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Abstract—We propose a distributed algorithm, named Distributed Alter-
nating Direction Method of Multipliers (D-ADMM), for solving separable
optimization problems in networks of interconnected nodes or agents. In
a separable optimization problem there is a private cost function and a
private constraint set at each node. The goal is to minimize the sum of all
the cost functions, constraining the solution to be in the intersection of all
the constraint sets. D-ADMM is proven to converge when the network is
bipartite or when all the functions are strongly convex, although in prac-
tice, convergence is observed even when these conditions are not met. We
use D-ADMM to solve the following problems from signal processing and
control: average consensus, compressed sensing, and support vector ma-
chines. Our simulations show that D-ADMM requires less communications
than state-of-the-art algorithms to achieve a given accuracy level. Algo-
rithms with low communication requirements are important, for example,
in sensor networks, where sensors are typically battery-operated and com-
municating is the most energy consuming operation.

Index Terms—Alternating direction method of multipliers, distributed
algorithms, sensor networks.

I. INTRODUCTION

In this paper, we propose a distributed algorithm for solving sepa-
rable optimization problems:

(1)

where is the global optimization variable, and will denote
any solution of (1). As illustrated in Fig. 1, we associate a network of
nodes with problem (1), where only node has access to its pri-

vate cost function and to its private set . Each node can only
communicate with its neighbors, but all of them have to solve (1) in
a cooperative way. We call any method that solves (1) without using
a central node and without aggregating data at any specific location a
distributed algorithm.
Contributions: The goal of this paper is twofold: to show that the re-

cent distributed algorithm proposed in [1] for a specific problem called
Basis Pursuit can be generalized to solve the class (1); and to show that,
for many problems of interest, the resulting algorithm requires usually
significantly less communications than prior distributed algorithms to
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Fig. 1. Network with nodes. Node only knows and , but
cooperates with its neighbors in order to solve (1).

achieve a given solution accuracy. This also includes algorithms that
were specifically designed for a particular problem and are not appli-
cable to the entire problem class (1). Algorithms with low communica-
tion cost are relevant, for example, in sensor networks where commu-
nication is often the most energy-consuming task and the nodes rely on
batteries [2], [3].
Formal Problem Statement: Given a network with nodes, we as-

sociate each and in (1) with the th node of the network. We
make the following assumptions:
Assumptions:
1) Each is a convex function over , and each set

is closed and convex.
2) Problem (1) is solvable.
3) The network is connected and it does not vary with time.
4) A coloring scheme of the network is available.
Assumption 2) implies that (1) has at least one solution . In As-

sumption 3), a network is connected if there is a path between every pair
of nodes. Finally, in Assumption 4), a coloring scheme is an assignment
of numbers to the nodes of the network such that no adjacent nodes have
the same number. These numbers are usually called colors, and they
will be used to set up our distributed algorithm. Note that, in wireless
scenarios, coloring schemes are often used in Media Access Control
(MAC) protocols to determine the nodes’ order of communication.
Under the previous assumptions, we solve the following problem:

given a network, design a distributed algorithm that solves (1). By “dis-
tributed” we mean there is no notion of a central or special node and
each node communicates only with its neighbors; also, only node has
access to or at any time during or before the algorithm.
Our solution for this problem relies on the Alternating Direction

Method of Multipliers (ADMM), which has become very popular in
recent years; see [4] for a survey. Specifically, we use an extended ver-
sion of ADMM, whose proof of convergence was recently established
in [5]. This result will also guarantee the convergence of our algorithm
for some problems of interest.
Related Work: Gradient and subgradient methods, including incre-

mental versions, are long known to yield distributed algorithms (in the
sense defined before); see, e.g., [6]–[8]. Advantages of these methods
are computational simplicity at each node and theoretical robustness
guarantees. However, they generally require too many iterations (and
hence communications) to converge.
Augmented Lagrangian methods have also been used for distributed

optimization, e.g., [9]–[11]. They consist of two loops: an outer loop
updating the dual variables, and an inner loop updating the primal vari-
ables. The most common outer loop algorithm is the gradient method,
yielding the method of multipliers. For the inner loop, common choices
are Gauss-Seidel and Jacobi methods.
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IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 10, MAY 15, 2013 2719

The Alternating Direction Method of Multipliers (ADMM) [4] is an
augmented Lagrangian-based algorithm that consists of only one loop.
ADMM is not directly applicable to (1): one has to reformulate that
problem first. Possible reformulations were addressed in [12] and [13],
yielding algorithms that require two and one communication steps per
ADMM iteration, respectively. Other work that explores these algo-
rithms for particular instances of (1) include [14]–[18]. The algorithm
we propose is also based on ADMM (on an extended version), but ap-
plied to a different reformulation of (1). Our simulations show that the
proposed algorithm requires less communications than any of the pre-
vious approaches.
All the above algorithms solve (1) in a distributed way. There are,

however, other algorithms that solve (1), but are not distributed in our
sense. For example, the algorithm in ([4], Section 7.2) solves (1), but
it requires an all-to-all communication in each iteration; this can only
be accomplished in networks that are fully connected or that have a
central node. In contrast, our algorithm and the ones described above
are distributed and can run on any connected network topology.

II. ALGORITHM DERIVATION

To derive the algorithm, we reformulate (1) to make ADMM appli-
cable. As mentioned before, several reformulations are possible: ours
takes advantage of node coloring. First we introduce some notation.
Network Notation: Networks are represented as undirected graphs

, where is the set of nodes and
is the set of edges. The cardinality of these sets is represented

respectively by and . An edge is represented by , with ,
and means that nodes and can exchange data with each
other. We define the neighborhood of a node as the set of nodes
connected to node , but excluding it; the cardinality of this set,

, is the degree of node .
Coloring: We assume the network is given together with a coloring

scheme of colors. The set of nodes that have color will be denoted
with , for , and its cardinality with . Note
that partitions .
Problem Manipulations: Without loss of generality, assume the

nodes are ordered such that the first nodes have color 1, the next
nodes have color 2, and so on, i.e.,

. We decouple problem (1)
by assigning copies of the global variable to each node and then
constrain all copies to be equal. Let denote the copy held by
node . As in [13], we constrain all copies to be equal in an edge-based
way, and rewrite (1) as

(2)

where is the optimization variable.
Problem (2) is no longer coupled by a global variable, as (1), but
instead by the new equations , for all the pairs .
These equations enforce all copies to be equal since the network is
connected (cf. Assumption 3)). Note that these constraints can be
written more compactly as , where is
the node arc-incidence matrix of the graph, is the identity matrix in
, and is the Kronecker product. Each column of is associated

with an edge and has 1 and in the th and th entry, re-
spectively; the remaining entries are zeros. Our numbering assumption
induces a natural partition of as , where
the columns of are associated to the nodes with color . We

partition similarly: , where collects
the copies of all nodes with color . This enables rewriting (2) as

(3)

where . Problem (3) can be solved with the Extended
ADMM, explained next.
Extended ADMM: The Extended ADMM is a natural generaliza-

tion of the Alternating Direction Method of Multipliers (ADMM) [5].
Given functions sets , and matrices , all with the same
number of rows, the extended ADMM solves

(4)

where is the optimization variable. The extended
ADMM consists of iterating on :

(5)

(6)

...

(7)

(8)

where is
the augmented Lagrangian of (4), is the dual variable, and is a pos-
itive parameter. When , (5)–(8) becomes the ordinary ADMM
and it converges under very mild assumptions. When , there
is only a known proof of convergence when all the functions are
strongly convex [5]. In particular, the following theorem holds.
Theorem 1 ([19], [5]): Let be a convex function

over a closed convex set, and an matrix,
for . Assume (4) is solvable and that either
1) and each has full column-rank,
2) or and each is strongly convex.
Then, the sequence generated by (5)–(8) con-
verges to , where solves (4) and
solves the dual problem of (4): , where

, for .
A proof for case 1) can be found in [19], which generalizes the proofs

of [9], [4]. A proof for case 2) can be found in [5]. It is believed that
(5)–(7) still converges when and each has full column-rank,
i.e., that the generalization of Theorem 1 under case 1) still holds [1],
[5], [20]. Recently, [21] proved that if we replace in (8) by a small
constant, the resulting algorithm converges linearly.
Applying the Extended ADMM: We now apply the extended

ADMM to problem (3), which has the format of (4). We start by
showing that the th optimization problem in (5)–(7) yields
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Algorithm 1: D-ADMM

Initialization: for all , set and
1: repeat
2: for do
3: for all [in parallel] do

4: and find

5: Send to
6: end for
7: end for
8: for all [in parallel] do

9: end for
10:
11: until some stopping criterion is met

optimization problems that can be solved in parallel. For example,
is updated as

(9)

where . The last term in (9) can be written as

(10)

In the first term, , where is a diagonal
block of the graph Laplacian. Since the nodes with color 1 are not
neighbors between themselves, will be a diagonal matrix,
with the degrees of the respective nodes in the diagonal. This means

. Similarly, in the second term,
, where corresponds to an off-diagonal

block of the Laplacian matrix. For , the th entry of the Laplacian
matrix contains if nodes and are neighbors, and 0 otherwise.
This implies . Finally,
the last term of (10) does not depend on and can be ignored from
the optimization problem. Thus, (9) simplifies to

(11)

where comes from the second term in (9):

.We decomposed edge-wise:
, where is defined for and associated to

the constraint in (2). It is now clear that (11) decomposes
into problems that can be solved in parallel. For the other colors,
we can apply a similar reasoning, but we must be careful defining ,

due to the nodes’ relative numbering. Its general definition is
, where , if , and

, otherwise. Note that we extended the definition of for
such that . Algorithm 1 shows the resulting algorithm,

named Distributed-ADMM, or D-ADMM.
In Algorithm 1, the edge-wise dual variables were totally re-

placed by the node-wise dual variables . This is because the problem
in step 4 depends only on and not on the individual ’s. The up-
date for in step 8 stems from replacing

in the definition of .
Algorithm 1 is asynchronous in the sense that nodes operate in

a color-based order, with nodes with the same color operating in
parallel. Since nodes with the same color are not neighbors, we would
apparently need some kind of coordination to execute the algorithm.
Actually, such coordination is not needed provided each node knows
its own color and the colors of its neighbors. In fact, as soon as node
has received from all its neighbors with lower colors, node

can “work,” since step 4 (and subsequently step 5) can be performed.
In conclusion, knowing its own and its neighbors’ colors provides an
automatic coordination mechanism. Regarding the convergence of
D-ADMM, we have:
Corollary 1: Let Assumptions 1)–4) hold. Then, Algorithm 1 pro-

duces a sequence convergent to , where
solves (1), whenever 1) the network is bipartite, or 2) each is strongly
convex.

Proof: The proof is based on showing that the conditions of The-
orem 1 are satisfied. First, note that Assumptions 1) and 2) and the
equivalence between (1) and (3) imply that problem (3) is solvable,
that each function is convex over , and that each
set is closed and convex. Now, we will see that Assumption 3)
implies that each has full column-rank. Note that it is suf-
ficient to prove that has full column-rank. If, on the other hand,
we prove that has full rank, then the result follows because

. Note that is a diagonal matrix,
where the diagonal contains the degrees of the nodes belonging to the
subnetwork composed by the nodes in . Since no node has degree 0
(cf. Assumption 3)), has full rank.
Finally, note that a bipartite network can be colored with just two

colors. In that case, condition 1) of Theorem 1 is satisfied together with
the remaining conditions, which ensures the convergence of Algorithm
1. When the network is non-bipartite and each is strongly convex,
we are in case 2) of Theorem 1, which again ensures the convergence
of Algorithm 1.

III. APPLICATIONS

We will now see how some important optimization problems can be
recast as (1). These reformulations, except the one for LASSO, are not
new: see [13]–[16]. Therefore, we refer to these references for the de-
tails of solving the optimization problem in step 4 of Algorithm 1. We
note that in all the problems, except in consensus, none of the functions
is strongly convex. Therefore, D-ADMM is only guaranteed to con-

verge under condition 1) of Corollary 1. Nevertheless, in Section IV,
we will see that in practice D-ADMM, not only converges for all these
problems, but also outperforms previous work in terms of the number
of communications, including the ADMM-based algorithms [13], [12],
[16].
Consensus: Consensus is a fundamental problem in networks [18],

[22]. Given a network with nodes, node generates a number, say
, and the goal is to compute the average at

every node. Consensus can be cast as [7], [18]:
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Fig. 2. Row partition and column partition of into blocks. A block in the
row (resp. column) partition is a set of rows (resp. columns).

which is clearly an unconstrained version of (1), with
; thus, it can be solved with D-ADMM. In this case,

the problem of step 4 of Algorithm 1 has a closed-form solution:
.

Sparse Solutions of Linear Systems: Finding sparse solutions of
linear systems is important in many areas, including statistics, com-
pressed sensing, and cognitive radio [23], [14]. A common approach
to tackle this problem is by solving LASSO [23] or BPDN [24],
respectively,

(12)

(13)

where the matrix , the vector , and the parameters
are given. LASSO first appeared in [23] to denote a related

problem, although the problem in (12) is known by the same name.
We solve LASSO and BPDN in two different scenarios, visualized in
Fig. 2: row partition (resp. column partition), where each node stores
a block of rows (resp. columns) of . While in the row partition vector
is partitioned similarly to , in the column partition we assume all
nodes know the full vector .
We propose solving LASSOwith a column partition and BPDNwith

a row partition. The reverse cases, i.e., LASSOwith a row partition and
BPDN with a column partition, cannot be trivially recast as (1). How-
ever, in our previous work [1], we solved Basis Pursuit (i.e., LASSO
with ) for both the row and the column partition.
LASSO: Column Partition: Assume is partitioned by columns,

and the th block is only known at node . Also, assume vector ,
parameter , and the number of nodes are available at all nodes.
LASSO in this scenario cannot be directly recast as (1): we will have
to do it through duality. However, only solving the ordinary dual of
LASSO will not allow us to recover a primal solution afterwards,
since its objective is not strictly convex. We thus start by regularizing
LASSO, making it strictly convex:

(14)

where is small enough. This regularization is inspired by [25],
which establishes exact regularization conditions. By exact, we mean
there exists such that the solution of (14) is always a LASSO
solution, for . One of these conditions is that the objective is
linear and the constraint set is the intersection of a linear system with
a closed polyhedral cone. Although LASSO can be recast as

(15)

where is the vector of ones, the closed convex cone
is not polyhedral; thus, there is not a proof of exact regu-

larization for (15). However, experimental results in [25] suggest that
exact regularization might occur for non-polyhedral cones. In the sim-
ulations discussed in the next section, we solved (14) always with

and the corresponding solutions never differed more than 0.5%
from the “true” solution of LASSO.
We now introduce a variable in (14) and rewrite it as:

(16)

If we only dualize the last constraint of (16), we get the dual problem
of minimizing , where

is the function associated to
node . This problem is clearly an unconstrained version of (1).
BPDN: Row Partition: In BPDN, and are partitioned by rows,

with the blocks and stored at node . In this scenario, BPDN can
be readily rewritten as

(17)

which is an unconstrained version of (1): just make
.

Distributed Support Vector Machines: A Support Vector Machine
(SVM) is an optimization problem that arises in machine learning in
the context of classification and regression ([26] Ch. 7).While there are
several possible formulations for an SVM, here we solve ([26], Section
7.1.1)

(18)

where the parameter and the pairs ,
are given. Each point belongs to one of two classes: or

. The goal in solving (18) is to find an hyperplane
that best separates the two classes. The optimization

variables in (18) are , the vector orthogonal to the hyperplane,
, the hyperplane offset, and , the vector of slack variables.

We assume that is divisible by the number of nodes , and that
each node knows pairs of points . The resulting
problem can be formulated as an unconstrained version of (1) by setting

where is a diagonal matrix with the ’s corresponding to node in
the diagonal, and is an matrix with each row containing .
Note that the size of the variable to be transmitted among the nodes
is , corresponding to the size of the global variable : the
variables are internal to each node.

IV. SIMULATION RESULTS

This section shows simulation results of D-ADMM and related algo-
rithms solving the problems presented in the previous section.We focus
on the ADMM-based algorithms [12] and [13], since these are the best
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Fig. 3. Results of the simulations for (a) consensus, (b) LASSO, (c) BPDN, and (d) SVM.

among the distributed algorithms for (1). We start by discussing the
performance measure.
Performance Measure: Communication Steps: We say that a Com-

munication Step (CS) has occurred when all the nodes have transmitted
a vector of size to its neighbors. All the algorithms we consider here,
including D-ADMM, consist of one iterative loop. One iteration of
D-ADMM, as well as of [13], corresponds to one CS; one iteration of
[12] corresponds to two CSs, since each node transmits two vectors of
size per iteration. The number of CSs is proportional to the number
of total communications. Thus, in a wireless scenario, the smaller the
number of CSs, the lower the energy consumption.
Note, however, that the CS measure does not take into account the

computational complexity at each node. (Actually, D-ADMM, and
the algorithms in [12], [13] have similar computational complexities.)
Also, this measure is not necessarily related with execution time. In
fact, while D-ADMM requires less CSs than competing algorithms
(as we will see), it may be slower than some of them. The reason is
because D-ADMM is asynchronous, while all the other algorithms
are synchronous. Scenarios allowing synchronous transmissions are,
however, limited to very controlled environments, such as computer
clusters or super-computers, where approaches like ([4], Section 7.2)
would probably be more appropriate than distributed algorithms.
On the other hand, in wireless networks, the single fact that one
node cannot transmit and receive messages at the same time forces
synchronous algorithms to operate asynchronously.
Experimental Setup: We generated 5 networks with nodes

according to the models of Table I; see [1] for a description of these
models. Table I also gives the number of colors for each network. The
results of our simulations are in Fig. 3, where each plot depicts the
number of CSs as a function of the network. Having computed the
solution of (1) beforehand and in a centralized way, each algo-
rithm stopped whenever , or when a maximum
number of CSs were reached. In the case of consensus, BPDN, and
SVM, denotes the estimate of at an arbitrary node; in the case
of LASSO, it represents the global estimate of the network, since each
node only estimates some components of . We used the following
values for the pair : for consensus,
for LASSO, for BPDN, and for SVM.
Since the problem in step 4 of Algorithm 1 does not have a closed-form
solution for all the applications we consider, except for consensus, it
has to be solved iteratively in each of the algorithms we compare. To
make a fair comparison in terms of CSs, we thus use the same solver in
all the algorithms, i.e., the problem in step 4 of Algorithm 1 is solved
with the same precision in all the algorithms we compare.

TABLE I
NETWORK MODELS

It is known that the parameter affects strongly the performance
of ADMM-based algorithms. Hence, to make a fair comparison, we
ran each (ADMM-based) algorithm for several values of and chose
always the best result, i.e., the smaller number of CSs. The values for
were taken from the set .
Consensus: For the consensus problem, we generated each ran-

domly from a Gaussian distribution: . Fig. 3(a)
shows the results for D-ADMM, the ADMM-based algorithms [12],
[13], and the algorithm [22], which is considered to be the fastest con-
sensus algorithm [18]. Note that [22] was designed for consensus only
and cannot be easily generalized to solve (1). Fig. 3(a) shows that
D-ADMM has a performance very similar to that of [22].
LASSO and BPDN: The matrix for the problems LASSO and

BPDN was taken from problem 902 of the Sparco toolbox [27]. The
vector was generated as , where is a sparse vector and
is Gaussian noise. We chose and for the noise pa-

rameters, and for the approximation parameter in LASSO.
The results of these experiments for LASSO and BPDN are shown,
respectively, in Fig. 3(b) and 3(c). Additionally, we show the perfor-
mance of Algorithm 3 of [16], which is an ADMM-based algorithm
specifically designed to solve BPDN. This algorithm has the advan-
tage of requiring much simpler computations at each node, but in our
simulations it achieved the maximum number of CSs in all but the last
two networks. In both LASSO and BPDN, D-ADMM was always the
algorithm requiring fewer CSs to converge.
SVM: For the SVM problem (18), we used data from [28], namely

two overlapping sets of points from the Iris dataset. The parameter
was always set to 1. In this case, the algorithm from [12] achieved
always the maximum number of CSs and thus is not represented in
Fig. 3(d), which shows the simulation results. Again, we see that
D-ADMM was the algorithm requiring the smallest number of CSs to
converge.
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V. CONCLUSION

We proposed an algorithm for solving separable problems in net-
works, in a distributed way. Each node has a private cost and a private
constraint set, but all nodes cooperate to solve the optimization problem
that minimizes the sum of all costs and that has the intersection of all
sets as a constraint. Our algorithm hinges on a coloring scheme of the
network, according to which the nodes operate asynchronously. This
results in an algorithm with fewer communication requirements than
previous algorithms, as shown experimentally for several problems.
Although we proved the convergence of the algorithm, it still remains
an open question to explain theoretically why the algorithm is more ef-
ficient than previous algorithms.
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