi-Kanade algorithm [19] can
be used to estimate shape and motion. However, the image
stream has one single degenerate image (an image where
the 3D points of the known projections belong to a 1D or
2D subspace), problem 1 becomes an unconstraint prob-
lem [16]. This situation is quite usual in face recognition
since frontal face images (figures 3 and 4) are fairly com-
mon in databases. The wrong results described before hap-
pen because the viewed 3D points (the eyes and mouth cor-
ners, for example) belong to the same 2D subspace (lye on
a 3D plane). Due to this, the rank-based approaches do not
obtain a correct face shape estimate.

To use frontal images in the gallery set and, at the same
time, obtain a correct face, we must redefine the optimiza-
tion problem according to [16], replacing problem 1 by
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where M = [M\lT 1\//I;T

(3) and o/ is the scale factor
of frame f.

The main difference between this strategy and the previ-
ous one is in the constraints: the constraints in problem 2 are
the orthogonality constraints. Due to this, the orthographic
camera model (3) is imposed to the data. To find a solution

for problem 2, we use the following iterative algorithm:

ALGI1

1. Initializations: 20 =W, k=0

2.Estimate translation (centroid).
tk—[ i Zuix D sz,']k}
Z.. = Zk — tk Remove translation
k=k+1

. Estimate M, e S (run ALG2 with Z.;,)

4. Update data matrix

Z M, S tr_11 D ZoD
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Known data

[

Missing data estimate
D - 2’s complement of Die. D = lporp—D
5. Verify if [|Zy — Zp_1]| < €.
If not verify goto step 2 and k = &k + 1.

Each matrix My, computed in step 3, must satisfy the
orthogonality constraints. Due to this, we use a rigid factor-
ization method given by

ALG2 Args: Z,
1. Initial factorization:
factorize Z. using any factorization (e. .8 SVD)
Z.=AB, R=A, M° = A, S'=B
k=1
2. Project R into the manifold of motion matrices
MF =argminx 37, [|Ry — X|[%
st XeXJ =aglys Vf

a€eRT
—~ — — .
3.8k =MF Z., MPF - Moore-Penrose pseudoinverse
4. R=2S;

5. Verify if || M), — Mj_1]| < e.
If not, goto step 2 and k = k + 1.
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In step 2, it is important to note that matrices M* are ob-
tained in closed-form - Procustes problem. To see the full
details about this algorithm and its performance see [16]. In
figure 4, we can verify that this algorithm provides accu-
rate and reliable locations to the occluded features. In the
left image, the cyan triangles represent the estimated posi-
tion of the right ear points done with Buchanan& Fitzgib-
bon’s algorithm [7], considered the best performing matrix

completion algorithm. Estimates of the above algorithm are
represented by the red dots (the points of the left ear are pro-
jected over the nose, where it should be). The right image of
the same figure just show a frontal image (degenerate data
- points on a planar surface). Note that one single degener-
ate image produces such error, regardless of the number of
”well-behaved” images (with non-coplanar points).

So, this means that shape and motion estimates are cor-
rect and thus allows our face recognition methodology deal-
ing simultaneously with 3D shape and strong pose and scale
factor. In other words the correct results can be obtained
only if the orthogonality constraints are verified. Any other
method (say [7, 13]) would fail unless all data are non-
degenerate (no frontal images, for example).

3.2. The classification task

The probe images are represented the same way as the
gallery images: by those face features mentioned in section
2. It is also important to note that the pose of face in a probe
image is not a priori specified.

The main idea about evaluating the similarity degree be-
tween two different data sets is to use the same criterion
used to estimate 3D shape (in section 3.1) - rigidity. This
means that if a probe and gallery sets match, given a known
3D shape of the gallery subject, the 2D projections of the
probe set are in accordance to the orthographic camera
model (3). To compute the compatibility degree between
these two sets, we solve a similar problem to Problem 2 but
with one frame, only, that is, computing the best Stiefel ma-
trix 1</[\z that adjust gallery shape to probe:

Problem 3 )
67;]' = mmﬁ Zg szk — MzS]H
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where W is composed by the 2D projections of image k
of probe 7 and S; the shape of face j. Note that, in this
case, W;;, and S; are known (no missing elements). Then,
the classification of the face of probe image k is obvious: it
is the same face of gallery 3D shape j if ¢;; is below of a
threshold.

The above optimization is quite straightforward and ef-
ficiently done: Knowing the Shape an initial estimate can
be computed from the Least-Square Error estimate (1\//I\i =
W*ST(S;ST)~") and for high precision, three steps of a
Newton algorithm are performed.

4. Experiments

To evaluate if 3D shape and rigidity are good cues to
face classification with strong pose, we put forward a small
experimental setup consisting of 110 images belonging to
12 subjects.



Figure 5. Pose variation of typical gallery set. Each set was formed
by 5 images.

Figure 6. Typical images for the probe set.Some sets included 2
images per subject

The type of images used in this test are shown in figure
5 and 6. Images were obtained by a regular digital camera
(resolution 3072 x 2048 pixels), with strong pose variations.
There was no constraints on the viewing angle and distance
between the camera and the subjects (scale factor) also var-
ied. Feature points were selected manually.

The results presented in figures 7 and 8 were obtained
from 130 experiments, consisting on randomly selecting
probe and gallery images from the whole set of images. Af-
ter the random choice of the gallery set, each shape face
is calculated from 5 2D images of a same person. In fig-
ure 5 we show 4 images from a typical gallery set. On the
other hand, one element of the probe set is composed by 1
or 2 images. In the 2 image case, they are also selected ran-
domly. In figure 6, the 4 images belong to 4 different probe
sets, composed by one single image.

In figure 7 we show the error histograms for the 130 ex-
periments with one image (left graph) and 130 with two im-

Figure 7. Histogram of data reconstruction error (error of Problem
3. Left- One image per probe set. Right- Two images per probe
set. X-axis represent the error ¢;;. Blue dashed curve represents
percentage of correct cases: Probe and gallery sets are compati-
ble.Red curve corresponds to incompatible sets
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Figure 8. ROC curve: Solid line - 1 image in each probe set Dashed
line - 2 images in each probe set

ages (right graph). This histogram represents the percent-
age of correct cases (blue dashed curves) where shape and
data belong to the same subject and the percentage of wrong
cases (red curves), as a function of error €;;. As it is clear,
both classes can be easily separated. This separation is even
deeper if we increase the size of probe images as shown in
the right graph of figure 7 and more evident in the ROC
curve shown in figure 8. In this figure, the solid line rep-
resents the ROC curve for the one probe image experiment
and the dashed line the ROC curve for the 2 image experi-
ment. At 0% false positive rate we can still achieve 85% of
correct classification.

4.1. Conclusions and future work

In this paper, we shown a new face recognition method
to deal with strong pose, which by nature generate occlu-
sion of the face. By fusing information from several im-
ages it handles any type of pose. Also, since it relies on or-
thographic models it works with images from uncalibrated
cameras. Because the reconstruction algorithm models real-
ity more faithfully (imposing the full camera model), it can
use degenerate data like frontal images where the viewed
points lye on planar surfaces (degenerate 3D data!).

Even though it requires a scaling up of the data set for
more accurate evaluation, we believe that this innovative
concept is quite promising and definitely robust to strong
pose.



The methodology presented here assumes that faces ex-
hibit a neutral and similar expression over the whole data
set. However, there are several factorization algorithms that
can deal with nonrigid objets (strong articulations and small
deformations) [8, 20]. Intrinsically the modeling is similar
in the sense that observations (image points) are generated
by bilinear models. The missing data is clearly extendable.
However the parametrization and the meaning of shape and
motion is not straightforward. Here the motion matrix in-
cludes other terms than rigid transformations. In rigid sit-
uations the error is clearly defined and easy to measure,
which is not the case in the non-rigid case. Experiments
will be conducted to evaluate the possibility of extending
the methodology to these more broader cases.
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