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Abstract—This paper considers the problem of filter design
with secrecy constraints, where two legitimate parties (Alice and
Bob) communicate in the presence of an eavesdropper (Eve)
over a Gaussian multiple-input-multiple-output (MIMO) wiretap
channel. This problem involves designing, subject to a power
constraint, the transmit and the receive filters which minimize
the mean-squared error (MSE) between the legitimate parties
whilst assuring that the eavesdropper MSE remains above a
certain threshold. We consider a general MIMOGaussian wiretap
scenario, where the legitimate receiver uses a linear zero-forcing
(ZF) filter and the eavesdropper receiver uses either a ZF or
an optimal linear Wiener filter. We provide a characterization
of the optimal filter designs by demonstrating the convexity of
the optimization problems. We also provide generalizations of
the filter designs from the scenario where the channel state is
known to all the parties to the scenario where there is uncertainty
in the channel state. A set of numerical results illustrates the
performance of the novel filter designs, including the robustness
to channel modeling errors. In particular, we assess the efficacy
of the designs in guaranteeing not only a certain MSE level at
the eavesdropper, but also in limiting the error probability at the
eavesdropper. We also assess the impact of the filter designs on the
achievable secrecy rates. The penalty induced by the fact that the
eavesdropper may use the optimal nonlinear receive filter rather
than the optimal linear one is also explored in the paper.

Index Terms—Error Probability, filter design, MIMO, MSE,
mutual information, physical-layer security, secrecy, Wiener,
wiretap, ZF.

I. INTRODUCTION

T HE issues of privacy and security in wireless communi-
cation networks have taken on an increasingly important

role as these networks continue to flourish worldwide. Tradi-
tionally, security is viewed as an independent feature with little
or no relation to the remaining data communication tasks and,
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therefore, state-of-the-art cryptographic algorithms are insensi-
tive to the physical nature of the wireless medium.
However, there has been more recently a renewed interest

on physical-layer security which, motivated by advances on in-
formation-theoretic security, calls for the use of physical-layer
techniques exploiting the inherent randomness of the communi-
cations medium to guarantee both reliable communication be-
tween two legitimate parties as well as secure communication
in the presence of eavesdroppers.
The basis of information-theoretic security, which builds

upon Shannon’s notion of perfect secrecy [1], was laid by
Wyner [2] and by Csiszár and Körner [3] who proved in
seminal papers that there exist channel codes guaranteeing
both robustness to transmission errors and a certain degree
of data confidentiality. In particular, Wyner considered the
wiretap channel where two legitimate users communicate in
the presence of an eavesdropper. Wyner characterized the
rate-equivocation region of the wiretap channel and its secrecy
capacity. Ever since, the computation of the secrecy capacity
of a range of communications channels has been an important
research topic [4].
For example, in [5] the authors considered a scenario where

both the main and the eavesdropper channels are additive white
Gaussian noise (AWGN) channels. They showed that the se-
crecy capacity of such so-called Gaussian wiretap channel is
equal to the difference between the main and the eavesdropper
channel capacities and, therefore, confidential communications
require the Gaussian main channel to have a better signal-to-
noise ratio (SNR) than the Gaussian eavesdropper channel.
Motivated by the emerging wireless applications, the evalu-

ation of the secrecy capacity of wireless fading channels with
single or multiple antennas at the transmitters, receivers and/or
eavesdroppers has also attracted considerable attention as well.
Space-time signal processing techniques for secure commu-

nications over wireless links were introduced in [6]. The outage
secrecy capacity of slow fading channels was characterized in
[7], where it was shown that fading alone could guarantee in-
formation-theoretic security, even when the eavesdropper av-
erage SNR is higher that the legitimate receiver average SNR.
In turn, the ergodic secrecy capacity of fading channels was in-
dependently characterized in [8], [9] and [10]. In [11] Parada
and Blahut considered the secrecy capacity of several degraded
fading channels. The characterization of the secrecy capacity of
multiple-input-multiple-output (MIMO) channels, which repre-
sent a model for multiple-antenna channels, can be found in
[12]–[14] and [15]. The computation of optimal power allo-
cation policies and input covariances for the MIMO Gaussian
wiretap channel are covered in [16] and [17], respectively.
Another key aspect in the MIMO wiretap problem is the

availability of channel state information (CSI). This problem is
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addressed in various works under different CSI assumptions.
When the CSI about the various channels is assumed to be
known to all the parties, several secrecy capacity achieving
schemes, based on optimal beamforming designs that leverage
the general singular value decomposition (GSVD) of the main
and eavesdropper channel matrices, have been proposed (e.g.,
[15] and [18]). When the CSI about the eavesdropper channel is
assumed to be limited or not available, artificial noise schemes
have been proposed instead [19], [20], where a fraction of
the total power is used for reliable communication between
the legitimate transmitter and the legitimate receiver and the
remaining fraction of the total power is used to jam the eaves-
dropper. For example, the authors in [21] and [22], set up a
problem whose objective is to determine the minimum transmit
power necessary to guarantee a certain quality of service
(QoS) between the legitimate transmitter and the legitimate
receiver—the remaining power out of the total power budget
is then used to jam the eavesdropper using artificial noise type
of techniques.
One key advantage of artificial noise transmission relates

to the fact that the eavesdropper channel knowledge is not
required. Nonetheless, the idea of transmitting artificial noise
in the null space of the main channel in order to degrade the
eavesdropper channel has also its limitations. On the one hand,
there is an inherent trade-off between data rate and the ability
to impair the eavesdropper [19], so that one may not take full
advantage of the spatial multiplexing ability of MIMO systems.
On the other hand, if the null space of the main channel overlaps
considerably with the null space of the eavesdropper channel,
the artificial noise approach might lead to limited gains in
security.
This paper, at the heart of the novelty of the contribution,

addresses the physical-layer security problem from the estima-
tion-theoretic rather than the information-theoretic viewpoint.
We consider the problem of filter designwith secrecy constraints
in the classical MIMO wiretap scenario consisting of two le-
gitimate parties that communicate in the presence of an eaves-
dropper, where the objective is to conceive transmit and re-
ceive filters that, subject to a power constraint, minimize the
mean-squared error (MSE) between the legitimate parties whilst
assuring that the eavesdropper MSE remains above a certain
threshold. Interestingly, this class of problems, which differs
from previous approaches in physical-layer security in the liter-
ature (see, e.g., [15], [18], [19], [21] and [22]), represents a nat-
ural generalization of filter design without secrecy constraints
for point-to-point communications systems (e.g., [23]–[28]).
One notable merit of this approach, in contrast to the

information-theoretic work that relies on non-constructive
random-coding arguments to demonstrate that there exist se-
crecy capacity achieving codes, is that it leads to realizable
designs which can be easily implemented in practical systems.
Instead, practical secrecy capacity achieving code designs are
known only in some scenarios, which include: i) the main
channel is noiseless and the eavesdropper channel is a binary
erasure channel [29], [30]; ii) both channels are binary input
symmetric discrete memoryless channels (DMC) and the
eavesdropper channel is degraded with respect to the main
channel—where polar codes are used [31], [32]; and iii) the
eavesdropper is constrained combinatorially [33].

Fig. 1. A possible application scenario of the problem of filter design with se-
crecy constraints: ”Secure” video broadcasting.

Nonetheless, it is relevant to pause to reflect on the opera-
tional relevance of this new metric, in view of the fact that it is
the norm, in the information-theoretic security literature, to use
equivocation rather than MSE to measure security. In fact, the
use of the MSE in lieu of equivocation does not guarantee per-
fect information-theoretic security in the sense of [1], [2] and
[3]. We view the design of the filters based on the MSE criteria
as a means to provide additional confusion in a communications
system.
The rationale of the new design approach is then based on the

fact that some applications require a MSE below a certain level
to function properly, so that this approach would impair further
the performance of the eavesdropper by imposing a threshold
on its MSE level. Note also that the bit error rate (BER), which
is a very important figure of merit in a communications system,
is typically monotonically increasing with the MSE, so that a
threshold on the MSE may also translate into a threshold in the
BER.
One particular scenario that suits this design approach re-

lates to wireless broadcasting where a service provider pro-
vides different services, e.g., different video streams, to dif-
ferent users/subscribers (see Fig. 1). Here, the service provider
(the legitimate transmitter) needs to guarantee that a user that
has subscribed to the service (the legitimate receiver) has ac-
cess to a high quality version of the video stream whereas a
user that has not subscribed to the service (the so-called eaves-
dropper) has only access to a very poor quality version of the
video stream. The use of a distortion metric, such as the MSE
or the BER, instead of equivocation, is then entirely appro-
priate for this class of applications, offering an alternative to the
cryptographic methods used by Content Access (CA) systems
[34]–[36].
It turns out thus that the filter design with secrecy constraints

problem is to be understood broadly as a filter design problem
with distortion constraints. However, in order to connect this
work with the large body of work of physical—and information-
theoretic security whose overarching aim is to impair the eaves-
dropper, we—in a somewhat abusive use of language—use the
notion secrecy rather than distortion.
This paper is structured as follows: Section II defines the

problem. Section III considers the design of the transmit filter
when ZF filters are used at both the legitimate and the eaves-
dropper receivers. In turn, Section IV considers the design of
the transmit filter when the eavesdropper uses an optimal linear
filter while the legitimate receiver is restricted to the use of a ZF
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Fig. 2. MIMO Gaussian wiretap channel model.

receive filter. Section V provides some generalizations of the
problem of filter design with secrecy constraints, from the sce-
nario where the state of the channels is known exactly to all the
parties (i.e., the legitimate transmitter, the legitimate receiver
and the eavesdropper) to the scenario where there is uncertainty
in the channel state. Section VI shows various numerical results
to illustrate the impact of the filter designs on both the reliability
and security criteria, evaluating, not only the MSE, but also the
bit error rate and the achievable secrecy rates yielded by the de-
signs. Themain contributions of the manuscript are summarized
in Section VII.

Notation

We use the following notation: boldface upper-case letters de-
note matrices or column vectors and italics denote scalars
; the context defines whether the quantities are deterministic

or random. The notation is used to denote a positive
definite matrix and denotes a positive semidefinite ma-
trix. The symbol represents the identity matrix. The operators

, and represent the -norm, the trace operator
and the gradient operator, respectively. The operators and

denote the Hermitian transpose operator and the Pseudo-In-
verse operator, respectively. The operator represents the
expectation. denotes a circularly symmetric complex
Gaussian random vector with mean and covariance .

II. PROBLEM STATEMENT

We consider a communications scenario where a legitimate
user, say Alice, communicates with another legitimate user, say
Bob, in the presence of an eavesdropper, Eve (see Fig. 2).
Bob and Eve observe the output of theMIMO channels given,

respectively, by:

(1)

(2)

where and are the vectors of receive
symbols, is the vector of independent, zero-mean and
unit-variance transmit symbols, and and

are circularly symmetric complex Gaussian random vector
with zero mean and identity covariance matrix1. The
matrix and the matrix contain the deterministic
gains from each main and eavesdropper channel input to each

1The models in (1) and in (2) follow from the more general models
and , respectively, where

and are circularly symmetric complex Gaussian random vectors with mean

and , and covariance matrices

and , respectively, by using pre-whitening filters

i.e.,
and . These transformations are information

lossless [37].

main and eavesdropper channel output, respectively. The
matrix represents Alice’s transmit filter.
We assume that and are full column rank,

which implies that and . This is necessary to
guarantee the existence of some solutions. We further assume
that, in a realistic scenario, the channel matrices and
are not a multiple of each other. We also assume that the channel
state is known by all the parties, i.e., Alice, Bob and Eve have
perfect knowledge about the channel matrices and .
This is often a common assumption in the physical layer secu-
rity literature (see e.g., [7] and [38]). The assumption that the
legitimate receiver knows the state of the main channel and the
eavesdropper receiver knows the state of the wiretap channel is
realistic, because the receivers can always estimate the channels
in slow fading conditions. The assumption that the transmitter
knows the state of the main channel and, more importantly, the
wiretap channel or that the legitimate receiver knows the state
of the wiretap channel and the eavesdropper knows the state of
the main channel can be justified in wireless networks where the
eavesdropper is another network active user (e.g., in the scenario
of Fig. 1). In particular, in time division duplex (TDD) environ-
ments Alice can estimate the state of Bob’s and Eve’s channels
and inform the receivers accordingly. However, we will also
generalize the framework to incorporate possible channel un-
certainties in the sequel.
Bob’s and Eve’s estimate of the vector of input symbols are,

respectively, given by:

(3)

(4)

where the matrix and the matrix
represent Bob’s and Eve’s receive filters, respectively.
In this setting, we take, as a performance metric, the MSE

between the estimate of the input vector and the true input
vector given by:

(5)

The objective is to design, for specific receive filter choices,
the transmit filter that solves the optimization problem:

(6)

subject to the security constraint:

(7)

where represents an MSE threshold, and to the total power
constraint:

(8)

where represents the available power.
We restrict our attention to two specific design scenarios:

i) the situation where both the legitimate receiver and the
eavesdropper receiver are constrained to obey ZF constraints;
and ii) the situation where the legitimate receiver uses a ZF
filter whereas the eavesdropper receiver uses the optimal linear
Wiener filter. For these receiver filter choices, the optimization
problem in (6) –(8) is convex thus enabling the characterization
of optimal designs; for other receiver filter choices, and to the
best of our knowledge, the optimization problem in (6) –(8) is
only convex for special scenarios, e.g., the degraded parallel
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Gaussian wiretap channel, or the degraded MIMO wiretap
channel (see [39] and [40]) 2.
We recognize that our formulation assumes the so-called

eavesdropper to perform a certain linear action whereas the
traditional information-theoretic formulation—in view of the
fact that it is based on the equivocation metric—pdoes not
assume the eavesdropper to perform any specific operation.
However, in the scenario where the eavesdropper is another
user of the network as in Fig. 1, it seems appropriate to assume
a certain action by this user. We also recognize the fact that
a more sophisticated eavesdropper would possibly leverage
nonlinear techniques to estimate the information. This issue is
also discussed in the sequel.
It is also important to note that, and in contrast to the artificial

noise approach in [19]–[22] and [41], our filter design approach
does not impose a limitation on the ability of transmitting infor-
mation along all the dimensions that the MIMO channel has to
offer and, therefore, we can expect to achieve higher data rates.
However, by imposing a threshold on the eavesdropper MSE
we may also naturally constraint the performance of the main
channel.

III. ZERO FORCING FILTERS AT THE RECEIVERS

We now consider the scenario where both the legitimate re-
ceiver and the eavesdropper receiver use ZF filters, thus obeying
the ZF constraints given by:

(9)

(10)

The rationale for including the ZF constraints in (9) and (10) is
to eliminate crosstalk between the various streams (e.g., [42]).
Note also that the performance of ZF linear receivers is equiv-
alent to that of optimal Wiener linear receivers in the regime
of high SNR. Yet, one may still argue that a eavesdropper will
always adopt the optimal linear receive filter (or the optimal
non-linear receive filter), rather than the sub-optimal ZF receive
filter. These particular cases will be addressed in Section IV and
VII.

A. Optimal Receive Filters

Let us consider the design of the receive filters. Bob uses the
receive filter that, for any fixed transmit filter , minimizes:

(11)

2We prove the convexity of the filter design with secrecy constraints opti-

mization problem by using the change of variables . This
change of variables leads to convex objective functions as well as convex fea-
sible regions when both the legitimate receiver and the eavesdropper receiver
use ZF filters (see (17) , (18) and (19) ) and when the legitimate receiver uses
a ZF filter but the eavesdropper receiver uses a Wiener filter (see (43), (44)
and (45)). However, such a change of variables does not lead immediately to a
convex optimization problem when both the legitimate receiver and the eaves-
dropper receiver adopt the Wiener filter (the feasible region is still convex but
the objective function is concave rather than convex). Thus—with the exception
of [39] and [40] – it is not entirely clear whether other change of variables lead
to a convex optimization problem in such a case.

subject to the ZF constraint in (9) and Eve uses the receive filter
that, for any fixed transmit filter , minimizes:

(12)

subject to the ZF constraint in (10) .
In particular, the receive filters, which follow immediately

from (9) and (10) , are given by [37]:

(13)

(14)

The MSEs in the main and eavesdropper channels, upon sub-
stituting (13) and (14) in (11) and (12), respectively, are then
given by:

(15)

(16)

B. Optimal Transmit Filter

In view of (15) and (16), the form of the optimal transmit filter
corresponds to the solution of the optimization problem:

(17)

subject to the constraints:

(18)

(19)

and (Note that , because and
are full column rank by assumption). Note that—due

to the channel knowledge assumptions—the legitimate trans-
mitter, the legitimate receiver and the eavesdropper can all set
up this optimization problem in order to determine the transmit
filter and hence the receive filters via (13) and (14).
It is now possible to reduce this optimization problem to a

standard convex optimization problem by adopting the change

of variables , thereby paving the way to the
characterization of the optimal transmit filter.
The following Theorem, which stems directly from the

Karush-Kuhn-Tucker optimality conditions [43], defines the
form of the optimal transmit filter.
Theorem 1: Assume that the legitimate transmitter, the le-

gitimate receiver and the eavesdropper know the exact channel
matrices and . Assume also that the legitimate receiver
and the eavesdropper receiver use ZF filters. Then, an optimal
transmit filter that solves the optimization problem in (17)–(19)
is, without loss of generality, given by the equation at the bottom
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of the page, where the value of the Lagrange multiplier is such
that:

(20)

Note that the right multiplication of the transmit filter in The-
orem 1 by any unitary matrix produces another optimal filter.

Proof: By considering the change of variables

it is possible to rewrite the optimiza-
tion problem in (17)–(19) as follows:

(21)

subject to the constraints ,

, and . Note that this represents a
standard convex optimization problem, so that the solution
follows directly from the Karush-Kuhn-Tucker optimality
conditions [43].
The Lagrangian of the optimization problem is given by:

(22)

where and are the Lagrange multipliers associated with the
problem constraints. The Karush-Kuhn-Tucker optimality con-
ditions are given by:

(23)

(24)

(25)

and , , .

The Karush-Kuhn-Tucker optimality conditions reveal that
the solution of this problem exhibits two distinct regimes only:
i) the regime where the secrecy constraint is not active ( )
; and ii) the regime where the secrecy constraint is met with
equality 3.
When , then (23) reduces to:

(26)

and the optimal solution is given by:

(27)

This solution is valid if and only if:

(28)

On the other hand, when , then (23) reduces to:

(29)

and the optimal solution is given by:

(30)

3In each case the power constraint is met with equality i.e., . Note that
a scenario where the would require either the channel matrices to be a

multiple of each other and , or ( and
).



3804 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 15, AUGUST 1, 2013

This solution is valid if and only if:

(31)

Note that the optimal transmit filter obeys a simple opera-
tional interpretation. In the regime where the secrecy constraint
is inactive, i.e.,:

(32)
which typically occurs for low available powers, the filter per-
forms two simple operations: i) conversion of the main channel

(i.e., ) into a set of parallel independent channels
whose power gains correspond to the eigenvalues of the matrix

; and ii) power allocation, by dividing the total power
inversely proportionally to the power gains of the set of parallel
channels. This solution corresponds to the solution in [37].
In contrast, in the regime where the secrecy constraint is ac-

tive, i.e.,:

(33)
which typically occurs for high available powers, the filter can
be seen to perform the operations: i) conversion of an equiva-

lent channel (i.e., ) into a set of
parallel independent channels whose power gains correspond to

the eigenvalues of the matrix
and; ii) power allocation, by dividing the total power inversely
proportionally to the power gains of the set of parallel channels.
This result, which is based on the equivalent channels (rather
than on the main channel), immediately generalizes the result
in [37].
Note also that, in the scenario where both receivers use ZF

filters the power constraint is always active, i.e., the transmitter
uses all the available power. We will observe in the sequel that
this is not the case in other scenarios.

C. Computational Procedure

The computation of the optimal transmit filter embodied in
Theorem 1 requires finding the solution of the non-linear equa-
tion in (20), in order to determine the value of the Lagrange

multiplier . We shall now put forth a simpler procedure to de-
sign the optimal transmit filter and hence the receive filters via
(13) and (14), based on the dual of the optimization problem.
Consider again the Lagrangian of the optimization problem

in (22). Consider also the dual function of the optimization
problem in(21):

(34)

where and . It is straightforward to show that the
dual function reduces to the equation at the bottom of the page.
The dual problem of the optimization problem in (21) is now

given by:

(35)

subject to , and

.

We can now employ a two step procedure to express the so-
lution of this optimization problem: i) optimization over for a
fixed ; ii) optimization over for the optimal . It is straight-
forward to show that the optimal value of , for a fixed , is
given by:

(36)
Consequently, the dual optimization problem reduces to:

(37)

subject to and

or, equivalently:

(38)

subject to:

(39)
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This is due to the fact that the positive semidefinite

constraint

is equivalent to the constraint

,

where denotes the minimum eigenvalue of the
positive definite matrix . The solution to the optimization
problem (38) –(39) can be computed in a straightforward
manner using, for example, the bisection method [44], which
represents a much simpler procedure than any method that
solves the non-linear equation in (20) .
The optimal values of in (36) and , which corresponds

to the solution of (38) subject to (39) then define the optimal
transmit filter. In turn, the optimal transmit filter defines the ZF
receive filters through (13) and (14).

IV. OPTIMAL LINEAR RECEIVE FILTER AT THE EAVESDROPPER

We now consider the scenario where the legitimate receiver
uses a ZF filter, whilst the eavesdropper receiver uses the op-
timal linear Wiener filter. This corresponds to a generalization
of the previous scenario where both the receivers are restricted
to obey ZF constraints.

A. Optimal Linear Receive Filter Design

Let us consider the design of the eavesdropper optimal linear
receive filter. Eve now uses the receive filter that, for any fixed
transmit filter , minimizes:

(40)

This corresponds to the Wiener filter given by (see e.g., [45]):

(41)

In turn, the MSE in the eavesdropper channel, upon substituting
(41) in (40), is given by:

(42)

Note that the expressions for the legitimate receive filter and
for the MSE in the the main channel are already given in (13)
and (15).

B. Optimal Transmit Filters

We now consider the design of the optimal linear transmit
filter. This, in view of (15) and (42), corresponds to the solution
of the optimization problem given by:

(43)

subject to the secrecy constraint:

(44)

and to the power constraint:

(45)

with . Note that—due to the channel knowledge
assumptions—the legitimate transmitter, the legitimate receiver
and the eavesdropper can also all set up this optimization
problem to compute the transmit filter and receive filters via
(13) and (41).
It is also possible to reduce this optimization problem to a

standard convex optimization problem, by adopting the change

of variables together with the Woodbury
matrix identity [46]. Thus, the optimization problem reduces to:

(46)

subject to the constraints:

(47)

(48)

and . The solution follows from the Karush-Kuhn-Tucker
optimality conditions given by:

(49)

(50)

(51)

and ,

, , where ans are the Lagrange mul-
tipliers associated with the secrecy and power constraints, re-
spectively.
It is clear from the Karush-Kuhn-Tucker conditions above

that there are three operational regimes: i) the scenario where
the transmitter can use all the available power without violating
the secrecy constraint, so that the secrecy constraint is not active

and the power constraint is active ; ii) the sce-
nario where both the secrecy and power constraints are active
( and ); and iii) the scenario where the transmitter
cannot use all the available power without violating the secrecy
constraint, so that the secrecy constraint is active and
the power constraint is inactive . Note that this situa-
tion differs from the previous scenario (with ZF filters at both
receivers) where it was possible to use all the power available
without violating the secrecy constraint. The difference derives
from the use of a more powerful receive filter by the eaves-
dropper.
It is difficult to extract a characterization of the optimal filter

design from the Karush-Kuhn-Tucker optimality conditions
above in the general scenario, even though the problem is
convex. Consequently, we concentrate on scenarios i) and iii)
only.
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1) Power Constraint Active/Secrecy Constraint Inactive:
This situation arises typically in a regime of low available
power, due to the fact that the power, injected into the channel,
is not enough to meet or violate the secrecy constraint.
The following Theorem, which stems directly from the

Karush-Kuhn-Tucker optimality conditions above, defines the
form of the optimal transmit filter, in such a regime.
Theorem 2: Assume that the legitimate transmitter, the le-

gitimate receiver and the eavesdropper know the exact channel
matrices and . Assume also that the legitimate receiver
uses a ZF filter whereas the eavesdropper receiver uses the op-
timal linear Wiener filter. Then, an optimal transmit filter in the
scenario where the power constraint is active whilst the secrecy
constrain is inactive is, without loss of generality, given by:

(52)

where . Note that the rightmultiplica-

tion of the transmit filter in(52) by any unitary matrix produces
another optimal filter.

Proof: This Theorem follows from the Karush-Kuhn-
Tucker conditions by using the fact that , so that we can
rewrite (49) as follows:

(53)

Note that, as expected, this solution corresponds to the so-
lution embodied in Theorem 1, when the secrecy constraint is
inactive.
2) Power Constraint Inactive/Secrecy Constraint Active:

This is a situation that typically arises in a regime of high
available power; in fact, the use of all the available power
would immediately violate the secrecy constraint.
The following Theorem, which also stems directly from the

Karush-Kuhn-Tucker optimality conditions, defines the form of
the optimal transmit filter, in such a regime. In particular, we use
the fact that there exists a non-singular matrix that di-

agonalizes both and simultaneously [46], i.e.,

and , where and
are positive definite diagonal matrices, with diag-

onal elements , and , ,
respectively.
Theorem 3: Assume that the legitimate transmitter, the le-

gitimate receiver and the eavesdropper know the exact channel
matrices and . Assume also that the legitimate receiver
uses a ZF filter whereas the eavesdropper receiver uses the op-
timal linear Wiener filter. Then, an optimal transmit filter in the
scenario where the power constraint is inactive whilst the se-
crecy constrain is active is, without loss of generality, given by:

(54)

where .
Note that the right multiplication of the transmit filter in (54)

by any unitary matrix produces another optimal filter.

Proof: This Theorem also follows from the Karush-Kuhn-
Tucker conditions by using the fact that , so that we can
rewrite (49) as follows:

(55)

or equivalently:

(56)

3) Interpretation: It is interesting to contrast the operational
principle of the optimal transmit filter design when the secrecy
constraint is inactive (in Theorem 2) to that when the secrecy
constraint is active (in Theorem 3).
In the regime where the power constraint is active and the

secrecy constraint is inactive, the optimal transmit filter decom-
poses the MIMO main channel into a set of parallel channels
using an orthonormal transformation that does not affect the
transmit power. The optimal transmit filter then weighs the in-
dividual subchannels, such that the power constraint is met with
equality. The optimal weights depend only on the eigenvalues

of the matrix .
In the regime where the power constraint is inactive and

the secrecy constraint is active, the optimal transmit filter
decomposes simultaneously the MIMO main channel and the
MIMO eavesdropper channel into a set of parallel channels
using an in general non-orthonormal transformation. Note that,
even though such a transformation may affect the transmit
power, this is not a concern in this regime. The optimal transmit
filter then weighs the individual subchannels further, such that
the secrecy constraint is met with equality. Interestingly, the
optimal weights now depend on the generalized eigenvalues of

the matrices and .
It is also interesting to contrast the transmit filter design when

the eavesdropper employs a ZF filter (in Theorem 1) to that
when the eavesdropper employs a Wiener filter. In the ZF case,
when the secrecy constraint is active, the transmit filter uses
an orthonormal transformation to decompose an equivalent
channel in view of the fact that the power constraint is always
active. In theWiener case, when the secrecy constraint is active,
the transmit filter uses a non-singular matrix to decompose
simultaneously both channels.

C. A Note on the Validity of the Operational Regimes

It is now relevant to establish conditions, which are a func-
tion of the system parameters, that identify the exact regions of
validity of the operational regimes unveiled in the previous sub-
section.
1) Power Constraint Active/Secrecy Constraint Inactive: To

identify the validity of this regime we minimize the objective
function in (43), subject to the power constraint in (45) only.
Note that this constitutes a relaxation of the original optimiza-
tion problem so the solution of this new optimization problem
can never lead to a worse MSE than the solution of the original
problem. In turn, this solution is also a solution of the original
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optimization problem provided that it does not violate the se-
crecy constraint.
It is easy to show that this regime is valid if, for a fixed set of

system parameters, and , the following condi-
tion holds:

(57)

where corresponds to the design embodied in Theorem 2
given by:

(58)

Note that (57) and (58) can be used to determine a threshold
secrecy constraint, , below which we operate under
this regime, or equivalently, a threshold power constraint,

, below which we operate under this same regime.
The threshold secrecy constraint is given by equation (59) at
the bottom of the page.
2) Power Constraint Inactive/Secrecy Constraint Active: To

identify the validity of this regime we now minimize the objec-
tive function in (43), subject to the secrecy constraint in (44)
only. This also constitutes a relaxation of the original optimiza-
tion problem so the solution of this new optimization problem
can never lead to a worse MSE than the solution of the original
problem. Moreover, this solution is also a solution of the orig-
inal optimization problem provided that it does not violate the
power constraint.
It is also straightforward to show that this regime is valid if,

for a fixed set of system parameters, and , the
following condition holds:

(60)

where corresponds to the design embodied in Theorem 3,
given by:

(61)

Similarly to the previous case, (60) and (61) can be used to de-
termine a threshold secrecy constraint, , above which
we operate under this regime, or equivalently, a threshold

power constraint, , above which we operate in the
same regime. The threshold power constraint is given by:

(62)

V. GENERALIZATIONS

It is also of interest to generalize the filter design problem to
scenarios that involve some degree of channel uncertainty. We
consider two cases:
1) The legitimate receiver knows the exact state of the main
channel and the statistics of the eavesdropper channel, the
eavesdropper receiver knows the exact state of the eaves-
dropper channel and the statistics of the main channel, and
the transmitter knows only the statistics of the main and
eavesdropper channels;

2) The legitimate receiver knows the exact state of the main
channel and the statistics of the eavesdropper channel, the
eavesdropper receiver knows the exact state of the eaves-
dropper channel and the statistics of the main channel, and
the transmitter knows the exact state of both channels.

These scenarios arise naturally in the ”secure” video broad-
casting model depicted in Fig. 1, where both receivers—even
though they may have subscribed to different services—are ac-
tive users of the network: in case 1), it is assumed that the
receivers convey information about the statistics of their own
channels to the transmitter via a feedback path (this information
is then relayed to the other receivers) ; in case 2), it is assumed
that the receivers convey information about the exact state of
their own channels to the transmitter also via a feedback path
(this information is not relayed to the other receivers though)
4. In addition, these scenarios can also be used to capture some
of the uncertainty about the state of the eavesdropper channel
leading to filter designs with considerable operational signifi-
cance.
We also comment on more efficient mechanisms to use the

available resources, due to the fact that some of the solutions
unveiled earlier have demonstrated that the transmitter does not
always use all the available power in order to meet the security
constraints.
The ensuing formulations are based on the assumption that

the so-called eavesdropper adopts a linear receiver. Once again,
the implications of the use, by the eavesdropper, of a non-linear
rather than linear estimator are also discussed in the Section VI.

4Note that the transmitter may also be able to capture an estimate of the sta-
tistics of the channels or the state of the channels in time division duplex (TDD)
environments.

(59)
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A. Scenario 1

A possible formulation of the filter design problem when the
receivers know the exact state of their own channels and the dis-
tribution of the other channels, whereas the transmitter knows
only the distribution of the channels, is given by:

(63)

subject to the security constraint:

(64)

and the total power constraint:

(65)

where is the expected value, with respect to and
, of the MSE in the main channel for fixed channel ma-

trices and , i.e., , and is the
expected value, with respect to and , of the MSE in the
eavesdropper channel for fixed channel matrices and ,
i.e., .
By assuming that the legitimate receiver uses a ZF filter and

the eavesdropper uses either a ZF filter or a Wiener filter, then
the optimization problem reduces to:

(66)

subject to:

(67)

and:

(68)

or:

(69)

depending on whether it is assumed that the eavesdropper
adopts a ZF or a Wiener filter, respectively.
The significance of this formulation relates to the fact that

the legitimate transmitter, the legitimate receiver and the eaves-
dropper receiver all have the necessary information to set up
this optimization problem in order to conceive the transmit filter
and therefore the receive filters via (13) and (14) or (41), respec-
tively. In addition, as long as the legitimate transmitter and the
legitimate receiver agree to use this formulation to perform the
legitimate transmit and receive filter designs, there is no incen-
tive for the eavesdropper to adopt any other formulation beyond
this one to design its own filter.
In particular, assume that the legitimate transmitter and the

legitimate receiver adopt the formulation based on the use of a
Wiener filter by the eavesdropper. If the eavesdropper adopted
another linear filter, the average value of the MSE of the eaves-
dropper channel would still be above in view of the optimality
of the Wiener filter.
In contrast, assume that the legitimate transmitter and the le-

gitimate receiver adopt the formulation based on the use of a ZF

filter by the eavesdropper. In the regime of high available power,
and once again if the eavesdropper used another linear filter,
then the average value of the MSE of the eavesdropper channel
would still be above in view of the fact that the performance
of a ZF filter approaches that of a Wiener filter in such a regime.
In the regime of low available power, if the eavesdropper used a
Wiener filter instead, then the average value of the eavesdropper
MSE could be evidently below . This concern can be bypassed
by operating at high enough available powers.

B. Scenario 2

A formulation of the filter design problem when the receivers
know the exact state of their own channels and the distribution
of the other channels, where as the transmitter knows the exact
state of the channels, is given by:

(70)

subject to the security constraint:

(71)

and the total power constraint:

(72)

By assuming once again that the legitimate receiver uses a ZF
filter and the eavesdropper uses either a ZF filter or a Wiener
filter, then the optimization problem reduces to:

(73)

subject to:

(74)

and:

(75)

or:

(76)

depending on whether it is assumed that the eavesdropper
adopts a ZF or a Wiener filter, respectively.
Note now that the legitimate transmitter and the legitimate

receiver can also set up this optimization problem in order to
determine the transmit filter and therefore the legitimate receive
filter via (13). In contrast, the eavesdropper—in view of the ab-
sence of knowledge of the legitimate receiver channel—cannot
set up this optimization problem, so it is bound to use a mis-
matched filter. In view of the previous rationale, as long as the
eavesdropper uses a linear filter and independently of whether
the legitimate parties use the ZF or Wiener based formulation,
we can thus argue that in the regime of high available power
the average value of the eavesdropper MSE is always above
whereas in the regime of low available power the average value
of the eavesdropper MSE can in principle be below , e.g., in
the extremely unlikely event that the linear filter chosen (per-
haps randomly) by the eavesdropper corresponds to the Wiener
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filter, but the legitimate parties assume that the eavesdropper
uses a ZF rather than a Wiener filter in the design formulation.
Note also that this formulation does not explore the trans-

mitter knowledge about the exact state of the eavesdropper
channel per se. It is not clear whether or not such knowledge
can be exploited in an operational meaningful way.

C. Towards the Solution of the New Formulations

These problems appear to be difficult to solve in general in
view of the expectation operations in (63)–(64) in scenario 1
and in (71) in scenario 2. However, it is possible to conceive a
solution for the formulations that are based on the use of a ZF
filter by the eavesdropper.

By adopting the change of variables the
optimization problem in (63), (64) and (65) reduces to:

(77)

subject to:

(78)

and:
(79)

and , whereas the optimization problem in (70),
(71) and (72) reduces to:

(80)

subject to:

(81)

and:
(82)

The availability, when is such that its rows are inde-
pendent circularly symmetric complex Gaussian
random vectors and when is such that its rows are
also independent circularly symmetric complex
Gaussian random vectors, of closed form expressions for

and , which are given

by [47]:

(83)

and

(84)

enable us to solve the optimization problem using the previous
techniques [47].
The availability of closed for expressions for

and when

and follow more general distributions would allow us
to solve the optimization problem in other scenarios too.

D. A Discussion About Effective Use of Resources

Another relevant aspect relates to the fact that some of the
filter designs are such that the transmitter does not use the entire
available power budget in order to meet the secrecy constraint
(see Section IV). One could thus argue that there is not an ef-
fective use of the available resources.
There are various possible generalizations to address this

issue:
1) Enter Artificial Noise: Artificial noise is an effective ap-

proach to provide some degree of distortion at the eavesdropper
([19]–[21] and [22]), so it is interesting to reflect whether it
might be possible to integrate elements of the filter design ap-
proach with elements of the artificial noise paradigm whereby
the fraction of the unused power is also explored to further jam
the eavesdropper.
In general, it is not possible to integrate directly the arti-

ficial noise approach with our filter design approach because
the transmitter does not signal over the null space of the main
channel.
However, it is possible to conceive more elaborate scenarios

that involve the use of an additional friendly jammer that shares
the available power budget with the transmitter. This jammer
is also constrained to convey artificial noise over the null space
of the MIMO channel that links the jammer to the legitimate
receiver.
The action of the jammer—which adds additional noise to

the eavesdropper channel—translates into a new eavesdropper
channel between the transmitter and the eavesdropper receiver
incorporating the effect of the artificial noise, that replaces the
original eavesdropper channel. Therefore, one can pose imme-
diately an optimization problem akin to the previous filter de-
sign with secrecy constraints optimization problems that—in
addition to involve the design of the transmit filter—also in-
volves the determination of the fraction of power to be used by
the legitimate transmitter and the fraction of power to be used by
the friendly jammer subject to the available power budget. The
determination of the solution of this optimization problem en-
tails the extra level of complexity associated with how to share
the power budget though.
2) Enter the Time and Frequency Dimension: Another ap-

proach that points towards a more efficient use of the resource
relates to scenarios where one leverages the variability of the
channel in the time domain (as in MIMO wireless channels)
or in the frequency domain (as in MIMO-OFDM channels)
in conjunction with available power constraints that operate
along the multiple dimensions, i.e., long-term—rather than
short-term—power constraints (e.g., [48], [49] and [50]). As
an example, by assuming that all the parties know the state of
the various time and/or frequency channels, it is possible to put
forth the optimization problems:

(85)

subject to:

(86)
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and:

(87)

assuming a short-term power constraint, or:

(88)

assuming a long-term power constraint, where is the
transmit filter at time/frequency and and con-
tain the gains from each main and eavesdropper channel input
to each main and eavesdropper channel output, respectively, at
time/frequency .
The use of the long-term power constraint—instead of the

short-term one—now offers themeans to distribute the available
power more efficiently over the time or frequency dimensions
in order to obtain a better performance. Note that the short-term
power constraint filter design problem can leverage the previous
techniques (see Section III and IV); on the other hand, the long-
term power constraint problem may require more sophisticated
techniques.

VI. NUMERICAL RESULTS

We now present a set of numerical results in order to provide
further insight into the problem of filter design with secrecy con-
straints. In particular, we present the performance of the filter
designs in the presence of perfect and imperfect channel knowl-
edge, as well as in the presence of eavesdroppers that adopt
non-linear rather than linear estimation. We also present the im-
pact of the filter designs on other relevant metrics, that include
the error probability and achievable secrecy rates. We consider
for simplicity a 2 2 MIMO Gaussian wiretap channel where
the main channel and the eavesdropper channel matrices are,
respectively, given by:

This constitutes a degraded scenario because
, therefore, in general the MSE in the eavesdropper

channel will be higher than the one in the main channel.

A. Performance of the Filter Designs in the Presence of
Perfect Channel Knowledge

We first consider the scenario where the channels are known
perfectly by all the nodes—as assumed in Theorems 1, 2 and
3—in order to test the performance of our designs. Fig. 3 depicts
the MSEs in the main and in the eavesdropper channels and
the input power to the channels vs. the secrecy constraint for

when ZF filters are used at both the receivers. The
solution clearly depicts the two operational regimes unveiled in
Theorem 1: i) the regime where the power constraint is active
but the security constraint is inactive (for smaller values of );
and ii) the regime where the power and security constraints are
active and met with equality (for larger values of ). Fig. 3 also
depicts the MSEs in the main and in the eavesdropper channels
and the input power to the channels vs. the secrecy constraint
for when the optimal linear Wiener filters are used at

Fig. 3. Main and eavesdropper channel MSEsvs. secrecy constraint and input
powervs. secrecy constraint, for the optimal transmit filter design and either ZF
filters at both receivers or Wiener filters at both the receivers .

both receivers, in order to provide further insight.5 Surprisingly,
in the relevant regime of large , the use of ZF filters rather than
Wiener filters leads to a better MSE in the main channel without
the violation of the security constraint. This is due to the fact
that—via the use of ZF filters inlieu of the Wiener ones—the
transmitter can use all of the available power in such a scenario,
in order to drive the MSE to a lower value.
Fig. 4 now shows the values of the MSEs in the main and

in the eavesdropper channels and the injected power into
the channels vs. the secrecy constraint for , when
the eavesdropper uses the optimal linear filter instead. The
solution exhibits the three operational regimes characterized
in Section IV-B. Below , the optimal transmit filter,
which is given by Theorem 2, minimizes the MSE in the main
channel subject to the power constraint only. We can indeed
verify that the available power is not sufficient to meet or violate
the secrecy constraint. In-between and ,the
transmit filter6 minimizes the MSE in the main channel while
meeting the power and the secrecy constraint with equality.
Above , the optimal transmit filter, which is given by
Theorem 3, minimizes the MSE in the main channel subject to
the secrecy constraint only. Note that it is not possible to use
all the available power, otherwise the secrecy constraint would
be violated. This power restriction results in a much higher
MSE in the main channel than in the eavesdropper channel for
large values of because as the injected power tends to zero
the MSE that results from the ZF receiver grows very rapidly.
Finally, in view of the fact that we have motivated the filter

design problem with secrecy constraints problems in scenarios
where a provider seeks to guarantee that users that have sub-
scribed to a service have a reasonable quality of service, whereas
users that did not do not experience such quality of service, it
is relevant to understand whether or not there are circumstances
where the MSE in the main channel can in fact be higher than
the MSE in the eavesdropper channel.

5To the best of our knowledge, the problem of filter design with secrecy con-
straints when Wiener filters are used at both receivers is not a convex in gen-
eral. Therefore, an approximate solution has been determined through numerical
methods.
6The solution in this regime, which has not been derived, was obtained

through numerical methods.
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Fig. 4. Main and eavesdropper channel MSEsvs. secrecy constraint and input
powervs. secrecy constraint, for the optimal transmit filter design with a ZF
filter at the legitimate receiver and a Wiener filter at the eavesdropper receiver

.

Fig. 5. Main and eavesdropper channel MSEsvs. secrecy constraint, for the
optimal transmit filter design with ZF filters at both receivers and Wiener filters
at the eavesdropper receiver, in a non-degraded scenario .

In the presence of channel degradedness the main channel
MSE can be higher than the eavesdropper channel MSE for
low available power for a fixed target when the legiti-
mate receiver uses a ZF filter and the eavesdropper receiver uses
the Wiener filter. However, with the increase in the available
power the performance of the ZF filter approaches that of the
Wiener filter, so that—in view of channel degradedness—the
main channel MSE eventually becomes lower than the eaves-
dropper channel MSE.
In contrast, in the absence of channel degradedness the main

channel MSE can be higher than the eavesdropper channelMSE
when both the legitimate receiver and the eavesdropper receiver
use ZF filters or when the legitimate receiver uses a ZF filter
and the eavesdropper receiver uses the Wiener one. This aspect
is highlighted for a scenario where

and

in Fig. 5–note that MSE of the eavesdropper obeys the secrecy
constraint though.
However, with the emergence of MIMO-OFDM systems in a

variety of wireless standards, it is possible conceive approaches
that bypass the absence of degradedness. For example, one can
in principle select sets of sub-carriers whose MIMO channels

Fig. 6. Main and eavesdropper channel average MSEsvs. secrecy constraint, in
the presence of channel error estimation, for the optimal transmit filter design
with ZF filter at both receivers .

Fig. 7. Main and eavesdropper channel average MSEsvs. secrecy constraint, in
the presence of channel error estimation, for the optimal transmit filter design
with a ZF filter at the legitimate receiver and a Wiener filter at the eavesdropper
receiver .

obey the degradedness property in order to assure that the MSE
in the main channel is significantly lower than the MSE in the
eavesdropper channel.

B. Performance of the Filter Designs in the Presence of
Imperfect Channel Knowledge

We now consider the scenario where the channels are only
known imperfectly by the nodes in order to test the robustness
of the designs embodied in Theorems 1, 2 and 3. In particular,
we assume that the nodes have only access to an estimate of
the main channel , where represents
the true main channel matrix and models the main channel
estimation error (with i.i.d. elements that follow a Gaussian dis-
tribution with mean zero and variance ), as well as access
to an estimate of the eavesdropper channel ,
where represents the true eavesdropper channel matrix and

models the eavesdropper channel estimation error (also with
i.i.d. elements that follow a Gaussian distribution with mean
zero and variance ). We also assume, for simplicity, that all
the nodes have access to exactly the same estimates of the main
and eavesdropper channel. The transmit and receive filters are
designed based on the estimate of the channels rather than the
true channels, via Theorems 1, 2 and 3.
Figs. 6 and 7 depict the MSEs in the main and eavesdropper

channels (averaged over 2000 realizations of the matrices that
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model the channel estimation errors) vs. the secrecy constraint
for , for the scenario where the legitimate and eaves-
dropper receivers use ZF filters and the scenario where the le-
gitimate receiver uses a ZF filter but the eavesdropper uses a
Wiener filter, respectively.
We observe that channel modelling errors have an impact on

the MSE of the main channel and—of particular relevance—on
the MSE of the eavesdropper channel. The higher the deviation
of the channel estimate from the true channel, which is modelled
by the variances and , the higher the deviation of the new
MSEs from the original ones.
However, we also observe that the filter designs exhibit a

certain degree of robustness. In the scenario where the eaves-
dropper uses the Wiener filter, the corresponding MSE appears
to be reasonably robust to the channel modelling errors. In con-
trast, in the scenario where the eavesdropper uses a ZF filter, the
corresponding MSE is more sensitive to the channel modelling
errors.
In general, for low to moderate channel estimation errors, the

filter designs still guarantee that the secrecy constraint is not
violated for a reasonable large set of .

C. Linear vs. Nonlinear Estimation

It is also relevant to consider the situation where the eaves-
dropper is not restricted to choose a linear filter. One could in
principle argue that the eavesdropper (even if another user of
a network as in Fig. 1) could use the optimal nonlinear receive
filter, instead of the optimal linear one, to process the informa-
tion in order to derive a lower MSE. This involves using a con-
ditional mean estimator (CME), that delivers the estimate given
by:

(89)

where is the probability density function of the input and
is the conditional probability density function

of the eavesdropper receive vector given the input vector
.
We thus assess the performance penalty incurred by the use

of a conditional mean estimator by the eavesdropper, but the
transmitter designs its filter based on the assumption that the
eavesdropper uses the optimal linear filter. We study scenarios
where the elements of the input vector are either BPSK or
16-PAM. Fig. 8 shows the values of the MSEs in the main and
in the eavesdropper channels and the injected power into the
channels vs. the secrecy constraint for . We can ob-
serve that designing the transmit filters based on the assumption
that the eavesdropper is using an optimal linear receive filter
results, as expected, in a lower eavesdropper MSE, when the
input is not Gaussian (note that for Gaussian signals the condi-
tional mean estimator is, in fact, linear). However, and interest-
ingly, in regimes of greatest operational interest of large , the
penalty that we pay by assuming that the eavesdropper uses an
optimal linear filter rather than the optimal non-linear one van-
ishes, so that the eavesdropper does not have any real advan-
tage in using the considerably more complex conditional mean
estimator. This is due to the fact that the power injected in the
channel approaches zero as the values of increases, in order
to meet the secrecy constraint.

Fig. 8. Main and eavesdropper channel MSEs vs. secrecy constraint and
input power vs. secrecy constraint, for the transmit filter design based on the
use of a ZF filter at the legitimate receiver and a Wiener filter at the eaves-
dropper . corresponds to the eavesdropper
MSE associated with the linear Wiener filter.
corresponds to the eavesdropper MSE associated with the CME for BPSK
inputs. corresponds to the eavesdropper MSE
associated with the CME for 16PAM inputs.

D. Impact of the Filter Designs on Other Metrics

It is also of interest to assess the impact of the filter designs on
other metrics of operational relevance, including the Bit Error
Rate (BER) in the main and eavesdropper channels as well as
achievable secrecy rates.
Figs. 9 and 10 depict the Bit Error Rates (BER) of the main

and the eavesdropper channels for the scenarios where i) ZF fil-
ters are used at both receivers and ii) a ZF receiver is used at
the legitimate receiver and a Wiener filter is used at the eaves-
dropper receiver, respectively. These BER results are obtained
through Monte Carlo simulations, assuming that the transmitter
uses BPSKmodulation and that the receiver uses a simple slicer
to detect the information at the filters output. We can observe
that by imposing a constraint on the MSE of the eavesdropper
we also restrict the BER of the eavesdropper to be above a cer-
tain threshold. The resulting BER in the main channel, though,
is also slightly degraded due to the secrecy restriction. We can
also observe that the BERs that we can achieve when both re-
ceivers use ZF filters are lower than those when the legitimate
receiver uses a ZF filter and the eavesdropper uses a Wiener
filter (cf. Figs. 9 and 10). We argue that this seemingly counter-
intuitive behavior is due to the fact that in the scenario where
the eavesdropper uses a Wiener filter instead of the ZF one, the
transmitter cannot use all the available power.
Finally, Fig. 11 compares the achievable secrecy rates

yielded by our filter designs to the secrecy capacity of the
MIMO Gaussian wiretap channel, which is given in [15]. It is
clear that the filter designs result in a loss of secrecy rate, which
is more pronounced at high than at low available power levels,
both for scenarios where the eavesdropper uses a ZF filter as
well as scenarios where the eavesdropper uses a Wiener filter.
However, we note that our designs can be immediately real-

ized in practice in order to impair the eavesdropper. In contrast,
practical secrecy capacity achieving codes, which are known
only for some special channels, have to be developed in order
to achieve the secrecy capacity of the MIMO Gaussian wiretap
channel.
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Fig. 9. Bit error rate vs. available power for the scenario where both receivers
use ZF filters .

Fig. 10. Bit error rate vs. available power for the scenario where the legitimate
receiver uses a ZF filter and the eavesdropper receiver uses the optimal linear
filter .

Fig. 11. Secrecy capacity of the MIMO Gaussian wiretap channel vs. available
power and achievable secrecy rate vs. available power, for the optimal transmit
filter design with ZF filters at both receivers and Wiener filters at the eaves-
dropper receiver .

VII. CONCLUSION

We have considered the problem of filter design with secrecy
constraints in the classical wiretap scenario, where the objec-
tive is to conceive, subject to a power constraint, transmit and
receive filters that minimize the MSE between the legitimate
parties whilst guaranteeing that the eavesdropper MSE remains
above a certain threshold.

In particular, we have provided characterizations of the form
of the receive and transmit filters for MIMOGaussian channels,
considering the situation where both receivers use Zero-Forcing
filters or the eavesdropper uses aWiener filter.We have also pro-
vided efficient computational procedures to design the optimal
transmit and receive filters.
In particular, we have shown that the transmit filter designs

are resilient to channel modeling errors as well as to the use of
more powerful nonlinear receive filters, rather than the optimal
linear Wiener filter, by the eavesdropper. We have also shown
that the designs limit not only the eavesdropper MSE but also
the error probability.
We have also provided a framework to generalize this filter

design problem from the scenario where all parties are assumed
to know the exact state of the channel to scenarios where there is
some channel uncertainty. This generalization is applicable not
only to wireless systems subject to various channel state infor-
mation regimes as well as to systems where there is uncertainty
about the state of the eavesdropper channel. The generalization
of the designs to cases where both receivers use optimal linear
Wiener filters appear to be open in general.
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