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Abstract— This paper presents explicit convergence rates
for a class of deterministic distributed augmented Lagrangian
methods. The expressions for the convergence rates show the
dependence on the underlying network parameters. Simulations
illustrate the analytical results.
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I. INTRODUCTION

Recently, there has been much interest in distributed aug-
mented Lagrangian (AL) and alternating direction of multi-
pliers (ADMM) methods. These methods have demonstrated
good empirical performance on several distributed signal
processing applications, e.g., [1], [2], [3], but, until recently,
there has been little understanding of their convergence rates
and the rates’ dependence on the underlying network.

In this paper, we focus on the distributed optimization
problem where each node i in a generic network has a
convex, twice continuously differentiable cost fi : Rd → R,
known only to node i. The goal is for each node i to
obtain the minimizer x? of the sum

∑N
i=1 fi(x) of the

nodes’ local costs. We consider two different versions of
distributed AL algorithms that solve the latter problem,
namely distributed AL with nonlinear Jacobi (NJ) primal
variable updates, and distributed AL with gradient descent
primal variable updates. The former variant is similar to
the methods in [4], [1]. (We refer to Section III for the
algorithm details.) Our main contribution is to establish for
both variants globally linear convergence rates, in terms of
the number of elapsed per-node communications. Further, we
show how the rates depend on the algebraic connectivity of
the underlying network. For the AL with NJ updates, the
rate R (the smaller it is, the better) is 1−Ω

(
λ2
γ+1

)
,1 where

λ2 = λ2(L) is the algebraic connectivity – second smallest
eigenvalue of the associated weighted Laplacian matrix L
(the larger the better), and γ is the condition number of the
Hessian of the fi’s (the smaller the better). For the AL with
gradient-type updates, R = 1 − Ω

(
λ2
γ+1

log(1+1/(1+γ))

log(1+γ)+log(λ−1
2 )

)
.
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Our expressions above explicitly show the joint effect of the
“optimization difficulty” (condition number γ) and the degree
of the network connectivity (λ2).

We briefly comment on the literature. Distributed AL and
ADMM methods have been recently applied to several signal
processing applications, e.g.,[1], [4], [2], [3]. Reference [5]
establishes the sublinear O(1/k) rate for a deterministic
distributed ADMM method therein, while reference [6] es-
tablishes the same rate (in expectation) for an asynchronous
distributed ADMM method. These works assume a wider
class of the fi’s than the class we assume here but establish
much slower rates. Reference [7] establishes a globally linear
rate and the dependence on the underlying network for a
distributed ADMM and the special case of quadratic fi’s
(consensus), while [8] establishes these results for strongly
convex fi’s with Lipschitz continuous gradients. With respect
to [8], we additionally assume twice continuous differen-
tiability of the fi’s but establish globally linear rates for a
different class of distributed AL algorithms than [8]. Besides
distributed deterministic AL methods studied here, in [9] we
consider and establish globally linear rates for randomized
distributed AL methods as well.

The remainder of the paper is organized as follows. The
next paragraph introduces notation. Section II introduces the
network and optimization models, and Section III presents
distributed AL algorithms. Section IV states our convergence
rate results for these algorithms. Section V provides simula-
tion examples. Finally, we conclude in Section VI.

We use throughout the following notation. We denote by:
Rd the d-dimensional real coordinate space; al the l-th entry
of vector a; Alm or [A]lm the entry in the l-th row and
m-th column of a matrix A; I , 0, 1, and ei, respectively,
the identity matrix, the zero matrix, the column vector with
unit entries, and the i-th column of I; J the N × N ideal
consensus matrix J := (1/N)1 1>; ‖·‖ = ‖·‖2 the Euclidean
(respectively, spectral) norm of its vector (respectively, ma-
trix) argument; λi(·) the i-th smallest eigenvalue; A � 0
means that the Hermitian matrix A is positive definite; bac
the integer part of a real scalar a; ∇φ(x) and ∇2φ(x) the
gradient and Hessian at x of a twice differentiable function
φ : Rd → R, d ≥ 1. For two positive sequences ηn and χn,
ηn = O(χn) means that lim supn→∞

ηn
χn

<∞; ηn = Ω(χn)
means that lim infn→∞ ηn

χn
> 0; and ηn = Θ(χn) means

that ηn = O(χn) and ηn = Ω(χn).
563978-1-4799-0248-4/13/$31.00 ©2013 IEEE GlobalSIP 2013



II. PROBLEM MODEL

Subsection II-A describes the communication model, while
Subsection II-B describes the optimization model.

A. Communication model

We consider a N -node network G = (V, E), where V is
the set of nodes, and E ⊂ V × V is the set of edges.

Assumption 1 The network G is connected, undirected, and
simple (no self/multiple links.)

We denote by Oi the neighborhood set of node i (including
i.)

Weight matrix and weighted Laplacian. We associate
with graph G a symmetric, stochastic (rows sum to one and
all the entries are non-negative), N × N weight matrix W ,
with, for i 6= j, Wij > 0 if and only if, {i, j} ∈ E, and
Wii = 1−

∑
j 6=iWij . We require that W is positive definite

and that λN−1(W ) < 1. See [10] how these requirements
can be fulfilled beforehand in a distributed way, without
knowledge of any global network parameters. Also, denote
by L := I −W the weighted graph Laplacian matrix. The
quantity λ2(L) ∈ [0, 1) (the larger it is, the better) measures,
in a sense, how well connected the network is. For example,
for a chain N -node network, λ2(L) = Θ

(
1
N2

)
, while, for

expander graphs, it stays bounded away from zero as N
grows.

B. Optimization model

Nodes solve the unconstrained problem:

minimize
N∑
i=1

fi(x) =: f(x). (1)

The function fi : Rd → R is known only by node i. We
impose the following structure on the fi’s.

Assumption 2 The functions fi : Rd 7→ R are convex, twice
continuously differentiable, and have bounded Hessian, i.e.,
there exist 0 < hmin ≤ hmax <∞, such that, for all i:

hmin I � ∇2fi(x) � hmax I, ∀x ∈ Rd. (2)

Under Assumption 2, problem (1) has the unique solution
x?. Denote by f? = infx∈Rd f(x) = f(x?) the optimal
value.

III. ALGORITHMS

In this section, we present our distributed AL algorithms.
We first present in detail the algorithm with NJ primal
updates; then, we present the algorithm with gradient updates
by focusing only on the differences with respect to the former
variant.

Distributed AL with NJ primal updates is summarized
in Algorithm 1. It has, as tuning parameters, the dual step-
size α > 0, the AL penalty parameter ρ > 0, the number
of inner iterations τ , and the weight matrix W (Recall
Subsection II-A.) The algorithm operates in two time scales.
In the outer iterations k (see (4) in Algorithm 1), each
node i updates its dual variable ηi(k) ∈ Rd. In the inner

iterations s (see (3) and (4)), each node i updates its primal
variable xi(k, s). At each inner iteration s, each node i
broadcasts xi(k, s) to all its immediate neighbors (see (4)).
Outer iterations k do not involve any communications. There
are τ inner iterations per each outer iteration k. Note that
Algorithm 1 also defines the primal variables xi(k) at the
outer iteration level, as well as certain auxiliary variables
xi(k, s) and xi(k). For simplicity, we assume that all nodes
use the same initialization of the primal variables: xi(0) =
xj(0), ∀i, j.

Algorithm 1 Distributed AL with NJ updates
1: (Initialization) Node i sets k = 0, xi(k = 0) ∈ Rd, xi(k =

0) = xi(0), and ηi(k = 0) = 0.
2: (Inner iterations) Node cooperatively run the nonlinear Jacobi

method for s = 0, 1, ..., τ −1, with xi(k, s = 0) := xi(k) and
xi(k, s = 0) := xi(k):

xi(k, s+ 1) = arg min xi∈Rd ( fi(xi) (3)

+ (ηi(k)− ρ xi(k, s))> xi +
ρ ‖xi‖2

2
)

xi(k, s+ 1) =
∑
j∈Oi

Wij xj(k, s+ 1), (4)

and set xi(k+ 1) := xi(k, s = τ), xi(k+ 1) = xi(k, s = τ).
3: (Outer iteration) Node i updates the dual variable ηi(k) via:

ηi(k + 1) = ηi(k) + α (xi(k + 1)− xi(k + 1)) . (5)

4: Set k 7→ k + 1 and go to step 2.

Distributed AL with gradient primal updates is the
same as the alternative variant, except that the step (3) is
replaced with the following:

xi(k, s+ 1) = (1− β ρ) xi(k, s) + β ρ xi(k, s) (6)
− β ( ηi(k) +∇fi(xi(k, s)) ) ,

where β > 0 is the primal step-size – an additional algorithm
parameter.

IV. LINEAR CONVERGENCE RATES

In this Section, we state and interpret our main results on
the convergence rates of the two AL methods. For the proofs,
we refer to [9]. Denote by Dx := ‖x1(0)− x?‖, and Dη :=(

1
N

∑N
i=1 ‖∇fi(x?)‖2

)1/2

. Also, recall that γ = hmax/hmin

is the condition number of the fi’s. We have the following
Theorem for the AL with NJ updates.

Theorem 1 (AL with NJ updates) Consider Algorithm 1 un-
der Assumptions 1 and 2, and suppose that the algorithm and
network parameters satisfy the following:

α ≤ hmin,

(
ρ

ρ+ hmin

)τ
<

1
3
λ2(L)hmin

ρ+ hmax
. (7)

Then, at any node i, xi(k) generated by Algorithm 1 con-
verges linearly (in the outer iterations k) to the solution x?,
with rate:

rdet,nj := max{ 1

2
+

3

2

(
ρ

ρ+ hmin

)τ
, (8)(

1− αλ2(L)

ρ+ hmax

)
+

3α

hmin

(
ρ

ρ+ hmin

)τ
} < 1,
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and there holds:

‖xi(k)−x?‖ ≤ (rdet,nj)k
√
N max

{
Dx,

2Dη√
λ2(L)hmin

}
.

We interpret Theorem 1. First, we can see that the linear
convergence rate is guaranteed only for a certain range
of the algorithm parameters α, ρ, τ . (See condition (7).)
For example, we can take ρ ≤ hmin, α = hmin, and:

τ ≥
⌈

log
(

3(1+γ)
λ2(L)

)
log(2)

⌉
. Second, we can see the interesting

dependence of the convergence constant on the quantity Dη .
The quantity measures, in a sense, the difficulty of (1) when
solved in a distributed way; Dη measures how large are the
local functions’ gradients ∇fi(x?)’s at the global solution
x?. If the ∇fi(x?)’s are very small, then the local minimizers
x?i := arg minfi(x) are similar to the global minimizer
x?, and hence nodes do not need to cooperate to find a
point close to x? (“easy” instance of (1).) If, on the other
hand, ∇fi(x?)’s are very large, then the x?i ’s may be very
different from x? and nodes need cooperation to recover
x? (“difficult” instance of (1).) Third, although the Theorem
states the convergence rate in terms of the outer iterations k,
the algorithm converges linearly in the overall number of
inner iterations (number of per-node communications), with
rate R = r

1/τ
det,nj. Fourth, we can see the explicit dependence

of the convergence rate on the algebraic connectivity λ2(L).
Specifically, the rate R = 1−Ω

(
λ2
γ+1

)
is obtained by setting

ρ = 0 and τ = 1, which corresponds to the ordinary dual
decomposition method.2

Theorem 2 (AL with gradient updates) Consider
Algorithm 1 where step (3) is replaced with (6), and
let Assumptions 1 and 2 hold. Further, suppose that the
algorithm and network parameters satisfy the following:

α ≤ hmin, β ≤
1

hmax + ρ

(1− β hmin)τ <
1
3
λ2 hmin

ρ+ hmax
. (9)

Then, at any node i, xi(k) converges linearly (in the outer
iterations k) to the solution x?, with rate:

rdet,grad := max{1
2

+
3

2
(1− β hmin)τ , (10)(

1− αλ2(L)

ρ+ hmax

)
+

3α

hmin
(1− β hmin)τ} < 1,

and there holds:

‖xi(k)−x?‖ ≤ (rdet,grad)k
√
N max

{
Dx,

2Dη√
λ2(L)hmin

}
.

Taking: τ =
⌈

log
(

6(γ+1)
λ2(L)

)
log( γ+1

γ )

⌉
, α = ρ = hmin, and

β = 1
ρ+hmax

, and using Taylor expansions, one ob-

2Although the upper bound on the rate in Theorem 1 is the best for ρ = 0,
the best rate my correspond to the nonzero value of ρ, as demonstrated in [7]
for the special case of the quadratic, scalar fi(x) = (x− ai)2, ai ∈ R.

tains the communication rate R = r
1/τ
det,grad = 1 −(

λ2
γ+1

log(1+1/(1+γ))

log(1+γ)+log(λ−1
2 )

)
.

V. SIMULATIONS

This Section provides a simulation example for the AL and
NJ updates and the l2-regularized logistic losses. Simulations
demonstrate the linear convergence rate of the method. We
further compare the AL method with NJ updates with the D–
NG method in [10]. Simulations suggest that the AL method
with NJ updates trades-off communication and computational
costs with respect to D–NG, both in the case of larger
and smaller condition numbers. (AL with NJ has a lower
communication cost and a larger computational cost.) For
simulation examples of the AL with gradient updates, we
refer to [9].

Simulation setup. The network is geometric: we place
nodes uniformly randomly on a unit square and connect the
node pairs whose distance is less than a radius. The network
has N = 12 nodes and 28 links.

Nodes minimize the logistic loss:
∑N
i=1 fi(x) =∑N

i=1

(
log
(

1 + e−bi(a
>
i x1+x0)

)
+ P ‖x‖2

2N

)
, where P > 0

is the regularization parameter, x = (x>1 , x0)> ∈ R15,
ai ∈ R14 is the node i’s feature vector, and bi ∈ {−1,+1}
is its class label. We take node i’s constants hmin,i and
hmax,i as: hmin,i = P

N and hmax,i = P
N + 1

4 ‖ci c
>
i ‖.

(It can be shown that this choice is in accordance with
Assumption 2.) Further, we let hmin = mini=1,...,N hmin,i

and hmax = maxi=1,...,N hmax,i. For the problem instance
here, the condition number γ = hmax/hmin = 49.55.

We generate the ai’s independently over i; each entry is
drawn from the standard normal distribution. We generate
the “true” vector x? = (x?1

>, x?0)> by drawing its entries in-
dependently from the standard normal distribution. The class
labels are generated as bi = sign

(
x?1
>ai + x?0 + εi

)
,

where the εi’s are drawn independently from a normal
distribution with zero mean and standard deviation 0.001.

The algorithm parameters are as follows. With the AL and
NJ updates, we set α = ρ = hmin. We set τ = 1 (although
our theory does not guarantee linear convergence in such
case.) For simulations with theoretical values of τ , we refer
to [9]. The weight matrix W = 1.1

2 I + 0.9
2 Wm, where Wm

is the Metropolis weight matrix. (Note that W � 0.) We
initialize the primal and dual variables with zero. With the
D–NG method in [10], we set the step-size αk = 1/(k + 1)
use the same weight matrix W , and the zero initial estimates.
We consider the average relative error in the cost function:
1
N

∑N
i=1

f(xi)−f?
f(0)−f? . We compare the methods in terms of: 1)

the total number of transmissions (across all nodes), and 2)
the total computational time. We use a serial implementation
(one processor emulates all nodes.) We count the CPU time
across all nodes. At the inner iteration s and outer iteration
k of the AL method, we solve (3) via the Nesterov gradient
method for strongly convex costs; the implementation details
of the method are the same as in [9]. All the Figures are in
a semi-log scale.

We consider two scenarios: 1) smaller (better) condition
number γ = hmax

hmin
= 49.55; and 2) larger (worse) condition
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Fig. 1. Average relative error in the cost function 1
N

∑N
i=1

f(xi)−f?
f(0)−f? for

the AL with NJ updates method and the D–NG method. The two top figures
show the scenario of a smaller condition number γ ≈ 49.55, while the two
bottom figures show the scenario of a larger condition number γ ≈ 4856.

number γ ≈ 4856. With the second scenario, we increase
the condition number by taking a smaller value of the
regularization parameter P . With the AL NJ method, we
take α = ρ ∈ {0.01, 0.1, 1, 10}, as the optimal choice of
α is not known a priori. Figure 1 (first and second from
top) are for the smaller condition number, while Figure 1
(third and fourth from top) are for the larger condition
number. First, observe that the D–NG method converges
sub-linearly in the number of communications, while the
AL with NJ updates converges linearly. Second, we can
see that, in this implementation example, the D–NG has
a lower computational cost, while the AL with NJ has a
lower communication cost. Further, we can see that D–NG
is not very sensitive to the condition number, neither in
terms of communication nor in terms of computational costs.
Regarding the AL with NJ, it is not very sensitive in terms
of the communication cost, but it is sensitive in terms of
the computational cost. The reason is that, for a large (poor)
condition number γ, the condition number to solve the local
nodes’ problems (3) is also poor, and thus the computational
cost increases when γ increases.

VI. CONCLUSION

We considered distributed optimization where N nodes in
a generic network minimize the sum

∑N
i=1 fi(x) of their

individual convex costs. Assuming twice continuously dif-
ferentiable fi’s with bounded Hessian, we established glob-
ally linear convergence rates for two variants of distributed
deterministic augmented Lagrangian algorithms. Simulation
examples illustrate our results.
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