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ABSTRACT

Widely used SVD-based matrix factorization approaches to the re-
covery of 3D rigid structure from motion (SFM), require a set of
feature points to be visible in a set of images. When there is occlu-
sion, several feature points disappear, the observation matrix misses
some entries, there is not equivalent to the SVD, and only subopti-
mal solutions have been proposed to exploit rigidity. In this paper,
we propose a method to complete the trajectories that correspond to
a rigid scene, in an optimal way. Our algorithm is not iterative (thus
avoiding problems like sensitivity to initialization and local optima);
it rather computes in a finite number of steps the globally optimal
completion of the observation matrix. We describe experiments that
illustrate the gain in accuracy of SFM.

Index Terms— Structure from motion, occlusion, missing data,
global optimization, matrix completion, SPOC.

1. INTRODUCTION

A matrix collecting trajectories of feature points of a rigid body is
rank deficient in a noiseless scenario. This fact underlies the suc-
cess of the so-called matrix factorization methods to recover 3D rigid
structure from motion (SFM). These methods compute the best rank
deficient approximation of a noisy observation matrix from its Sin-
gular Value Decomposition (SVD), see e.g., [1, 2].

In practice, it is often the case that, due to occlusion, many fea-
ture points become invisible to the camera, and the observation ma-
trix misses several entries, i.e., it is incomplete, preventing thus the
use of SVD. In the last decade, several authors addressed the prob-
lem of recovering SFM under occlusion, by attempting to complete
the observation matrix. Although earlier examples are suboptimal
procedures to combine the constrains that arise from the observed
submatrices of the original matrix [3], in the recent past, there have
been proposed several optimization algorithms that iteratively refine
the solution in a local way, by minimizing a nonlinear cost function
that measures the residual of the approximation, e.g., [4, 5, 6]. These
algorithms are sensitive to the initialization and often fall into local
minima.

In this paper, we focus on particular patterns of missing entries,
namely those known as a Young diagram, which include the cases
that often arise when dealing with occlusion in the recovery of rigid
SFM. It was recently shown that inequalities relating the singular
values of a matrix with those of its submatrices enable the develop-
ment of a strategy to compute the globally optimal completion of
such matrices, in a finite number of steps [7]. Our experiments in
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this paper demonstrate the effectiveness of this approach when re-
covering SFM. Naturally, the completion algorithm, called SPOC
(from SPectrally Optimal Completion), is relevant for many other
image/signal processing problems involving partial observations of
rank deficient matrices, e.g., separation of style and content in im-
ages [8] or localization in a network of acoustic sensors [9].

2. PROBLEM FORMULATION

In the factorization method for the recovery of rigid SFM, a set of
N feature points is tracked across F frames and their trajectories are
collected in a 2F × N observation matrix W. Usually, each col-
umn of W contains the sequence of (pairs of) coordinates of each
feature point. Due to the rigidity of the scene, W is rank deficient
in a noiseless situation – it is rank 4 in general, for the affine cam-
era model, see, e.g., [1, 2]. When W is completely known, the 3D
structure is recovered from the rank 4 matrix that best matches W,
which is easily computed from its SVD, by selecting the 4 largest
singular values.

When a feature point is occluded (or missed during tracking for
any other reason) at a given frame, the corresponding trajectory ends
at that frame and the remaining entries of the corresponding column
of the observation matrix W are treated as missing data. The left
image of Fig. 1 shows the typical pattern of known/missing entries
of W in this scenario (for N =20 and F =6). For reasons that will
become clear in the sequel, without loss of generality, we re-arrange
the observation matrix by performing a column re-ordering, in such
a way that the pattern of missing entries becomes a Young diagram.
This pattern is characterized by a sequence of non-increasing num-
ber of missing entries from the first (leftmost) to the last column, see
the example in the right plot of Fig. 1.
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Fig. 1. Example of pattern of missing entries (depicted in black) in
the observation matrix obtained when recovering SFM under occlu-
sion. An adequate column re-ordering produces a Young diagram.

We address the problem of recovering rigid SFM under occlu-
sion as a search for the best completion of the observation matrix
W. Since W is rank 4 in a noiseless situation, we formalize the



problem as the minimization of the fifth largest singular value over
all possible completions. This leads to the optimization problem

X̂ = arg min
X∈SW

σ5(X) , (1)

where SW is the set of possible completions of W and σ5(·) de-
notes the fifth largest singular value. X denotes a candidate, i.e.,
a matrix whose entries corresponding to observed entries in W are
fixed at the observation values, and X̂ is the best completion, which
minimizes the spectral norm of the matrix of residuals [10]; for this
reason, we call it the SPectrally Optimal Completion (SPOC).

At this point, we must emphasize that, although other authors
have addressed the recovery of SFM under occlusion by seeking op-
timal completions of the observation matrix, e.g., [4, 5, 6], they used
a fully general pattern of missing entries and ended up proposing it-
erative optimization methods that often fall in local optima. In oppo-
sition, we focus on the class of missing data patterns that often arise
when dealing with occlusion, i.e., the Young diagram illustrated in
Fig. 1, and derive a non-iterative globally optimal solution.

3. COMPUTING THE GLOBAL OPTIMUM

As a building block for our SPOC algorithm, we start by addressing
the case of a m× n observation matrix W that misses only the last
entry of the first column, i.e., the bottom left entry. The problem (1)
becomes

x̂ = arg min
x∈R

σ5

([
a C
x bT

])
, (2)

where the (m−1)×1 vector a, the (n−1)×1 vector b, and the
(m−1)×(n−1) matrix C, are known (they contain the observed
entries of W) and x ∈ R denotes a candidate value for the unknown
entry, thus the matrix inside brackets represents a generic element X
of the set of possible completions, SW .

Our closed-form solution for the problem (2) is rooted on the
theorem of interlacing inequalities for singular values, see e.g., [10].
This theorem provides the two following lower bounds for the cost
in (2), valid for any choice of x ∈ R:

σ5(X) ≥ σ5

([
a C

])
, σ5(X) ≥ σ5

([
C
bT

])
.

It can be shown that the conjunction of these two inequalities
provides a tight bound for the cost, i.e., that the minimum value for
the cost can be obtained in closed-form as:

σmin = min
x∈R

σ5(X) = max

{
σ5

([
a C

])
, σ5

([
C
bT

])}
. (3)

Furthermore, in general, the optimization problem (2) is solvable,
i.e., there is a value x̂ for the missing entry that produces the infi-
mum σmin in (3), see [11] for details:

σ5

([
a C
x̂ bT

])
= σmin. (4)

Now, computing the optimal solution for the missing entry, x̂,
becomes straight forward because (4) implies that σ2

min, obtained
from (3), is an eigenvalue (the fifth largest one) of the matrix

[
a C
x̂ bT

] [
a C
x̂ bT

]T

=

[
aaT + CCT ax̂ + Cb
x̂aT + bT CT x̂2 + bT b

]
,

thus we have:
∣∣∣∣

aaT + CCT − σ2
minIm−1 x̂a + Cb

x̂aT + bT CT x̂2 + bT b− σ2
min

∣∣∣∣ = 0 , (5)

where Im−1 stands for the (m−1)×(m−1) identity matrix and | · |
represents the determinant. Since the determinant is a multilinear op-
erator (i.e., linear in each column separately), equality (5) is simply
a quadratic equation in the unknown x̂, which is easily solved (the
solution is unique, under general assumptions of solvability [11]).

We now address the Young diagram, i.e., the general pattern of
missing data for an observation matrix typical of SFM under occlu-
sion, see Fig. 1. The interesting fact about this class of incomplete
matrices is that the optimal completion, i.e., the completion mini-
mizing σ5, can be found in a sequential way, by solving, for each
missing entry, a one-dimensional problem such as the one in (2).

Our SPOC procedure is the following: we start at the first (the
topmost) incomplete row and complete it, from right to left, then we
move to the following row and complete it, from right to left, and
so on, until we have completed the last row. For example, for the
following 8×9 observation matrix W (in SFM, it would correspond
to a scenario where 9 feature points are seen at the first image, two
of them are lost in the second image, three other points are lost in
the third image, and one more is lost in the fourth image, i.e., only
3 points are seen in the 4 images), the order by which the missing
entries are filled in is indicated as X1, X2, ..., X26:




w11 w12 w13 w14 w15 w16 w17 w18 w19

w21 w22 w23 w24 w25 w26 w27 w18 w19

X2 X1 w33 w34 w35 w36 w37 w18 w19

X4 X3 w43 w44 w45 w46 w47 w18 w19

X9 X8 X7 X6 X5 w56 w57 w18 w19

X14 X13 X12 X11 X10 w66 w67 w18 w19

X20 X19 X18 X17 X16 X15 w77 w18 w19

X26 X25 X24 X23 X22 X21 w87 w18 w19




.

Computing Xi corresponds to solving (2) for the largest submatrix
of W that has the entry corresponding to Xi in its bottom left posi-
tion. Note that, due to the filling order just described, all the other
entries of this submatrix are available: they are either observed en-
tries of W or Xj , with j ≤ i− 1, which were computed before.

A simple example provides insight over why the SPOC proce-
dure just described yields the globally optimal completion. Consider
the problem of completing a matrix W with two missing entries, lo-
cated at the first and second elements of the last row:

{x̂, ŷ} = arg min
(x,y)∈R2

σ5

([
a1 a2 C
x y bT

])
. (6)

As for problem (2), the theorem of interlacing inequalities for
singular values [10] provides a bound for the minimum value σmin

of σ5(·) in (6):

σmin ≥ max

{
σ5

([
a1 a2 C

])
, σ5

([
C
bT

])}
. (7)

We will see that the sequential procedure described above produces
the solution (x̂, ŷ) that attains this bound.

According to the SPOC procedure, we first solve a problem of
the form (2) for the unknown entry y, i.e., we compute ŷ such that

σ5

([
a2 C
ŷ bT

])
= max

{
σ5

([
a2 C

])
, σ5

([
C
bT

])}
. (8)



Then, we plug in the solution ŷ and solve another problem like (2),
for the entry x, i.e., we compute x̂ such that

σ5

([
a1 a2 C
x̂ ŷ bT

])
= max

{
σ5

([
a1 a2 C

])
, σ5

([
a2 C
ŷ bT

])}
.

Replacing (8) into the r.h.s. of the last equality, we get

max

{
σ5

([
a1 a2 C

])
, σ5

([
a2 C

])
, σ5

([
C
bT

])}
,

which can be further simplified, because any singular value of a ma-
trix is greater or equal than the corresponding one of any of its sub-
matrices, i.e., σ5

([
a2 C

]) ≤ σ5

([
a1 a2 C

])
, leading to

σ5

([
a1 a2 C
x̂ ŷ bT

])
= max

{
σ5

([
a1 a2 C

])
, σ5

([
C
bT

])}
.

Comparing this last equality with bound (7), we conclude that
the pair (x̂, ŷ), computed according to our SPOC sequential proce-
dure, completes the matrix with the minimum possible value for the
singular value σ5, i.e., it is the globally optimal completion. Natu-
rally, the induction used in this example can be extended to show, in
a similar way, that the global optimality of SPOC holds in general,
see [11] for details.

4. EXPERIMENTS

We start by illustrating the capabilities of our SPOC method by pro-
cessing the “Dinosaur” image sequence, see Fig. 2. This sequence,
available from [12], has been used by several authors when address-
ing the recovery of rigid SFM under occlusion.

Fig. 2. Sample images from the “Dinosaur” sequence that illustrate
the self-occlusion effect (obtained from [12]).

In the left plot of Fig. 3, we represent the image trajectories of
275 feature points in the dinosaur surface. Naturally, due to self-
occlusion, several points are not seen in all the images available, thus
the trajectories result highly incomplete. The image in the right side
of Fig. 3 represents the pattern of known entries of the observation
matrix collecting those trajectories. Note that we have (selected and)
ordered the feature points in such a way that this pattern is a Young
diagram.

We then used SPOC to compute the optimal completion of the
observation matrix, i.e., the completion that is closer to the set of
possible trajectories of points in rigid body. The plots of Fig. 4 rep-
resent the result obtained. On the left, we show the extrapolated
data, i.e., the parts of the trajectories that were not visible in Fig. 3
due to occlusion. On the right plot, we represent the entire trajec-
tories recovered from the completed observation matrix. Naturally,
recovering SFM from these complete trajectories, which is trivial,
e.g., using the factorization method [1], leads to more accurate re-
sults than using any suboptimal strategy to process the incomplete
set of trajectories observed in Fig. 3. The following example, for
which we know the ground truth, demonstrates this point.
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Fig. 3. Left: trajectories of the projections of 275 feature points
tracked across the sequence in Fig. 2. Due to the dinosaur self-
occlusion, the trajectories are highly incomplete. Right: binary mask
of the observation matrix collecting these trajectories. The pattern
is a Young diagram (observed entries are represented in white and
missing ones in black).
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Fig. 4. Trajectories recovered by using our SPOC method to com-
plete the observation matrix whose pattern of known entries is in
Fig. 3. Left: estimates of the non-visible (occluded) parts of the
trajectories. Right: complete trajectories, recovered from the ones
partially observed in Fig. 3.

Fig. 5 illustrates the scenario. On the right plot, we show noisy
(synthetic) trajectories, obtained by projecting in the image plane
100 points lying on the surface of the jar on the left side, for a path of
20 camera positions. To simulate occlusion, we have then removed
several segments of these trajectories, obtaining an incomplete ob-
servation matrix (respecting the Young diagram pattern).

For comparison, we have processed the incomplete trajectories
by using a standard approach: first, calibrate the cameras, i.e., com-
pute the camera positions across time, using the set of points whose
trajectories are visible across the entire sequence; then, use the es-
timated camera positions to recover the entire 3D shape. The result
obtained is illustrated in Fig. 6, together with the solution obtained
by using our SPOC algorithm to complete the observation matrix.
Naturally, since our method takes into account the object rigidity in
a global way, we get more accurate estimates. This also happens for
the estimates of the camera calibration parameters, see the examples
plotted in Fig. 7.

Finally, we report the comparison of the re-projection errors of
the two approaches above, in terms of their dependence on the ob-
servation noise level. We have performed 1000 runs, for each noise
level, using partial observations of 50-frame trajectories, generated
by a moving body whose shape was described by a set of 100 ran-
dom points in 3D. The image coordinates were set in the interval
[−100, 100] and the noise standard deviation σ ∈ [0, 2], in order to
replicate situations that may arise when processing real-life videos.
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Fig. 5. Synthetic jar used for performance evaluation and noisy tra-
jectories of projections of 100 points in the jar surface.

Fig. 6. Estimates of 3D shape computed from partial observations
of the trajectories in Fig. 5. Left: result obtained by a standard
calibration-first approach. Right: solution obtained by using SPOC
to complete the trajectories in a globally optimal way.

We have repeated the experiment for several random shapes, mo-
tions, and patterns of missing data, obtaining always results similar
to the one plotted in Fig. 8. Although for low levels of noise, both
methods lead to similar re-projection errors, when the observation
noise increases, the higher accuracy of the optimal solution (pro-
vided by SPOC) becomes evident.

5. CONCLUSION
We have presented a globally optimal method to exploit the scene
rigidity when recovering SFM under occlusion. Our algorithm,
which we call SPOC (from SPectrally Optimal Completion), com-
putes the best completion of the observation matrix in a finite number
of steps, without search, in a non-iterative way. Our method leads
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Fig. 7. Comparison of the accuracy of the recovery of 3D motion
from partial observations of the trajectories in Fig. 5. The plots show
the estimates of two of the parameters describing the 3D rotation of
the camera across time.
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Fig. 8. Comparison of the re-projection errors of the suboptimal
calibration-first approach and of our globally optimal method, as
functions of the noise level.

to more accurate estimates of 3D shape and motion than standard
calibration-first approaches. Although in the recent past several
authors have proposed optimization algorithms to cope with missing
data, these algorithms are greedy and often fall into local optima.
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