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Resumo

Nesta tese propfe-se um método para reconstrugéo de ursa diasuperficies ndo rigidas a partir de
caracteristicas pontuais em imagens. A classe de supsrfisiquais 0 método se aplica consiste em
superficies de curvatura nula, mergulhadas suavementspaga@ 3D Euclidiano em diversas configu-
racdes. Um exemplo tipicamente usado consiste numa folpapi curvado suavemente em diversas
configuragdes. Por reconstrucéo entende-se recuperapo$)c@o das caracteristicas visiveis quando a
superficie é desenrolada; 2) a pose tridimensional dafétipegm cada imagem observada. As camaras
consideradas séo do tipo ortografico com escala e ndo seesspravia calibracdo destas. Assume-
se que 0s pontos caracteristicos observados em cada imagem greviamente emparelhados entre
imagens, mas possibilita-se a existéncia de oclusdes.

Dada a complexidade em representar funcdes isometrica® péssivel descrever uma funcao de
custo simples e assumir que existe um método de optimizagdagesolve. Assim o problema é
separado em varios sub-problemas, onde cada um refina @salada pelo anterior. Os primeiros
destes sub-problemas encontram uma solucdo discretajeoargke se consideram apenas 0S pontos
caracteristicos dados. O ultimo passo porém desenvolveponta que permite a passagem para um
modelo continuo.

A solucéo depende fortemente de uma classe de matrizesadgsurrentemente, aqui designadas
como “sub-Stiefel”. Estas matrizes sdo de grande impagaqneando se consideram camaras ortogra-
ficas e ortograficas com escala, mas néo se encontra quatgreguta sobre este conjunto. Aqui, estas

matrizes sdo caracterizadas e descritas em profundidade.

Palavras Chave Visdo Por Computador, Reconstru¢éo Tri-Dimensional oRettucdo N&o Rigida,

Estrutura a Partir de Movimento, Mergulhos Isométricosti®igacéo Nao Linear






Abstract

In this thesis a method to reconstruct a class of non-rigitheas from image point features is presented.
The class of surfaces to which it applies consists of flaesed isometrically and smoothly embedded
in Euclidean three-space of which the model example is a 8ifyobent sheet of paper observed in
different configurations. Here it is proposed to recoverthg)feature locations of the flattened surface
as well; 2) the three-dimensional pose of the surface in @aalge. The cameras are considered to be
scaled orthographic and they are not assumed to be preyicaigbrated. It is assumed that the features
have been previously matched between images but occlusierasdlowed.

Due to the complexity of representing isometric functidris hot possible to describe a simple cost
function and assume that there’s an optimization algorithat solves it. Instead, the problem is split
into subproblems, where each step refines the previoushinauat solution. The first subproblems deal
with finding a discrete solution for the problem, i.e. one vehenly the feature points are considered.
The last step provides a bridge that allows for the wholeinaonus embedded surface to be considered.

The solution depends heavily on certain non-mainstreammiceat here denoted as “sub-Stiefel”.
These matrices are of great importance when considerihggraphic and scaled orthographic cameras,
but no literature describing them has been found so far. |Hbese matrices are characterized and

described in depth.

Keywords: Computer Vision, 3D Reconstruction, Non Rigid Recondtaim; Structure From Mo-

tion, Isometric Embeddings, Non Linear Optimization
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Chapter 1

Introduction

Contents
1.1 Problem Statement . . . . . . . ... 2
1.2 Stateofthe Art. . . . . . . . . . e 4
1.3 Contribution . . . . . . . e 6

Inferring structure from image data has been one of the tigscof Computer Vision from the be-
ginning. Classical algorithms assume a rigid scene obddayeéifferent cameras and attempt to obtain
a 3D computer description from different features (e.gogatorners, shade, etc). While these have
been studied to exhaustion, only recently has reconsbruatf scenes which differ between image
frames become main-stream, probably motivated by the exjpi@h increase in available processing

capabilities which allows for ever more complex algorithim$e executed in reasonable time.

Once the rigidity requirement is lifted, several new classkproblems arise. One can consider
scenes with multiple rigid bodies (e.g. a robot arm congistif several articulations), scenes which
are allowed to bend and/or stretch (e.g. a tree waving at thé)yscenes with strange dynamics (e.qg.

fire), and many other variants.

The proposed thesis deals with the reconstruction of sesfadiich are allowed to deform in such
a way that intrinsic distances are preserved (i.e. no $irejor shearing is allowed). A sheet of paper
waving is the prototype example, but several types of clotiickvare rigid enough not to shear or

stretch may be considered as well.
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Figure 1.1: Acquisition model of the isometrically embeddeirface observed by different cameras
in different points in space and time.

1.1 Problem Statement

The earliest design decision introduced is that the objebetreconstructed is represented by a finite
set of feature points, usually inferred from texture. Thissure points are assumed to be dense
enough with respect to the amount of deformation. The setatfife points on the unfolded surface
is here denoted byQ = {qi}f[ C U C R?, where eachy; denotes a single 2D surface point. The
notation used means that the elements of the set are indexadLfto N, the number of elements in
the set. The subséf is used to limit the extents of the continuous surface angractical purposes it
can be assumed to be bounded since all physical surfacedmfisite. If no other information other
than the point cloud is provided, it is considered to be theser hull of the point cloud.

The object features are then embedded in specific 3D posessby & embedding functions
{I’C ‘U CR? — IR:”}f. Notice the same notation being used once again to statththatements of
this set are indexed from 1 #g. The surface spanned by the image of each of these functi@adied
anembedding poseand will be denoted bys* = Z#(1/) c R3. Of the whole surface, only a finite
number of feature points are considered, here collecteldeisetR” = I’“(Q) c S*¥. The elements
of this set are numbered in the same order as the pqirge R* = {r¥}.  such that’ = T*(q,).

As previously stated, the embedding functidifsmust obey several constraints so as not to shear or
stretch the original 2D surface. For the sake of clarity, ftiilecharacterization of these functions is
delayed.

Finally each of the embedded point s&®$ is observed by a different camera which projects
the 3D feature points to a 2D image using camera projectiontions { C* : R? — RZ}f. Each of

these projections generates a 2D feature point ctid= C*(R*) c R? which is again numbered

2



in accordance to the previously chosen or@ér = {pf}¢]i1 such thatp! = C*(r¥) . Figure 1.1

summarizes the acquisition model, which is algebraicad#yesl as
k _ ok (7h (. :
pt=C (I (ql)) Vi k . (1.1)

This equation is generic enough to be the starting point eérs¢ computer vision problems and
is more or less difficult to solve, depending on the constsaimposed and the available observed
data. In almost every case, when applied to all available et equations define an over-constrained
system meaning that no solution satisfies them exactly Irwvedd applications due to the presence of
noise and sensor limitations. As a work-around these amstire often “solved” by a least-squares
optimization problem formulation. When done correctlystfinds the best solution (in a certain very
specific sense) that almost-fits. Often it also happens teset equations should admit more than
one solution when no noise is present, meaning that theqmold also ill-posed. In these cases the
geometry of the problem allows a continuum of solutions tademtified, but the presence of noise
might mislead by allowing for a single solution to be ideeiifiif the formulation does not take this
design constraint into account. This single solution is mregless with respect to others and is often

very ill conditioned.

A patrticularly successful historical example can be fored when orthographic cameras are
considered and all embedding functiaffs are constrained to be the sarf#® = 7). This implies
that all setsR* are equal and that, when zero-centered data is considaeefljrictionsC* are linear
functions represented as Stiefel matric€% € 0(2,3). The Stiefel seD(2,3) is simply the set of

3D rotations where the last line has been erased. The equhtis simplifies to

pF=CFI(q) Vi k. (1.2)
N——

r;

The classic Tomasi-Kanade algorithm [41] is able to recevereaningful solution consisting of ma-
trices C* and pointsr; € R3 from the observationp? € P*. As discussed above, given enough
images the problem is over-constrained, andf (#;) is a solution to the problem then any rotation

matrix R € O(3) generates a new, equally valid solutidd"®R, R”t;).

Unlike the Tomasi-Kanade example, in this thesis it is notsidered that the embedding func-
tions Z* are the same for alt. Instead, they are assumed to belong to a class of functioosrk
as “isometries”, adding a new difficulty that must first bentiied and represented and later over-

come. Representing the isometry functions correctly isanivial task and this work will focus on

3



two distinct approaches, one simpler (but coarser), theratlightly more complex which is able to
completely represent these isometry functions. For the séklarity, the simpler description will be
given first, while delaying the more complex description hajgter 5.

Looking at equation (1.1), three problems are formulateaetaddressed in this thesis:

1. Recover the surface poin@solely from the multiple observatior®*. In figure 1.1 this means
from several observations (c), obtain (a). This problemerettalled thesurface unfolding

problem and will be explored in chapter 3.

2. Estimate the embedded poirRé if the observations?* and the underlying surface poin
are known. In figure 1.1 this means estimate (b) given (a) endThis problem is here called

the pose estimationproblem and will be addressed in chapter 4.

3. Represent and estimate the embedding functidhand use this information to improve the
already obtained solutions. This problem is here calledsthmetry estimationproblem and is

discussed in chapter 5.

Prior to exploring the solution to the stated problems, sontial considerations are needed which

are provided in chapter 2.

1.2 State of the Art

The first known attempts at fitting developable surfaces fatpmouds are described in the papers
[31, 18, 4]. The importance of these papers to this thesissaaswhat shadowed by the book [32]
which shares a common author with the papers. Chapter 6 arzdlesser extent, chapter 5 of this
book constitutes the primary source of information on dagpable surfaces used in this thesis. Other
book resources that cover the topic include sections 3-%ahdf [7] and chapters 3 and 5 of the third
book in the series [38].

In [10] the importance of developable surfaces in ship-teflign is stated, since it allows for easy
manufacturing without stretching or tearing and withowg tlse of heat treatment. The paper itself
focuses on approximating developable surfaces usingiBesplcoining the term “quasi-developable”,
for use in computer aided design. The result is not exactlgldpable, but the authors claim is a good
enough approximation for engineering purposes due to npédaticity. The intent of representing
developable surfaces within a computer is also the mainvataiin of [40], but now for representing

everyday objects in computer graphics. Instead of progidimapproximation to developable surfaces,

4



these authors consider a subclass of developable surfacggptoximate a general one. They do
so by considering a piecewise approximation by generalc@tbs which are a particular kind of
developable surfaces. In [28] a technique for reconstigaii 3D developable surface from a 3D point
cloud is described. They describe developable surfaceslapamameter family of tangent planes
and make these tangent planes agree with the point cloud Uaiag tangent plane representation
of developable surfaces is known as the dual represent@@mn[32]) and has the advantage that the
resulting surface is guaranteed to be developable. A difteiechnique described in [20] uses triangle
meshes to approximate developable surfaces and for camyhie development (unfolding) of these

surfaces.

Although not focused specifically on developable surfaitel23] techniques for smooth interpo-
lation of ruled surfaces are presented. Since ruled sigfa@ea superset of developable surfaces, the

content provides insight which can be used for the lateisclas

In [2] the state of the art in developable surfaces is citeoetgl1] which deals with the presence
of (non-smooth) creases. Although the present thesis dedyswith smooth surfaces, it would be

interesting to extend to creased surfaces. This is lefttasegfuvork.

The paper [25] is perhaps the closest to what is done in chaplehe authors of the paper suggest
a discrete parameterization of the surface rulings, caléding rules, using the boundary contour.
These guiding rules are later smoothed by interpolationgusubic Hermite polynomials. To obtain
the rulings, the authors rely on a 3D reconstruction of thbentded surface being available. As will
be discussed in chapter 5, the authors also mention thelififrences between developable surfaces
and torsal ruled surfaces which they deal with in the lat@ep$§26] by segmenting into deformation

regions.

In [27] the authors propose to reconstruct a 3D surface frqmarapective camera with known
intrinsic parameters when a template is available and puise¢ correspondence is provided. It is

based solely on distance constraints so it does not regsimmath embedding of the surface.

Another approach is to describe the surface as an inexterisdngle mesh by imposing distance
constraints [34, 35, 33]. With this formulation the authars able to reconstruct smooth and sharply
folded surfaces by relaxing the distance constraints dodiglg them to shorten. The authors claim
that this is a more faithful representation since extrirdigtance is allowed to shorten, and at the
same time obtain a convex optimization problem. The fortrasupposes that the correspondence
between 3D surface points and 2D locations in the input inskggown. In [36] a closed form solution

for reconstruction of surfaces by matching individual iresip a reference configuration is described.
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In [37] the authors reconstructs the triangle mesh withowiking the template of the surface, which
is also a property of what's presented in this thesis. Anothieresting paper from this research
group is [34]. In [29] and [30] the authors are interestedealtime detection and augmentation of
deformable surfaces by robustly minimizing an energy aasttion.

Finally, a very interesting paper is [14] in which a develolgasurface (called applicable surface
in the paper) is described as a differential equation. Thkaoas show that the information on the
bounding contour is sufficient to determine the structure.

The author of this thesis has also published [8] and [9] wiaidh completely described in this

thesis and further refined.

1.3 Contribution

This thesis explores the three problems posed at the endctibrsel.l, providing a solution and

discussing each of them. The exact contributions by chapeer

e Chapter 2 is meant to smooth the transition to the followingpters and contains the following

novel ideas

— A general description on how to compute local factorizatiapplied to rigid scenes.

— An algorithm for neighbor identification from scale orthaghic images in the context of

isometric deformations.

e Chapter 3 describes the surface unfolding problem and asm@asbtaining the surface points

Q from the observed 2D poinﬂg’C is described.
e The solution for the pose estimation problem is providedhiapter 4.

e A new (differential) parameterization of developable aoés is described in chapter 5 which

unites generation of the 3D surface and its unfolding.

The following are additional contributions which do not fita particular problem:

e An in-depth characterization of a needed set of matricestddras “sub-Stiefel is provided in

appendix A.

e An algorithm for computing the sub-Stiefel Procrustes sotuas described in appendix C.



Chapter 2

Local v.s. Global Factorization

Contents
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The previous chapter defined several point sets that willdeel throughout this documer®
R?, R* c R3 andP* c R?, where the superscriptdenotes théth input image. It was assumed that
all these point sets were commonly numbered, implying thpatiat matching algorithm was run prior
to the discussion. Feature extraction and matching is bif @ssubject worthy of a lot of investigation
and is out of the scope of this thesis.
Assumption 2.1 (Matched Features Assumption)The input data consists of feature points and it is
assumed that the correspondence between points is avail&lol if A and B are two point sets whose
elements are refered to by an indexing functién= {a;}\ and B = {b;}, it is assumed that each
point a; is related to the corresponding elemédnt

It is not assumed that feature points are visible in all immge

The notion ofneighborhoodwill be very important throughout this document hence soartig

ular notation is introduced. A neighborhood around a giveimtpy; € Q consists of all the points
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q; which are somehow considered to be closg;toDefine the setV; = {; : q; is a neighbor ofy; }.
The constantsV; will denote the number of elements in the 8ét Introducing an indexing function
for the setV;, the notationl; will be used to refer to the first element of the $etiefers to the second,
up to N;; which is the last element. How the s} is chosen is discussed later, for now just consider
it as the set of points close tg.

Due to the matched features assumption these neighborltandise naturally propagated to all
other setsR* andP*. Although pointq; is always a neighbor of poini;,, there is no guarantee that
in a particular image either point is observed so some aniditicare is needed when stating“is
a neighbor of poinpﬁ". Since it will be usual to cycle through all the observedgmiorhoods, the
setV = {(i,j, k) : p} andp’, are visiblg is here defined. This set is the disjoint union of smaller

per-image set¥* = {(i, j) : p; andp/, are visiblg.

Assumption 2.2 (Scale Orthographic Cameras)The assumed camera model consists of a scaled pro-
jection on a plane. Hence a camera is defined by a positiveedaators € Rt and a Stiefel matrix

P € 0(2,3), yielding the projection function
C:R* = R? C(x)=sPx.

The camera parameters amot assumed to be known.

The following chapters will look at equation (1.1) from difent perspectives and attempt to solve
for unknown variables when only some of them are observed céiovenience, the equation is here

repeated and the intermediate 3D poirftss R* c S* are evidenced

E_ Tk (o
pf:Ck(Ik(qi)>: ;kzk(zlr’z) Vi k. 2.1)

In chapter 1 it was mentioned that the considered embeddimgibnsZ”* : R? — R3 had to obey
certain metric constraints so as not to stretch or shearrtimdded points. Here these embedding
functions are defined as functions which do not change Isngftiturves on the surface and called
isometries So ifc¢: A C R — R? is any 2D curve of finite length, then the 3D curfé o ¢ must
have the same length (see theorem 3.10 of [16] for a formalfmno[3, 17] for a general overview of
Riemannian geometry). Furthermore, these isometric ecibgdunctions are assumed to be smooth,
i.e. infinitely differentiable.

Since the camera model is assumed to be scale orthographicamera projection functiors*

8



are simple linear transformations as in assumption 2.2 oktunfiately, the isometry functiori&® do
not admit such a simple characterization. This motivates#arch for alternative methods of solving
equation (2.1).

In order to proceed, a property of isometry functions musitbeed:
Fact 2.3 The Jacobian matrix of an isometry functi@n R* — R? evaluated at any poinj is J 4 €

0O(3,2). Note that here the Stiefel matrix is3ax 3 rotation matrix without the last column.

Proof This is a simple consequence of an isometry having to predbes norm of tangent vectors

and angles between them. See [3, 17] for details]}

So although the isometry functions are hard to represeait, dacobian matrices have a simple rep-
resentation. The question becomes how can this be exploitat still claiming to solve something
related to equation (2.1)?

It turns out that differential geometry provides the answéh the notion of tangent vector and
push-forwards of functions. Using these notions equatbh) @lso defines a linear relation between
the tangent vectors at corresponding points (see for exasgdtion 1V.1 of [3]). When written in
coordinates, this linear relation is commonly known as tmbian matrix.

If the Jacobian matrix of the camera projection functi@h at a pointr? is denoted byCF ¢
M2x3 whereM™*" is the set ofm x n matrix, equation (2.1) may be rewritten locally in terms of

tangent vectors at a point as
vi=cCclibw, = Vi, k. (2.2)

wherew; € Ty, R% u¥ € ’]I‘rfSk andvk e TprQ are tangent vectors. Since the considered camera
projection function is linear, its Jacobian matrix is theelr transformatiorC¥ = s*P*, where

sk ¢ RT andP* € O(3,2) are the camera parameters as defined in the scale orthagepheras
assumption. Note that the Jacobian matrix for this camesgegiion model does not depend on the

point. Substituting in the previous equation results in

vE=s"PFIFw, = Vi, k. (2.3)

i =

This equation is valid when true tangent vectors are consitidJnfortunately, due to the deforma-

tion of the embedded surfac¥ the vectorSuf € ']TMS’C cannot be represented by point subtraction
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which is only valid on affine spaces. This in turn implies ttie true tangent vector*si-C cannot be
simply computed as differences of points either. On therdthed, this does not apply t&; which

are actual tangent vectorsIiy.

2.1 The Planar Case

Consider first the case where all the embedding functihare rigid transformations, mapping the
setQ C U C R? to the planesS® ¢ R3. In this case the isometry functions are affine functions
defined by a Stiefel matrid* € 0(3,2) and a translation vectd, which do not change from point
to point.

I%(q) = IJFq + t" (2.4)

More important than the structure Bf, is the fact that their image$* = 7*(Q) are planes isometric
to R2. In this particular case all the vectors in equation (2.3) ba represented as differences of
points. So, given two indexesandj, the following are valid representations for the tangeictaes at

each surface
Wi =q; — q; v =pl—p} uj =rf —rf (2.5)
all obeying equation (2.3), so it is perfectly valid to write
pj —pf =s"P*I" (q; — i) V(i 5. k) €V (2.6)

As in any regression problem, in the presence of noise tligstiens are no longer strictly obeyed

and it is usual to find the values that best approximate thesonme sense.

2.2 The Non-Planar Case

WhenS* are not planar, equations (2.5) can no longer be writtentlgxat in order to proceed they
will be approximated by a difference of points as if they lngled to an affine space. This leads to the

following approximation

Approximation 2.4 (Locally Planar Approximation) The surface sampling is dense enough for local

neighborhoods in the embedded surfaces to be well apprésihizy planes.
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Figure 2.1: Going to the tangent space and back.

which allows for equations similar to (2.5) to be written

Wi =dj — V]f“%pfi—pﬁC uf~rh — ¥ 2.7)

(2

Notice that here the neighboring points notatigris used, so the equations are only valid when

considering neighboring points. Similarly, equation {Z8n be approximated as
p; —pl ~ P IF(q;, —a) V(5 k) eV. (2.8)

In this case, the effects of surface distortion is fused \hth effects of noise in the observed

samples.

2.3 Whatis Lost

This chapter suggests that instead of directly solving theaton system defined by (2.1) it is easier
to solve the equation system defined by equations (2.3)adstés there any relevant information
not captured by the suggested alternative? The horizangd in figure 2.1 graphically represent
equations (2.1) and (2.3). The vertical up arrows represemaations (2.5). The question posed here
is if anything relevant is lost when coming back down throtlghdotted vertical arrows. The process
of coming down will be calledntegrating the tangent data and the answer to the question is that not
much is lost, but this needs to be clarified.

To integrate the tangent vectors back to the surface, aifumkhown as th@xponential function
needs to be available, which describes how to travel fromiat @bong a tangent direction. In the

planar case, this function is simply
exp(vx) =x+ vy VxeR" vy e TR

which is a fancier way of writing equations (2.5). In the mdess case, this allows integration to
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be performed by starting from a point, building all it's niefmprs using the exponential function and
applying it recursively starting from the neighboring gsinThe only ambiguity is the starting point,
this information is lost when going to the tangent space awhot be recovered when integrating.
This is not considered to be a loss since this informatiorctigadly not obtainable from the observed
data.

The exact same argument applies to the non-planar case.dtled difficulty in this case is that
the exponential function is usually unknown and equatioB)(® used as an approximation.

When the existence of noise is considered in the problem assew arises: noise integration. In
the simplistic algorithm for integration just given, theptem occurs when one builds a neighbor with
noise and this noise is propagated to all points reconsiuitom that point onward. The algorithm
for integration will not be as simplistic as the one just did, but this issue still remains and
can be more or less relevant depending on the neighbor gi@ptectivity and noise distribution.
If the noise has zero mean, then simply augmenting the nuwfbeeighbors helps to contain this
effect. Unfortunately in the non-planar case, where thé&asarbend is treated as noise, the “noise”

distribution cannot be assumed to have zero-mean. The eetids looks at the effect of noise in a

little more detail.

2.4 Local Factorization Method

Section 2.2 suggests using a local reconstruction methmdaih a little insight and ease the transition
to the next chapter this section will describe how to implatrgelocal factorization algorithm and use
it in the same context as the Tomasi-Kanade algorithm whggs wll points at once. Note that the
algorithm presented in this section is purely for discusgarposes but will provide a high level of

parallelism with the algorithm that will be presented in tfext section.

2.4.1 Neighbor Estimation

The notion of locality has been presented but no hint on hdimtthe local neighbors has been given.
This problem is simple when the pointég are available, but it is not trivial when only the camera
projected pointp’ are known since the actual distances between them is notrkn@e problem

is aggravated by allowing the surface to fold, which allowsimnsically far points to appear closer

than the actual neighbors, and further by the fact that deathographic cameras are considered.
Although very simple, one can consider an algorithm thatsifees pairs of points as neighbors if and

only if they are “close” in every image where the pair is vigibThe algorithm, described in table 2.1
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Neighbor Estimation

Input: Matched point cloud$*. Minimum number of image& where each point is ob-
served and the desired number of neighbréor each point. Any point that is seen in
less thanl images is completely discarded.

Output: Builds the setsV; representing the neighboring points of paint

1. For each point and imagek where pointi is visible, compute the distanccé?, in
image coordinates, to every other visible point. Any polirattis not visible in at least
L images simultaneously with poirtis not considered a candidate as a neighbor of
pointi.

2: Sort the distances in each image ascendantly and attribeking rfj according to
the sorted position (sefj = 1 means that poinj is the closest to pointin imagek,
rfj = 2 is the second closest, etc)

3: Letr;; = maxy, rfj This is the worst rank of each neighbor in all images whiened j
are observed simultaneously.

4: For each point, pick the N points with lowest worst rank;;. These are the elements
of the output setV;. Ties between 2 points can be broken by contemplating velati
distances. LeD be the index of the images wheigj; and j, are simultaneously
visible, choosejy if [T,cp df;, < [Tpep df;, Otherwise pickjs. Ties between a higher
number of points can be broken similarly by stating thais the set of images where
all points are seen. P is empty, break ties arbitrarily.

Table 2.1: Neighbor Estimation Algorithm.

is applied to each point independently and needs two paessbesides the observed point clouds:
L is the minimum number of images in which a point pair needseteibible to be accepted, aid

is the desired number of neighbors for each point. It workexstuding non-neighbors, but does not
guarantee that all returned points are actual neighborpragctice, as long as the images taken from

general enough configurations, the algorithm has proviéeg good results for the considered cases.

Note that the algorithm described produces good resultghipurposes of this document but
there is margin for improvement. For example, step 2 shdillchBow for many more thanV points
to be available for neighbor selection, or else risk a poaindy considered a neighbor simply because
all others where occluded in too many frames. In all the erpats in this thesis, it is considered
that points are visible in “enough” images and this pointl wit be discussed further. If in some
application this is not so simple, care must be taken as tothevproblem will be solved, e.g. take

more images, relax, allow a varying number of neighbors;, etc.

The neighbor detection step may also be used to detect falkthaes between images. Suppose a
fairly large number of images are available and that a pgwooits are considered neighbors in all but

a few images. Then some feedback to the matching algorithghtrbie provided for it to review the
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quality of the matching step in these images. In this diasiert, the matching of points is assumed

perfect (assumption 2.1) and no further discussion on dipiE is given.

2.4.2 Local Factorization

Consider in this section that one is interested in solvirgslystem of equations (as in equations (1.2))
pf = Ckr; Vi k. (2.9)

whereC* ¢ O(2,3) when an orthographic camera is used, and the 3D points doepend on the

imagek. Written locally, this equation becomes
vF=CFu; Vik. (2.10)
and the vectors are defined by a difference of local neighbors

pj —pf =CF(xj, — ;) V(i,j.k) €V 2.11)

Assuming that all points are seen in every image, collecpthgious equations in a matrix form as

V,=CU; (2.12)
where
[pl —p! pL—-p' ... Py —P! ]
v, pi, .—p? P3, '—p? P, - p; oo C.2 .13
pf—pf pf-pf ... pN, —pK] |C* ]
U, = [rli —Tr; Ty —T; ... Iy, — ri] (2.14)

Applying the rank factorization algorithm, the objectiveto infer the values o€ and U; from
the observed value¥V ;. Note that the rank factorization algorithm is being appliecally to each
neighborhood at each point. In this section a rigid 3D scermnsidered so a rank 3 factorization is
applied to each matri¥ ; resulting in

V,~ €0, (2.15)



The solution is not unique, and any invertible matéix, € GIL(3) generates a new soluti(ﬁjiG;1

and G, U;. These matrices will be used to integrate the solution freetars back into points.

Notice that in the standard factorization problem theranlg a singleC which accounts for all the
points, while here & ; matrix is computed at each point containing informationudhits neighbors.
Although in this toy problem the advantage of doing this isciear, this is done so as to be closer to

the later employed method to reconstruct embedded surfaces

2.4.3 Integrating the Solution

Recovering the points from the vector information is acclished by solving
|:I‘11. —I; ro,—Tr; ... InN;, —TI;| — szjz Vi (216)

where U is the solution found previously and everything else is aae of the problem. Notice
that now one is not considering a single neighborhood, lbat ahce. Collecting all the variables into

amatrixX; € M3>x4N:
X = [rl ry ... rxy G; Go ... GN]
allows all the equations described by (2.16) to be writtematrix form as
XA =0

for some matrixA defined by the linear equations (2.16). This equation isitgfiriant in the sense
that if X is a solution then left multiplication by any matrBl € M3*3 originates an equally valid
solutionHX. This allows to search faX only in the Stiefel matrices since any matrix can be decom-
posed as a Stiefel matrix and a square matrix (known as ttae getomposition in theorem 7.3.2 of
[15]). Also the structure of the problem forces matAxto have a trivial kernel when all the points
r; are equal andx; = 0. This solution holds no information and needs to be dischrdhen no
noise is present the true pointsand the true matrice& ; also obey the equation, meaning that ma-
trix A has kernel dimension at least 4 (three from the &Xuand trivial solution mentioned above).
Unfortunately, proving that the matrix has kernel dimensgsactly 4, depends on the neighbor graph
connectivity and will not be done. Numerically it is easy tmeince that if the neighboring points are

not singularly distributed and the neighboring graph isneated, then this matrix will have rank 4.
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With this in mind, an optimization problem can be formulatedfinding the 3 dimensional sub-

T
space with the lowest residual, orthogonal to the trividison z = [1% ogN} :

minimize ) . (XA, XA) (2.17)
st. X e€O0(3,4N)
Xz=0

where heréX is seen as a projector & to a lower 3-dimensional space. Expanding the inner product

in equation (2.17) this can be re-written as

minimize tr {XAATXT} (2.18)
st. X e€0(3,4N)
Xz=0

Which, accordingly to the Rayleigh-Ritz quotient (see feample theorem 4.2.2 in [15]), is exactly
the formulation of computing the second and third lowesgsiar values of a symmetric matrix A7
where the least singular vector is known to M ()E{N]T. This can be obtained with available
software taking into account the sparsity of matbsuch as functioisvds included in MATLAB or

see for example [1].

After a solutionX is obtained, it contains all the reconstructed points anttices G ; up to a
global multiplication matrixH. So the solution to the original factorization problem 8.l updated

with the computed&; and changed to

In the no-noise case al’; should be equal. When noise is considered and the recotistruc

process is working correctly, they should be similar.

2.4.4 Forcing the Stiefel Constraints

The last step of the classic Tomasi-Kanade algorithm apmates all theC* matrices to the Stiefel

set using a least squares error function. Here the exact si@més taken to approximate all the< 3
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Reconstruction error as a function of number of images at various noise levels
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Figure 2.2: Reconstruction error as a function of numbenafges at different noise levels (standard
deviation of 0.001, 0.01 and 0.1). The other parameterscanrgtant, with 200 points and 20 neighbors.

sub-matrices oC;:

using the fact that a single matrBd can be multiplied to the obtaine€x; without changing the

optimality of the previous steps.

2.45 Results

To test the local algorithm introduced in this section agathe global Tomasi Kanade algorithm,
random points were generated using a multivariate Gauds#ibution normalized to have unit vari-
ance.

In the noiseless case the two methods produce the same @asidé from a global rotation and
translation, which are intrinsically ambiguous in the peoh. As the results in figures 2.2, 2.3 and
2.4 show, the local version results are only distinguishdldm the global version when the noise
level is high. At low noise levels, both algorithms producenparable results as long as a sufficient
number of neighbors are used. As the noise level increasesjumber of neighbors required for
reconstruction also increases.

In figures 2.2, 2.4 notice that at the highest noise levgl;{. = 0.1), the local version seems to

level off instead of tending asymptotically to zero. Thislige to the fact that noise has a much higher
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Reconstruction error as a function of number of points at various noise levels
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Figure 2.3: Reconstruction error as a function of numberoirfits at different noise levels (standard
deviation of 0.001, 0.01 and 0.1). The other parametersaargtant, with 20 images and 20 neighbors.

Reconstruction error as a function of number of neighbors at various noise levels
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Figure 2.4: Reconstruction error as a function of numberedgmbors at different noise levels (stan-
dard deviation of 0.001, 0.01 and 0.1). The other paramet®r£onstant, with 20 images and 200
points. Note that the global algorithm does not use neighldwnce it is constant and serves only for
comparison.
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impact when subtracting points close together than poantsavay (relative noise). As points are
randomly added according to a Gaussian distribution, meidioods become closer together which
increases relative noise.

In terms of complexity, the local method is more complex dadise in this problem is not justifi-
able. As the next chapters show, the local method can be assive a broader class of problems to

which the direct Tomasi-Kanade algorithm is not applicable

19



20



Chapter 3

The Surface Unfolding Problem
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Starting from several observations of the feature paiiftsthe problem described in this chapter
consists of finding the flat surface poirsthat generated them through equation (1.1), here repeated

for convenience
p; =C" <Ik (qz)) Vi, k.

The left side of the equation consists of observed imagdsoaiin thesurface unfolding problem
everything else is unknown aside from the assumption tleatéimeras are scale-orthographic as in
assumption 2.2 and the first order characterization of traédric embedding functions as in fact 2.3.

This leads to the problem statement
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Problem Statement 3.1 (Surface Unfolding Problem)Starting with set$?* ¢ R2 of image point ob-

servations known to have been generated by the model
k _ o~k (7k :
pf = C* (" (@) Wik (3.1)

recover the generating s@ C R? under the following conditions:
e C" represents the projection model of a scale-orthographimesa (see assumption 2.2).
e 7F : R?2 — R? are isometric embedding functions.

e All points have been previously matched and the correspmelbetween points in differeft*

is known (see assumption 2.1 and the discussion immedédtely.

Chapter 2 argued that instead of solving the generatingtiequdirectly, one should solve the

local version (2.3) instead, which is here repeated for eni@nce

vh = gbphghy, =) Vi, k. (3.2)

i =

wherew; € Tq,R?, u} € T,.S" and v} e T «R* are tangent vectors. The scale factefsand
the matricesP* are the Jacobian matrices of the scaled orthographic camedel (see assumption
2.2 and the discussion leading to equation (2.3)), aéidare the Jacobian matrices of the isometry

functionsZ* at each pointy; (see fact 2.3).

The first observation is that camera motion is itself an isoynbence any set of matric®” <
O(3) representing a rotation of the camera may be “absorbed”djstimetry parameters in equation
(3.2) as

vi= s P'RY (RI“)T IEw, ik

Pk
3

This is possible since the parametBYsandJ ¥ are not considered relevant for the solution of problem

3.1. Also the problem formulation does not provide enougtstraints to obtain a unique solution for

. 1 00
these. Thus the freR* can be used to fiP* = which, when multiplied, removes the
010

bottom row of the Jacobian matricds . The set of all matrices which are the topm®st 2 block

of a3 x 2 Stiefel matrix is named in this thesis to be theb-Stiefelset and denoted LS. These
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matrices are described in detail in appendix A, which willrbéered to when certain properties of
these matrices are needed. For now it is enough to know tivay treese matrices allows equation

(3.2) to be rewritten as

vi=s"OFw; Vi, k.

whereOf € SS. When the locally planar approximation 2.4 is used, thisagiqn can be written in

terms of differences of points as

pj, —pl ~s"Of (qj, —a;) V(i,j,k) € V. (3.3)

As long as all the points in the neighborhoodfare visible in all images the objects of the

equation can be collected into matrices

pl, -p! Py —p! ... Pk, —D 510!

2 2 2 2 2 2 202

Pi, —P; P35 —DP; ... Pk, —P; 520"

Vi= 12. ' 21. ' N“, ' M,; = g

Pl —pf pE-pf ... PN, P SKOK |
W= i, 4 92, 4 --- 4qn;; — 49

allowing it to be written as

Since V; are obtained from the observations, the solution to thistguo can be found by a factor-
ization algorithm similar to the local factorization algbm presented earlier. The full problem is
broken in much simpler subproblems, chained together @imlite final result as shown in table 3.1

and represented graphically in figure 3.1

The first step of the algorithm has already been describeetiion 2.4.1, the others will be treated

in the following sections.

Note that while in section 2.4.2, using local neighbors waseaty academic and for comparison

purposes, here it is a requirement since the Jacobian elficare changing from point to point.
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Surface Unfolding

Input: Matched point cloud$”*. Minimum number of image& where each point is ob-
served and the desired number of neighbWrir each point.
Output: The setQ of unfolded points, the camera scale factsfs(up to a global scale
factor) and the sub-Stiefel matric€»".
1: Discover local neighbors from the observed images, thdibissachi, build the index
set\; = {j}) as in the discussion below assumption 2.1;
2: Use bilinear factorization to factor equation (3.4);
3: Approximate the shape consistency constraints (i.e. tiateghe solution)W,; =
[Clli —q d2;, =49 --- 4N — Qi];
4: Approximate the model consistency constrai$ € SS and make sure that, together
with s*, they approximate the camera model.

Table 3.1: Surface unfolding algorithm.

\\J/

‘Nelghbour Estlmatlon

A l"N

M1W1 VN = 1\/INVVN

MM\

| Integrate the Solution |E§| Model Consistency|
\ GN/

Flnal Solution

Figure 3.1: Schematic diagram of the local factorizatiayoathm applied to isometric surfaces.
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3.1 Bilinear Factorization

Equation (3.4) states that the observatidvis must be rank 2, so the first step after neighborhood
discovery is to project these observation matrices to thk faset in a least-squares sense. This is
accomplished by performing an SVD ovi; and discarding all but the first 2 singular values and
vectors. The SVD provides candidates for matridds and W ;, but similarly to what happened in
section 2.4.2, the solution is not unique and there are cestfs; € GIL(2) that allow to navigate
inside the space of all solutions. The differences witheesfo what was discussed in section 2.4.2 are
that it is a rank 2 factorization instead of rank 3, and someioes change names (compare equation
(2.15) with equation (3.4)).

When occlusion is considered, mati; is only partially defined (has missing entries) so a rank
completion algorithm must be applied [5, 13]. Rank completalgorithms are usually hand in hand

with the factorization method already discussed so usihgrig is a trivial extension.

3.2 Integrating the Solution

The only difference with respect to what was said in sectign3is that, since the reconstruction is
planar,X belongs toO(2,3V) and the solution must be orthogonal to the veetor [1]\, ()QN}.
Everything else applies verbatim.

After this step is complete, matric@d ; and W ; should be multiplied by the obtaine@ ; matri-

Ces as:

Mi — Mzé;l

Wi — szz

3.3 Forcing the Sub-Stiefel Constraints

This is the main difference from what was presented in seid. Previously the camera model
matrices should approximate the Stiefel matrices as clog®ssible, here th®I; must approximate
scaled sub-Stiefel matrices, as hinted in the discussido aguation (3.4).

To force the sub-Stiefel constraints, there is still a glddac GIL(2) free matrix that navigates
the space of solutions while still maintaining the previgumposed conditions. This matrix, along

with the merged scale factos in M, will be used to “straighten the axes”.

25



3.3.1 Distance Functions

Before continuing with the actual problem details a sligdesack is needed. Anticipating the final

result, the end result of section 3.3 shall consist of somieo$@ost function grossly of the form

minimize ¥, , d2; (M H/s*) (3.5)
s.t. HeGL(2)
sf e RT

This is not the actual cost function that will be used, jusbarse idea that is easily grasped at this
point. Basically, the problem is to search foHac GIL(2) matrix and per image scale factefsthat
forces the matrice® ¥ = l\A/IfH/s’g to minimize some sort of distance to the Sub-Stiefel maeix s

In the appendix it is proven that the set of sub-Stiefel roatris equal to the set 8fx 2 matrices
whose largest singular value is 1 (see theorem A.5). This Hiirat the distance functiofys(-) should
depend on the maximum singular value of its argument, burdttan this and the fact that it should
somehow measure a distance to the sub-Stiefel set, theveneturally given choice of function. This
section’s objective is to give a convincing argument thatefs one particular good choice.

Let’s consider a grossly different function, with given lscavaluesm,; € R instead of matrices
and using an additive perturbation instead of multipli@tiThe objective is to center a point cloud

{m;}Y ¢ R around a given value:

minimize Y, (m; + h — a)?

st. helR

It is clear that for this cost function the solution/is = —E[m;] + a whereE denotes the mean value
overs function. This solution has the additional property tRatn; + h*] = a thus confirming that in
a certain sense, the translated cloud is indeed centeraddd@s intended.

Consider now a different problem with all; > 0 affected by a multiplicative perturbation. While

the previous distance function wégz, b) = |a — b|, now a new one is uset{a, b) = |log(a/b)|:

minimize 3, log? (m—h) (3.6)
st. heRT

The solution to this problem is also simple once one realizasit can be converted to the previous

problem by changing all variables with theéixg. Again, the solution will have the same “center-
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ing” property, only now in a multiplicative sense due to thg change of variabledE [log(m;h*)] =
log(a). Removing théog, this means that is the geometric mean of;»* (i.e. a= Hi]il(mih*)l/N).
Since no natural choice of distance function exists to uggrablem (3.5), the best that can be
done to narrow the choice is impose desired properties éosatution. A natural one is this centering
property just discussed. With this in mind and the charazton of the Sub-Stiefel matrix set given

in theorem A.5, the following optimization problem is prgeal:

minimize Y, ; log® (omax (M} H/s%)) (3.7)
st. HeGL(2)
sF e RT

whereomax () returns the maximum singular value. The cost function ismssly the same as the
previous one, using matrices instead, and it measures $itende of the maximum singular value
of the argument ta = 1. In appendix B it is proven that the solutid and s* verify the condi-
tion ]_[Z.]\L1 omax(M¥ H/3%)1/N = 1. No equivalent property would exist if the usual squaredmor
distance function(omax(S; H*),1) = |omax(S; H*) — 1| were used. Although not canonically
chosen, the centering property makes this cost functiorcer miandidate over the absolute value of
the difference.

The details on how to solve the optimization problem in eiguad3.7) are left to appendix B. The

main points that should be considered are:

e The optimization problem reduces itself to a compact 2 dsiwral optimization problem,

which makes it particularly easy to find a local minimum.

e Unfortunately it sometimes exhibits multiple local minims, but these are so close together

that the particular choice is irrelevant in practice.

e It is not smooth everywhere, but the minimum solution doesusoally fall on a non-smooth

point so it does not hurt gradient based algorithms.

After finding a solution to this problem, the outpt changes the previously found values as

M, + M;H
W, H W,

q +— H'q
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and the approximate sub-Stiefel matrices are
~ k ~k
0, =M, /s".

Of these,Q = {qi}{v are the solution to problem 3.1 posed at the beginning ofctigpter.

3.4 Improving the Solution

It is hard to characterize the obtained solution in termspineality. Although bilinear factorization
obtains the optimal rank 2 factorization &f; in a least squares sense, i.e it solves the optimization
problem
minimize |V, — M; W5 ,
st. M, € M2Eix2

WZ' c M2><Ni

all other steps approximate the needed constraints wiilllenstintaining this condition. This leads
to the question “what objective function should be optirdiZe The original problem statement an-
swers this question with equation (3.1) which when certadasarement noise properties are assumed,

suggests the following problem:

minimize 37 1)y pF — s TF (q;) (3.8)
2
st. sfeRT

7" isometry

qQ; €R Vi

This problem is very hard to solve due to the second consigipreviously discussed. A similar, but

not equivalent, problem can be written based on equati@®) i{3stead:

2
(3.9)

minimize 3, . 4y H (pf - pf) —s*OF (q;, — a;)
st. s"eRY Wk

2

OkFess Vik

q;, €ER Vi
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This problem is also hard to solve without a good initial apomate solution due to non-convexity
and high dimensionality, but can effectively be used to immprthe solution previously obtained with
the algorithm described in table 3.1. Here the word “imptasédnighly dependent on the assumption
that this cost function is better than the solution given lhy previous algorithm. The only argu-
ment that will be given in this thesis preferring the outpfibone over the other is the quality of the
obtained results when compared with ground truth data.eEitray, one must always compute the
initial solution using the previous algorithm since theldemn in equation (3.9) is only solvable if an
initialization is provided.

There are many optimization algorithms that can be usedcadljooptimize equation (3.9) given
an initial starting point. The hardest condition is the Silefel condition, but it is relatively easy to
overcome by either decomposir@” with an SVD decomposition and using the maximum singular
value characterization, or by decomposing it using thelresuheorem A.9. Here a different route
will be taken using coordinate descent, due to the intergstide-problem that it generates which
might be applicable in other contexts. The idea is that iftmgéable sets{s’f}f, Qand{O¥: Vi, k}
are considered separately, the solution to the problem uiatean (3.9) is globally solvable. In the
variable set{s’“}f the problem reduces itself to a least squares problem (i$itireobtained is ever
negative, let the variable® ¥ absorve it). The same is true for the variable{s;gt}ff . Unfortunately,
in the variable se{ 0% : Vi, k} the problem is a little harder, but it has been successfallyes
(see appendix C). The solution is closed form up to a deperden the factorization of a degree 6
polynomial.

At the end of section 3.3 a candidate solution to the surfaéelding problem was obtained. This
solution does not force the sub-Stiefel constraint, butelaapproximates it. Since these variables are
the only ones that do not obey the constraint set of the pmoloheequation (3.9), this is the obvious

starting point. An iterative algorithm is given in table 3.2

3.5 Results

Four different datasets were tested in this section, thoesisting of real world data for visual evalu-
ation of the results and another consisting of synthetia déditere ground truth is available.

Since scale orthographic cameras are used, the resulteaibte only known up to a translation,
rotation and scale factor, thus this must be quotiented btheonumeric comparison function. To

that effect all numeric error measures of the reconstrupt@dts © are computed by solving the
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Coordinate Descent for Improving Surface Unfolding Solutbn

Input: Observationg”* and initial estimates fo{s’“}llK and Q.
Output: Improves the value of the cost function in equation (3.9) wjaling better can-
didates for{s’f}f, Q,and{OF : Vi, k}.
1: Solve equation (3.9) only for the sub-Stiefel matrices.sTikia sub-Stiefel Procrustes
problem that can be solved as described in appendix C.
2: Solve forQ. This is a least squares problem.
3: Solve for{s’“}f. This is a least squares problem. If asfyis negative, change the sign
so it becomes positive and commute the sigf 6fF : Vi }.
4: Repeat all until some stopping condition is met (e.g. the ftoxction improvement is
less than a certain amount).

Table 3.2: Coordinate Descent for Improving Surface UnfgdSolution.

optimization problem

E5(Q) = minimize  |[sRQ(Iy — 151}/N) — QHQ

s.t. R eS0O(3)

selR

whereQ is a zero mean and unit variance point cloud that represeatsd truth. The matrice€
and Q are any ordering of the point cloudd and O where each point is represented by a column.
The optimization variabl® removes the rotational ambiguity while the scale fastdogether with
the unit variance of the ground truth information, remowe $hale ambiguity. Translation invariance
is guaranteed by the zero mean property of the point cl@uahd the mean removal projectbt; —
1x1% /N applied to the points to be compared. Heékeis the N x N identity matrix andl y is the

N dimensional column vector filled with ones.

The first dataset consists of a grid20fx 20 points wrapped in random configuration around shapes
such as a cylinder, a sinusoidal surface and, as is tradiljoknown, a swiss roll (see figure 3.2 for
a sample). The original grid is assumed to ocuppy one squatrevhere each side of the grid is one
unit. The resulting 3D clouds of points are orthographicaliojected on a random plane, Gaussian
noise with a given variance is added to these projectionsfiantly the whole image is scaled by a
random scale factor, obeying the scale orthographic camedel. The images are generated before
each experiment, meaning that each has different orientatind bend directions as well as noise and

missing points (where applicable).
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(a) half cylinder (b) sine wave (c) swiss roll

Figure 3.2: Input data wrapped around different shapesh Egathetic set contains a varying number
of images similar to the ones shown. On top a 3D image is showiohws then projected on a plane,
Gaussian noise is added and a scale factor is applied toajertbe images on the bottom.

Figure 3.3: Real world data acquired with a low-resolutiosbaam. The dataset consists of 7 images
of which 3 are shown.

The second and third datasets consist of images taken okextteecpaper. In the first case, 7
images were obtained using a laptop webcam at differerdirdiss. The corner features were then
identified and fed to the algorithm. This dataset does natadomcclusions of the points. Figure 3.3
shows 3 of the images used. In figure 3.4 another 3 images anegdf a different dataset consisting

of 17 images of a higher sampled grid at a higher resolution.

A third real world dataset consists of 12 images of a bed ctalem at various angles and differ-
ently folded as seen in figure 3.5. Here, 118 different pawese hand clicked in each image (when
visible) and the algorithm was run on them. This data setigeswreal world data with a non-constant
distribution where in some areas the sampling is not vergeléor the amount of bending. There is

also no hard guarantee that the embeddings truly obey theetsic properties since cloth is easily
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Figure 3.4: Real world data acquired with a consumer 10 nmigglpamera. The dataset consists of
17 images of which 3 are shown.

Figure 3.5: A bedcover made of cloth acquired with a consusnerega pixel camera. The dataset
consists of 12 images, of which 3 are shown.

sheared.

Although the synthetic data set is used primarily to provjdantitative results, this section starts
by showing the algorithm in action. First a set of 18 imagemdgure 3.2 were generated, with a
significant amount of Gaussian noise added (standard @mviatjual to half the inter-grid distance)
but no missing data. These images were then fed to the dlgoitittwo batches: one where only 6 im-
ages were used, the other using all 18 images. Figure 3$tpietesults for visual interpretation. As
expected, an increase in the number of images helps redeie@tbunt of noise in the reconstruction.

The visual validation is useful to provide confidence in tesults, but the synthetic data is much
more useful to provide quantitative expected results. \ttiihin mind, several experiments were run
on the synthetic dataset with different parameters: nasmnce, number of images and percentage
of missing data. Each experiment was run 10 times and theamexfithe result was taken when
plotting the results shown in figure 3.7. In the figures it &aclthat there are two sources of errors: the
Gaussian noise of each feature point and the non-planaoxpmtion. For noise levels,,,;sc = 0
ando,.ise = 0.001 (remember that each side of the unfolded surface is comslderbe 1 unit) there
is no difference in performance, a hint that the non-plap@r@ximation is limiting the performance

of the algorithm. Only when noise levels become of the ordgts. = 0.01 do the results start to
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Figure 3.6: Result of running the algorithm on the synthééitaset with 6 and 18 images (red crosses).
Ground truth is provided in blue circles for comparison.
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Figure 3.7: Results of applying the algorithm with differ@arameters. On the left is shown the result
before applying the coordinate cycling algorithm (just kbeal algorithm), and on the right is shown
the results after applying the coordinate cycling algonith

deteriorate due to noise, hence becoming the major limiteeidormance. In either case, adding more
images is a way of improving the results. Also notice thatypg the coordinate cycling algorithm
improves the solution by about a factor of 10.

Note that the previous discussion refers to datasets whesveémages are used before each exper-
iment. This means that the projection plane used in eachanganerating more or less degenerate
data, and the position of the missing data points is chosgependently in each experiment. An-
other useful comparison is when a single dataset is geweeate several parameters are changed
in this dataset. Figure 3.8 shows this case. A single datdsEd images is generated and before
each experiment noise is added and random points are remasdte results show, Gaussian noise
does not affect performance as much as missing data. Thiésraso show that0% missing data

(unless pathological cases are considered where the dgeaetates) does not impact performance
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Figure 3.8: Logarithmic mean squared error as a function afigSian noise with a given standard
deviation and missing data percentage. Each test is peztbmith 10 synthetic images and 10 neigh-
bors. The results shown represent the median of 5 expemetiere noise and missing data are
chosen randomly before each experiment.

J; I |-!- -‘ x
(a) Sample acquired image. (b) Results obtained.

Figure 3.9: Results of applying the algorithm to 7 cameraiaied images.

significantly, but afte20% performance begins to drop rapidly.

The results obtained when applying the algorithm to the feat world example are shown in
figure 3.9. Note that globally the reconstruction appeaisaie a slight pinch in the middle. This is
caused by the features not being dense enough for the anfalistastion introduced and the number
of images being too low. When the sampling density is in@daas well as the number of images,
better results are obtained as shown in figure 3.10.

The final dataset, consisting of images of a bed cover, peswadnore realistic real world example.
The qualitative results are shown in figure 3.11. The resu#isnostly correct, except for a slight skew
that exists in “almost isolated islands” such as the one emigjint middle consisting of 5 points. These

features are neighbors of each other and are linked to thefrée features by only a few neighboring
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(b) Results obtained.

(a) Sample acquired image.

the algorithm to 17 camerpuited images.

ing

Results of apply

Figure 3.10

connections. This allows for offsets to occur, even thougially the reconstruction is correct.
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Figure 3.11: Reconstruction of the bed cover cloth overtaidin image taken of the cloth laying flat.
Blue crosses are the reference clicked points, red circke¢ha results given by the algorithm, both
are overlaid on a picture taken of the flatbed cover (not irdttaset).
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Chapter 4

The Pose Estimation Problem

Contents
4.1 ColdStart . . . . . . e 14
4.2 ResUltS . . . . . e 24

The pose estimationproblem proposes to recover the actual 3D poiftsc R* C S*. lItis
assumed that besides the observatighthe surface pointg; are also available. The proper problem

statement is

Problem Statement 4.1 (Pose Estimation Problem}tarting with set$* ¢ R? of image point obser-

vations andQ c R? known to have been generated by the model

k_ 7k (g
pl =CFk (Ik (q@-)) = ;; i zk(gi> Vi, k (4.1)

recover the 3D embedded poinfs € R* ¢ S* C R? under the following conditions:
e C* represents the projection model of a scale-orthographimeea (see assumption 2.2).
e 7F : R? — R? are isometric embedding functions.

e All points have been previously matched and the correspw®lbetween points in differeft*

and Q is known (see assumption 2.1 and the discussion immedaédtely.

e r ¢ R¥ are represented in the corresponding camera frame.

Since they; are now known, the problem decouples and each image cardbediseparately. The

last condition in the problem statement specifies the coatdiframe where the point§ € R* in
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equation (4.1) are represented. Since scale orthographieras are assumed, the camera model is

thus

1 00
pf = s ry. (4.2)
010

On the other hand, writing equation (4.1) locally in termsvettors as suggested in chapter 2
yields that
uf = Jkw;. (4.3)

7

whereui € T,sR" andw; € Tq,R*. Fact 2.3 guarantees that is Stiefel. Remembering that
in chapter 3 the sub-Stiefel matricé:t;i-‘C were defined as the multiplication of the camera projection
matrix and this Jacobian, results in this case that theyraefa&ct the top-mos2 x 2 entries of matrix
Jk

JF= 0 :

7
* 3k

where the starg are placeholders for unknown entries.

If this problem is considered after solving the surface ldifig problem as described in chapter 3
matricesO ¥ and the scalars® are known. If not, a way of obtaining these solely frpliﬁandql- will

be presented in section 4.1. In either case, consider tbse¢ thalues are known.

From the Stiefel set conditio(an)T J% = I, the missing entries can be found up to a sign
ambiguity:
o]

b= . (4.4)

KA
iof

these entries, representedoéscan be chosen uniquely if one admits that the first non-zeny erust

be positive, but what follows does not depend on what chaiceade.

Going back to equation (4.3), and once again approximatiag/éctorsu® by the differences of
points

i —rf~ Jf (g —qi), (4.5)

a new equation is obtained which, together with equatio)(4lefines a system of equations that
should be satisfied. Unfortunately, the Jacobian mattdeare not completely known and an integral

constraint appears (the unknown sign in equation (4.4)).
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If the coordinates of‘f are written explicitly as

)
4
the complete system of equations becomes
s =p;, V(i,jk) eV (4.6)
yr
| | O (i @) V(g k) €V (4.7)
Yj; 1Y |
o — 2~ afol (qj, — @) (i, j.k) €V 4.9)
(af)? =1 Vik (4.9)

wherea! are the unknown sign of?.

The first thing to notice when solving this system of equatimnthat the first two equations with
variablesz? andy are completely independent of the last two equations iralsbes2* anda’, hence
they can be solved separately. The first system is an ovetraored system of linear equations which
can be solved in closed form as a least squares problem. Siadepmost equation depends only
on the image points, while the second depends only on thelagenpoints, it's easy to include prior
information when solving the system. For example if the titepis known to be error free and the
sampling is dense, it makes sense to give the second equadienimportance than the first. These

probabilistic approaches are beyond the scope of thissthesi

Unfortunately, the second system is not so simple due to tlaelratic equations. The strategy

taken to get an approximate solution is to relax the system as

Z =2 ~ajof (a5, —ai) V(i,j,k) €V (4.10)
[T@)?=1 (4.11)

It might not be immediately clear why this system is easiesdlve than the original one, until one
realizes that the linear equation’s solution is given upctdes Taking this into account, one can first

find a solution that satisfies the linear equation, and thale sbe result to satisfy the second equation.
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Collecting all the variables of equation (4.10) into a vecto

T
= |,k k k k k k
X —[21 Zy ... Z, a7 Qg ... a] )

T
(1’“ ) x"~0 V(i j k) €V, (4.12)

wherel f] is a constant vector, which describes the linear equation.
Collecting the constraints to all visible pairs of pointsimnage k£ into a matrix, the following
system is obtained

L*x* ~ 0, (4.13)

This system has a zero singular value associated with tgalsinvector collinear Witl{hxn olxn} :
which is a non-interesting trivial solution due to the fawttan orthographic camera is insensitive to
depth. The second singular value whose corresponding laingector is the solution up to a scale
factor.

The solution vector should have the entries corresponalimgeta;€ all of equal magnitude, but in
the presence of noise this will not occur and the varianchesd will provide a hint as to the quality

of the data. From an optimization perspective this is thatsni to the singular value problem

minimize (x*)7(L*)T L*x*

s.t. (xMTxb =1

k
|:]-1><n len]x =0

Since the solution was given up to a scale factor, equatidri4an now be used to fix the scale.

Applying the logarithm to both sides of the equation alloassthe scale factot” to be found:

H ((ck)z(df)Q) =1<= Nlog (‘ckD + Zlog(‘&f‘) =0 (4.14)

i

K
a;

= log(‘ck‘) = —Zlog (

) /N (4.15)

and ¢* is used to scale the whole solution vectdr. The fact that orthographic cameras cannot
distinguish depth is present here once again in the factcthaan only be computed up to a sign.

Unfortunately, in the presence of noise this process carebeil-conditioned. Instead, the previous
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step will only be used to infer the sign cz{f which will be forced to be either 1 or -1. After these have
been found, equation (4.10) is solved again where onlythe R are unknowns, resulting in a linear

system of equations.

4.1 Cold Start

The method shown hinges on knowisfyand O ¥ in advance. If this method is to be run after the
solution for the surface unfolding problem is obtained ascdbed in chapter 3, these values are
already available. If not, they need to be pre-computed timerknowledge of set® andP* only. To

do so, the already discussed equation 3.3, here repeatedriagnience,
ph —pf ~ s Of (a5, —a) V(5. k) €V, (4.16)

fits into this discussion perfectly. Collecting all the ridigring points together, the previous may be

written as

k
Vz‘:{p%i—p% Py, — P, - p}vii—pﬂ Mi=[s’90ﬂ
Wi:[qli—(h' A2, — i - qui—qi]

The easiest way to solve this system is to first relax the oegtd* to be inM?*2 and solving

.k . : : :
the least squares problems to obtaih, and obtain estimates faF using the relaxations

[T (cmes(N) /") =1

i

which is solved by applying logarithms to both sides of theatipn. Once initial estimates fof are

available, the optimization problem

2

minimize 37 ey H <p§€ - pf) —s*OF (q;, — a;)
st.  sFeRT

2

OFess

is solved by coordinate cycling (or a gradient descent nibtioa similar way to what was done in
section 3.4. Here this problem is simplified sirgere already known. Solving faf is a simple least

squares problem, while solving f@ ¥ is the sub-Stiefel Procrustes problem described in apgendi
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C. If during the coordinate cycling any of th& becomes negative, the sign can be absorbed by the

sub-Stiefel matrices.

4.2 Results

The results shown here use the same synthetic dataset aébe@s$c section 3.5. The results obtained
can be interpreted with mixed conclusions. The main protdéems from the fact that the sign
cannot be uniquely estimated with a scale orthographic amedel. Figure 4.1 shows a reconstruc-
tion where all the signs (up to a global sign change) wereectyr obtained. The reconstructed 3D
cloud is visually similar to the 3D cloud that generated timage used. Unfortunately, in the same
dataset (exactly the same conditions), some of the poinidslevere not correctly reconstructed as
shown in figure 4.2. Note that in this example, the retroguotgd image of the reconstructed point
cloud is correct (compare the two bottom images), so thel@nolis due to the solution not being
unigue.

In the case of reconstructions with a high noise level theesprablem occurs but the results can
be catastrophic. Figure 4.3 presents some results wherdgbgthm was able to recover the pose,
while figure 4.4 presents some of the bad reconstructions.

Figures 4.5 and 4.6 show the results of applying this algarito high resolution real world images
described in section 3.5. The quality of the reconstructibauld not go unnoticed when compared
with the previous synthetic images and it is due to the faat tbal world noise, under perfect condi-

tions, is nowhere as large as the noise applied to the synthatmples.
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Figure 4.1: Applying the pose estimation algorithm to angmaf a set of 30 where there &16%
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bottom right image is seen from the same angle as the inpyarslaown on the bottom left.
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Figure 4.3: Four different reconstructions of a dataset @@ images and a high noise leve){;sc =
0.01). On the left two half cylinder reconstructions, on the taght a sine wave and on the bottom
right a swiss roll.
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Chapter 5

Isometry Estimation Problem
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The last two chapters have built themselves around a locglepty of the isometric embedding
functionsZ (using fact 2.3). This property has allowed for surface ldifg and pose estimation
to be performed with decent results. This chapter intendgota step further by asking and fully
answering the questions “can further properties of isoyrfetnctions be used and can these functions
be somehow parameterized?”, providing a constructive Wayuitding developable surfaces as the

image of isometry functions.

49



5.1 Torsal Ruled Surfaces

A Ruled surfaceis defined as the image of a gt R? (assume it's convex to simplify the discussion)
through a function

r:C =R r(t,v) =c(t) + vd(t)

wherec: T C R — R3 andd : T — R3 — {0} and T is the projection of’ on the first coordinate.

The line (segments) defined as the image of the function
ly(v) = c(t) + vd(t)

are called theulings of the surface.

When talking about surfaces i&* one usually refers to embedded surfaces. Unfortunately: gua
anteeing injectivity is not trivial and so in this sectionyan immersion is guaranteed which is a local
property. In the previous context it is easy to impose byirsgathat¢ + vd andd must be linearly
independent in the image 6f Although not stated previously it is implied in the prevéosentence
that the functions: andd have to be smooth. Without loss of generaliyt) can be forced to be
unit normed (with an appropriate change of the@etat which point it is called théirectrix of the
surface.

The parameterization defines a surface which is locally &dmto a plane when, d andd are
everywhere linearly dependent (see the discussion afgopition 4 in chapter 5 of [39] or equation

9 in section 3.5 of [7]). In this case it is called@sal ruled surface.

Fact 5.1 (Torsal Ruled Surface) Denote the union oR with plus and minus infinity a&. Starting
from a set7 ¢ R and two functionsy : 7 — R and 3 : T — R such thata(t) < A(t), define a set
C=A{(t,v):teT,vela(t), ()]}

Atorsal ruled surfaceis defined as the image the gethrough the function
r:C—R3:r(t,v) = ct) + vd(t)

wherec: T C R — R?®andd : T € R — S(2) C R? such that for everyt,v) € C

e [immersion condition}: + vd andd are linearly independent.

e [torsal ruled surface condition}, d andd are linearly dependent.
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Figure 5.1: A developable surface which is not a global isoynef a planar subset. If the two cut

disks are glued together along the bold edge, the resultifgce (on the right) cannot be flattened
onto a plane without overlap.

~I|llll|||l||llllllllllll

Figure 5.2: This plane isometry is a triangular sheet of papimse vertices have been smoothly bent.

Each of the 3 bent parts must necessarily be torsal ruledcasf(the rulings have been drawn), but
the whole surface is not torsal ruled.

5.2 The Relation Between Isometries of planes, Torsal RuleSurfaces
and Developable Surfaces

Developable surfacess the classic name given to surfaces which have everywleeoeGaussian cur-
vature. Another way of stating this definition is saying tiiegty are locally the image of an open subset
of a plane by an isometry. The set of developable surfacesged than the set gdflane isometries
since the firstis a local property while the later is globakléssical example of a developable surface
which is not an isometry of the plane is a cylinder. The cyinbas everywhere zero curvature, but
it is not the image of an open subset of a plane by an isométfsil§ at the topological level). If a
single straight line is removed from the cylinder then itdrees an isometry of a plane. Another way
in which a developable surface might not be an isometry ohaels if the embedded surface is large
enough that the unfolding process forces overlapping fgexample in figure 5.1).
Another subclass of developable surfaces are the alreadtianedtorsal ruled surfaceswhich
are not equivalent to planar isometries. The example shovigure 5.1 is a torsal ruled surface which

is not a planar isometry, and figure 5.2 illustrates a plas@mnetry which is not torsal.
Figure 5.3 represents the mentioned classes graphicéliy.téxt is interested in plane isometries
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Developable
Torsal
Ruled

Figure 5.3: The three classes of zero curvature surfaceianed in the text.

Plane
Isometry

but unfortunately no direct way of using them is known. On t¢hieer hand, torsal ruled surfaces
are easy to work with, but the overlap with plane isometrgendt perfect. Looking at the counter
example in figure 5.2 one notices that although the wholeasarfs not torsal ruled, it is the union
of 3 torsal ruled surfaces and a planar set (the 3 cornerstipduplanar triangle at the center). This
loose statement constitutes the basis of what's known a&kassification” of developable surfaces.
See chapter 5 of [39] for a detailed exposition. The mainltésuhat smooth developable surfaces
can be generated as unions, along a common straight lineesggofi torsal ruled surfaces and planar
sets. Although planar sets can be parameterized as a tafsdlsurface, since the rulings are not
canonically defined on the surface they are treated separate

The rest of this chapter considers that the plane isome#igdsa torsal ruled surface that contains
no planar sections on the embedded surface. To deal withrajenefaces is considered to be future

work.

5.2.1 Redundancy of the Torsal Ruled Surface Description

The description of torsal ruled surfaces provided in fattis far from unique. In fact, two different
means of changing the parametéfs «, 5, ¢, d) which define the surface can be readily identified by
re-parameterizing the variablés v).

If the curvec is changed to any other curve that intersects the same raiegch parameter(see
figure 5.4), a new parameterization for the surface is obthiriven a functiory : C — R, this can
be expressed as

7(t,v) = c(t) + (v + f(2)d(t) = e(t) + f(t)d(t) +vd(t).
é(t)

The under-brace makes it clear that a new parameterizatiothé same surface is obtained, as long
as the functionsy and3 are changed a& = o — f and3 = 8 — f, thus inducing a new sét Note
that the directrixd and the sef are left unchanged. One still has to make sure that the iniomeasd
the torsal ruled surface properties hold for the new pararzetion.

To check the immersion condition, one needs to make surg'thatd = ¢ + fd + fd + vd is
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SC R3

Figure 5.4: Redundancy of the curweThe curvec is can also be used to define the same torsal ruled
surface.

linearly independent of onC. This is true becausé+ (f + v)d is linearly independent af on the
setC (this is exactly the condition on the original parameteitrg, and adding/d does not change
the interdependent property.

To check the torsal ruled surface condition, one simply sitat if¢, d, andd are linearly depen-
dent, ther: + fd + fd, d, andd are also linearly dependent since only scaling and depéneetor
additions are performed.

One way to reduce the description is to ensure that one cayslfind a¢ such that<é, d> =0,
meaning that the curveintersects each ruling orthogonally whenewet 0, and add this condition
to fact 5.1. To do so, arf must be found that obeyécw- fd+ fd, d> = 0. Using the fact that
d(t) € S(2), one knows thatd,d) = 1 and <d, d> = 0, hence the stated condition reads simply
f = —(¢,d). So, given an initial condition, this differential equatican be integrated to produce
an f that obeys the condition. The resulting cué/es not unique since any constant can be used as
an initial condition tof. Here, changing this initial condition will be called “trslating along the
rulings”.

A consequence of imposing this condition is that it allows ithmersion and torsal ruled surface
conditions to be relaxed. The second condition states tigtalways possible to find, b, ¢ € R not
all zero, such that¢ + bd + ¢d = 0. By taking inner product witll one finds thab = 0 necessarily.
Thus the condition can be relaxeddo+ cd = 0, i.e. ¢ andd linearly dependent. Sino<ed, d> =0
and(¢, d) = 0, the only way for the immersion condition to fail isdf+ vd = 0. Thus, the immersion
condition can assume this simpler form.

The other way to change the parameterization, without dhgrifpe resulting surface is to con-
sider a re-parameterizatiaf of the parametet: #(t,v) = r(¢(t),v), changing7T = ¢~ 1(T). The
immersion condition states thatp(t))b(t) + vd(p(t))¢(t) must be everywhere linearly independent
of d(¢(t)) thus forcinge(t) # 0. This means thap must be a strictly increasing or a strictly decreas-

ing function. The torsal ruled surface condition is alsas$igd since only a nonzero rescaling of the
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vectors occurs.

The immersion condition excludésindd from being simultaneously 0. Hence, a way of reducing
the parameterization space, is to consider these two gettidrave unit joint norm, by this meaning
that the 6 dimensional vector obtained by concatenatiny tettors has unit norm. This wayda
can be fixed up to a sign. If this condition is imposed, the @alparameterizationg which are still

allowed will be¢(t) = +t + k, wherek is any constant.

To summarize what has been said, given a torsal ruled suitfoeed by 5.1, it is always possible

to find a representatiof/ , «, 3, ¢, d) such that:

Fact 5.2 (Normalized Torsal Ruled Surface)Denote the union dR with plus and minus infinity ag.
Starting from a sef” C R and two functionsy : 7 — R and 3 : T — R such thain(t) < §(t), define
asetC = {(t,v) : t € T,v €la(t), B(¢)[}-

A normalized torsal ruled surfaceis defined as the image of the gethrough the function
r:C— R3:r(t,v) = c(t) + vd(t)

wherec: T C R — R3andd : T C R — S(2) C R3 such that for everyt,v) € C
e [orthogonality condition](¢, d) = 0.
e [immersion conditionk: + vd # 0.
e [torsal ruled surface condition}: andd are linearly dependent.

e [normalizing condition](¢, ¢ + <d, d> =1

As discussed, the representation is still not unique sirmeskations along the rulings with a
constant functiory is still allowed. Suppose thatandd are the functions parameterizing the surface
and consider a new parameterizatior- ¢ + fd andd = d, implying thaté — ¢ + fd andd = d.

If the original vectors were normalized, these vectors mall. A new re-parameterization must be
chosen to satisfy the normalizing condition. After thaty ather¢ of the form¢(t) = £+t + k, for any
constantt can be used to generate a new normalized ruled surface garaaton without changing

the surface itself.
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5.2.2 Differential model

Instead of considering the curvesindd as the surface generating primitives, this section attemapt
more compact notation by using their derivatives as therg¢ing functions. The torsal ruled surface
condition implies that there must exist a vector function7 — S(2) and functionsy : 7 — R and

6 : T — R such that: = vs andd = ds. The normality condition imposes that there exists a famcti

z: T — R such thaty(t) = cos(z(t)) andd(t) = sin(z(t)).

The vector functiorns is orthogonal tal which can be seen both from the orthogonality condition
and the fact thad is a curve on a sphere which impliéd, d> = 0. Using boths andd as the first two
columns of a rotation matrix functiosi : 7 — SO(3) the third column can be uniquely completed as
a unit normal to the surface. This way— cos(z).Je; andd = Jes. Differentiating the last equality,

results in:

0 zy(t)  ya(t)
dit)=Jt)es=J{) | —z;(t) 0  ay(t)|e2=Jt)(zs(t)er —zs(t)es)
—ys(t) —xy() 0

where the functions:;, vy, 25 : 7 — R define the anti-symmetric matrix of the tangent vector to a

curve defined 050(3).

The torsal ruled surface condition implies that(z)x; = 0. Next it will be proven that:; = 0
even wherros(z) = 0. To do so, consider a torsal surface parameterized by théumationsc and
d, such that = 0 = cos(z) = 0. Since one is free to translate across the rulings, thesgidms can
be a translation by a non-zero constgralong the rulings of the functionsandd, i.e. ¢ = ¢ + fd
andd = d disregarding the normalizing re-parameterization whinly affects the derivatives as a
scale factor. For this parameterization of the surfaeecos(z).J (t)e; = —fj where the last equality
stems from the fact that= 0. The torsal ruled condition implies that— J(t)(zs(t)er — z5(t)es)
but as seen it can only linearly dependenhencer ; = 0. Sinceci — d, this condition propagates to

the originald.

The fact that = sin(z) forcesz; = sin(z). Hence, the model so far is

55



Fact 5.3 (Normalized Torsal Ruled Surface - Differential Malel) Denote the union oR with plus
and minus infinity aR. Starting from a sef” ¢ R and two functionsr : 7 — R and 3 : 7 — R such
thata(t) < B(t), define asef = {(t,v) : t € T, v €]a(t), B(t)[}.

The differential model of a normalized torsal ruled surface is defined as the septuple

(T,a, B, 2,y,J0,co) as the image of se&t through the function
r:C— R3:r(t,v) = c(t) + vd(t)
wherec : T € R — R3 is the function obtained by integrating
¢ =cos(z) Jer, ¢(0) = cy,

J : T C R — SO(3) is obtained from the integration of

0 sin(z) vy
J=J —sin(z) 0 , J(0)=Jg
—y 0 0

andd: T C R — S(2) C R? is defined asl = Je.

Additionally, for everyt € T the value— Zf’rfgjgg)) does not belong to the intervhl(t), 3(t)| (new

immersion condition).

Note that almost all of the previous conditions are now igifi¥i satisfied, apart from the immer-
sion condition which still needs to be stated. The two ihi@nditionscy andJ, define an origin and
an orientation on the surface.

Up to now, it's not clear why this is a better description thia@ previous one but the next section

provides the answer.

5.3 Isometries

Starting from a functiorr : 7 — R, and using the initial conditio', € SO(2) integrate the function
T:T —S0O(2) as

0 sin(z)
—sin(z) 0

T=T

], 7(0) = T,.
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Definea : 7 — R? using the initial conditiora, € R? and integrate the differential equation
a = cos(z)Te;, a(0)=ag.

Define the functiorb : 7 — S(1) asb = Jes. This way, the functions andb are defined in a similar
way as the functions andd in the previous section. Now it will be shown that if the fupat z is the

same as the functionused in the previous section, a trivial way of defining isamestis obtained.

Consider the function : C — R? analogous ta, defined ag(t,v) = a(t) + vb(t) and pullback
the metric ofR? to C so as to make a (local) isometry betweefandR?. To do so, consider any two

tangent vectors, w € T, ,,C and define an inner product as

7 | (cos(z) + vsin(z))? 0
<V7W>C = <q*V7Q*W>R2 =V w
0 1
where the last equation implies the use of orthonormal éoatels oriR?. Consider now another copy
of C (call it €) and pullback the metric of the surface c R? so thatr is a (local) isometry. The
vectors are now,w € ’]I‘(M)(f
- | (cos(z) + vsin(z))* 0
<V7w>(f = <T*V7T*W>R3 =V w
0 1
Since the metric structure of both copiesagree when the same functieris used, the function
id : C — C that maps points identically, is an isometry. See figure 6rfrepresentation. Note that
this map only guarantees a local isometry since as discymss®@usly, not all torsal ruled surfaces
admit a global isometry. Since the discussion is not dep&nate the choice of initial conditionag

andJ, they can be forced to beand the identity matrix respectively.

Is figure 5.5 the pre-image of the rulings are labeled’ hese are the image of the straight lines
parameterized as

er(v) = a(t) + vb(t)

and will play an important part in the next sections. Thedealso be calledulings of the surface.

Figure 5.5 justifies the function equalifyo ¢ = r. These functions induce the linear functions on

the tangent space (known as push-forwards) as
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Figure 5.5: The curvea andc induce coordinate systems dhandS on which the isometnf is
represented as the identity function.

T (tw) = Leg(t,v) G (t,0)
— [c'(t) + vd(t) d(t)] = TLiqt ) [a(t) +ob(t) b(t)
(cos z(t) +vsinz(t))J(t)er = (cos z(t) + vsin z(t)) Lug(s,w) T ()€1

—
J(t)eg = Z*q(tw)T(t)eQ

Since the immersion condition of the differential modeltfmsal ruled surfaces states thas z(¢)+

vsinz(t) # 0 for all t € T, this term can be factored out of the first equation resulting

10
J)|0 1| =g T(t)
0 0

or that the first two columns of (¢) satisfy the right side. Remember that the third columm ¢f)
was simply the normal to the surface and is a function of tis¢ fivo columns. In the next sections, it
saves on the symbol complexityl? is identified with the pland(z,y, z) € R? : z = 0}. This way,
Zq(t,v) Can be completed so as to belond(3) (similarly to what was done to the third column of

J) andT(t) can also be seen as a rotation around:tleis inSO(3). Here, these “extensions” are
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written asZ.,; .y € SO(3) andT'(t) € SO(3) respectively. Using this the former equation reads

J(t) = f*q(t,v)T(t)

The first conclusion is tha. ., ., = J(t)TT (t) is constant along. This way, it can be seen as a

q(tw

function of the rulings parameterized byand will be written simply aZ, (t).

5.4 The Relation Between the Isometry and the Rotation Matces

Starting from the equation

J=1.T
differentiate it:
J=I.T +I.T (5.1)
— JK; =1.K;T + IT.T Kt (5.2)
— JK;=JTTK;T + JKr (5.3)
— K;=TTK;T + Kr (5.4)

where the varioud that appear are functions @frepresenting the tangent vector to the corresponding

curve onSO(3). Parameterizing” as

CT(t) —ST(t) 0
T(t): sp(t) ep(t) 0],
0 0 1
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where the functions represent the cosine and sine of a imofit, allows the previous equation to be

re-written as

0 zZ7 Yy cr st O 0 zr yr| |ler —sr O 0 zr O
—z; 0 0|=|=sp er Ol|—=2r O zf||syr er O+ |—=2r 0 0| (5.5
—y; 0 0 0 0 1||-yr —2zr ofl0 0 1 0 0 0
0 2] =21 YJ 0 21 cryr + srxr
= | —z5+ 21 0 0= —2r 0 crzr —styr | (5.6)
—YJ 0 0 —CTY1 — STT]  —CTTI + STYI 0 |

where the anti-symmetric matrices have also been expandéeit coordinate functions. This yields

the relations
Z] — 2T = ZJ

cr Yyr + st rr =yg (5.7)
crxr—styr =0

the bottom two imply that
Tp = ST YJ
(5.8)
Yyr =cryg
And since the last section forced = z7 the first equation implies that (¢)=0.
From the above discussion one learns that if one considersutveZ, (t) € SO(3) then the

tangent vector to this curve must obey

wherecy andsy parameterize the rotation matrfixt) € SO(2).

5.5 Optimization

Atthe end of chapter 3 the intent of optimizing the cost fiorcin equation 3.8 was stated, but quickly

dismissed due to the difficulty posed by the constraint #amust be an isometry. This equation is
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here repeated for convenience

minimize Y ; ey ||PF — 5* 7% (aq;) (5.9)
2
st s"eRT

7% isometry

qg;, ER Wi

This chapter removed this difficulty by providing an effeetiway of representing isometries. The

optimization problem is re-written as

L 1 00
minimize. 3, ey o~ o (¢ (1) + b (1)
010
st a— i)+ o
aF(t) = cos(2F(t))T* (t)e; F(t) = cos(2F () J5(t)ey
b (t) = T*(t)es dE () = JE (e
0 sin(zF) ¥
L & 0 sin(2") . N
— sin(z¥) 0
—y" 0 0
T*(0) =T§ Jk(0) = JE
a®(0) = ab F(0) = ck
T§ € SO(2) 3k €50(3)
ag € R? ck e R?
theT*

of € |akeh), BEe)
AR S
v TP = R
At first glance the problem seems overwhelming, particulsithce in involves an optimization prob-

lem of infinite dimension on the space of function$ &ndy*). But it does provide a way to represent

the problem which was not previously available.
Since no reliable information exists about the gé&tor C*, these will be relaxed to & andRR2
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respectively. This implies that the immersion conditionas$ being explicitelly enforced, but knowing
that the data comes from real embedded isometric surfatikes dptimization problem converges to
the true solution the condition will be satisfied. So as losithe algorithm is working as expected, the

immersion condition should be automatically satisfiedeothise the solution is meaningless anyway.

Although there are people working on optimization algarithon the space of functions, at this
time a simplified approach is taken. Instead of considermgfanction, the functions” andy” will
instead be approximated by piecewise constant functiaesotinuous at half the distance between
each data point. The new symbals = 2*(¢t¥) andy® = y*(¢¥) are introduced to represent the

functions at the sampled values. Similarly, defife T%, c¥, d¥, a¥ andb*.

7 ) 7 L
This way, the differential equations on the rotation masiam the problem are simple to integrate.
Since it will be useful later on, the symbo]§71/2 andTi.il/2 are also defined, which correspond to

the integration half way between two sample points

0 sin(z 1)y,
th—tk . k
—sin(z ;) 0 0
k
—yr 0 0
J§*1/2 =JF exp Yi-1
0 sin(zf)
k
& — sin(zF) 0 0
k
—" 0 0
Ji = Ji71/2 exp Y
thik 0 Sin(zz‘—l)
k k e sin(zf’ ) 0
Ti—1/2 = T;_jexp
kb 0 sin(zF)
7 2Z
— sin(2F) 0

Ti—“ = Tf_l/2 exp

The matrix exponential functions for these cases are easgrtpute, using the Rodrigues rotation
formula for the 3 dimensional case and the fact 81at2) is group isomorphic to the circle, hence it
results in a simple rotation of an angle equal to the antiragtnic argument.

To integrate the second set of differential equations ri@ethe velocity vectoé is orthogonal to
the acceleration vectgrand both are of constant magnitude whenevandy are constant. Taking
the cross product between the two, one also discovers thaetult does not depend on the rotation

angle, thus the movement is planar. This implies that theecuiis piecewise circular arches. The
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same is true for the curve In any circular path, the angular velocity at which it is figrgiven by

w = ||¢]| / ||¢]| and the center of the path|jg|| /w in the direction of the acceleration vector. Thus, in
this particular caser = +/sin(2)? + y2 and the center point of the trajectoryds- ¢/(sin(2)? + y?).
Thus, using all that was said, the following function is pyeed as the integration of a sectioncof

starting att = 0 with initial conditionsc(0) = 0 andJ,, when the functiong” andz" are constant:

0 sin(y/sin(2)? + y? t)
. cos(z) cos(z) ) os(</Sn(2)Z - 22
. _ o T2t
ic(t;J,y, 2) Sin(2)? + 2 J | —sin(z) |+ O J N e ( (2)* +y* 1)
-y m cos(y/sin(z)? + 42 t)

Note that the important limitin(z)? + 2 — 0 where the function degenerates to
ic(t;J,y,2) =t J eq
This way, to integrate the path whefi andz* are piecewise constant, one gets

cf =iy +ic((ti = tio1) /231,y 2E1) +ie((t — 1) /2371 o, 08 21

In a much simpler way, the integration formula fdtis given by

cos(z) T 0 . cos(z) T sin(sin(z) t)

ta(t; T, 2) = = sin(z) 1 sin(z)

cos(sin(z) t)

and likewise, the important limitin(z) — 0 where the function again degenerates to a straight line
io(t;T,2) =t T e
The integrated path is thus

al =l +ia((ti — ti1)/2 Ty, 2 0) +ial((ti — tio1)/2; Ti‘tl/Z’ z)

To save on the symbol complexity, all these equations witideen behind the phras&® isom-
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etry”. Thus the optimization problem is now

N 100
minimize Y-, 4ycy |15 (ck +oFal) — pl
010
st q = af + vfbf

7" isometry

Here the pointsy; may be assumed to be variables of the problem or known. Iratee ¢ase the
optimization problem is actually an extension of what wasdssed in chapter 4 with respect to pose
estimation. Either way, the usual technique of using a perahction where a parameter € R is
progressively increased so as to force the constraint tdégeal may be used to solve the constrained

optimization as

2
. 100
minimize: g ||t | (e + ) — B +plaf + b — qi

s.t. Z" isometry

Note that the remaining constraints may be plugged dingatéd the cost function meaning that
the problem is now unconstrained. This problem is solvablagugradient methods and the author
obtained good results using the Levenberg—Marquardt itthgorfor least squares optimization. In
the case wherg; are known, the problem decouples for each imagén the case where they are
variables, the problem may be computationally simplifiedalstandard “decoupling” technique by

writting

2
100

minimize [ minimize "0y |[s D1 (ck +vbdb) — pF| + pllak + bl — qi)?
s.t. Z* isometry

s.t. q; € R?

where the inner problems are solved for fixgdand then an iteration of the exterior problem is run.
These steps are cycled until a convergence criterion is met.

There is still a significant problem that must be addresséaré¢he optimization can be carried
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out, relating to the initialization of the gradient methdthe previous chapters provided a way for an
initial solution to be obtained, but unfortunately the paeters obtained are not directly convertible
to the parameters needed. The next section explains howntertdhe previously obtained data into

the new description.

5.6 Numeric Initialization

In the previous chapters a way of inferring the flattenedamf represented by the poirise Q C
R? and a local estimate df,,, was presented. These estimates are going to be used &fizaithe

continuous surface parameters introduced in this chapter.

Numerically, suppose that one knows the valu& oét two close pointsy;, g2 € R? which lie on
the rulings parameterized By and¢s: q; € ¢;(t1) andqs € ¢;(t2). A first order approximation for
Z.(t)is

T.(t1 + h) = L (ty) exp@ @) T 00 = T (1)) exphKr()

Consideringh such thats = ¢; + h and rearranging the equation:

tog ((Z(1)" Z.(t2)) = (12 — 1) K (1)

0 0 CT(tl)
= (t2 - tl)yJ(tl) 0 0 ST(tl)
—CT(tl) —ST(tl) 0

The first thing to notice is that the matriX(¢;) can be obtained up to a sign, evertif —¢1)y(¢1) is
unknown, by normalizing the last column &f;(¢1) to unit length. This is enough to infer the ruling

e(t1) that passes through the point.

5.6.1 Greedily Inferring the Rulings

Besides the first order approximation used in the last eguatiere is also the problem introduced by

noise in the data. So the ruling that passes through a giviah ¢g can be better approximated from
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all the neighboring values by solving the bilinear systeraaiations

MKy =log((Z.;)"T.y,)
ho Ky = IOg((Z*z‘)TZ*m)

hsKr = 1og((Z.;)" Los,)

where the notatior); was introduced in the previous chapters and meangtih@eighbor of point.
Since only two independent parameters are availaldi€irthis system can be solved in a least squares
sense, as a rank-1 factorization on the entfle8) and(2, 3) of the matrices. The solution represents
a line through each of the points, which approximates thegsk(¢;) of the surface. Note that since
neighboring points are local to each point, there is stilkansistency between non-neighboring points

on the same ruling.

5.6.2 Smoothing the Rulings to Obey the Global Constraint

To guarantee consistency between non-neighboring poiptscawise cone approximation is used.
Under this model, nearby rulings must intersect at a comnaamt,pwhich might be infinity allowing
for parallel lines. Suppose that a nominal ruling is avdélaind consider all the points within a certain
distance to it. The previous discussion provided a linectima through each of these points and one
now wishes to smooth these so that they intersect at a comwiah prhis is known in projective
geometry as a pencil of lines and can be estimated as a rajgcioo much the same way as the best
line that passes through a cloud of points (which is the duathlpm in projective geometry). This
process assigns smoothed rulings to neighboring poindstheeprocess can be called recursively until
all points have a smoothed ruling attributed to them. The fifing can be found by searching the
space of lines that pass through the center of the congellaf points. Once all the rulings have
been found, one can consider circular arches that intetisest orthogonally, yielding the image of
the curvea.

This curve must then parameterized so as to obey the comstidi’ = cos? = and”l}H2 = sin? z,
which depends on the radius of the circular arch. This stejayithe value of the parameterz’%and
tk. Now thatt* are available, thé; found in section 5.6.1 provide the final parametgs

Two examples of point clouds converted this way can be sefgure 5.6. After the optimization

algorithm is applied, the results obtained are show in fi§ure For the image of the half cylinder, the
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Figure 5.6: First estimates of the surfaces converted tadméinuous model. An image wrapped
around a cylinder and the swiss roll are shown as the imag&(tf) + v¥d"*(¢¥). The noise level on
the original images was,,y;sc = 0.01.

before and after mean squared errors when compared to thedytauth 3D surface are respectively
0.1014 and 0.0003. For the image of the swiss roll, the meaarsd errors are respectively 0.1100 and
0.0005. Both of these confirm that applying the intrinsicaibrrect model described in this chapter

provides better reconstructions.

Figure 5.8 presents the reconstruction of the points sed¢heoreal world image using the differ-

ential model presented in this chapter.
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Figure 5.7: The results obtained in chapter 4 are shown alwieh are used to initialize the al-

gorithm provided in this chapter, producing the resultsnshbelow. An image wrapped around a
cylinder and the swiss roll are shown as the image¢t?) + v¥d*(¢t¥). The noise level on the

original images was ;s = 0.01.
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Figure 5.8: Pose estimation using the differential modstdption. On the left the observed image,

on the right the reconstruction of the points described afex@htial model.
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Chapter 6

Conclusion

This thesis proposed several new techniques relating tegeptation and reconstruction of surfaces
with the distinct property of having everywhere zero cunvat The methodology involves sequen-
tially solving several problems, starting from matcheddess in different 2D images and culminating
in first a point-wise characterization of the unfolded scefand later a functional description of the
surface and scene. The cameras are assumed to be scaleapttiognd are not previously calibrated.

Two separate techniques are described: the first based kraetorization of matrices relying
solely on local properties of the observed surfaces andatipgrsolely on the observed point clouds;
the second modeling the surface as a set of differentialtiemqsaon which optimization may be per-
formed which allows for all non-local properties to be g implicitly.

Although the problem of reconstructing the unfolded swefhas an almost unique solution, in the
sense that it is unique up to scale, rotation and translati@nproblem of obtaining the embedding of
the surface as seen on an image does not. This is not a lionitatthe presented work but a limitation

of the problem itself which can not be solved unless furth@rimation is provided.

6.1 Limitations and Future Work

The greatest limitation of the proposed methodology islisnce on matched image features. Finding
the correct correspondence between points in differengé@mas a hard enough problem when the
scene is known to be rigid. When considering non-rigid ssemi¢h possible occlusions, as is the
case in this thesis, obtaining the needed input data auitattatis a challenge. Also, a reliable way

of detecting outlier data and discarding it should be im@etad, or change the methodology to be

robust to these matching errors.
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A second limitation is the sequential nature of the methadh linside the solutions provided in
chapters 3 and 4 and the sequential connection betweerech@4 and 5. Changing the sequential
methods in chapters 3 and 4 would probably imply the devetayrof a completely different algo-
rithm, but if a way to initialize the optimization problem émapter 5 were found which did not rely on
the previous knowledge of a solution it would effectivelycdaple the chain and allow this algorithm
to stand by itself.

Due to the author’s limited knowledge of infinite dimensibfanctional optimization, the op-
timization parameters in chapter 5 were simplified to tum pihoblem into the finite dimensional
domain. Here two possible improvements are possible bygrithproving on the way the discrete
parameters are chosen and integrated or performing thmiaption directly in the space of functions.

The pose estimation problem presented in chapter 4 whichadfiscts the embedding in chapter
5 has a natural ambiguity due to the camera model not prayidity information on depth. In this
thesis not much attention was payed to it, but it is the atghmlief that using second order infor-
mation (smoothness of the bending rate) near the pointsenther surface is almost parallel to the
camera’s projection plane should allow for more embeddifigrimation. Also, if stream information
is available (i.e. video images) using the dynamics of thi&asa movement should also improve both
the reconstructions and the camera ambiguities.

Finally, the presented algorithms are all batch algoritivhigh assume all information is available
at once. Since the number of observed images influences i afdhe reconstruction, it seems that
avideo sequence of a waving surface would be better to nzeingiconstruction noise. Unfortunately,
the amount of data that needs to be held makes this unviatlerde datasets. Ideally, a way to update

the reconstructed data at each frame without relying ondisefpames would be optimal.

72



Appendix A

Sub-Stiefel Set

Due to their special importance to this work, a certain tyjpaatrices here nameglib-Stiefelmatrices

(SS) will be exhaustively described in this section. These ioes$r are obtained from th®0O(3)

Joone)
€0(3,2) ;.

Theorem A.1 If S € SS is a sub-Stiefel matrix, then so is the matrix generated leygmd post multi-

matrices by truncating the last column and the last row, denc

5 *} E 50(3)} - {s € M2

Note that either representation is equivalent.

SS = {SGMQXQ:

plying rotation matriceR, Ry € SO(2)

Proof This stems from the fact th&0O(2) is canonically embedded BO(3) as

SO(2) ~ {

S
S € SS means that there is a rotation mat{x } € SO(3). By embeddingR1, Rz € SO(2) in

R 0
ol 1

€S0(3):Re 50(2)} .

* %
*

L . R.SR,
SO(3) and by pre and post multiplication one obtains the matrix
* *

] € SO(3) (ignoring
the stared parts), which proves the statement]j

The operation of matrix truncation has a well known effecttioe singular values. In [15] the
following theorems describe this operation for symmetratnices:
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Fact A.2 Let A € R™ " be a given Hermitian matrix, lef € Cn be a given vector, and let € R

be a given real number. Let € R(**Dx("+1) he a Hermitian matrix obtained by bordering with y

a A ~ N n+1

anda as follows: A = Y . Let the eigenvalues & and A be denoted by \;}} and {)\i}l ,
y' oa

respectively, and assume that they have been arranged rigaisiog orderh; < --- < )\, and A <

-++ < Aps1. Then

~

M<AM <A< A< <A <A < A

Proof See [15] Theorem 4.3.8, page 185. |}

The “converse” is also true:

. yntl . A

Fact A.3 Let{);}] and {A’}T be two given sequences of real numbers suchXhat \; < Ay <
o o ~ n+1

Ay < - <\, < Ay < Mg, then there exists a real vectgr € R™ anda € R such that{)\i}l

Ay

is the set of eigenvalues of the real symmetric mahrix e M tDx(n+1) "whereA is the

y' a
diagonal matrix with entries\;.

Proof See [15] Theorem 4.3.10, page 186. |j

Note that this result extends to the case whtiis substituted by a symmetric matrix € M™*"

with eigenvalueg \; } by considering an eigenvalue decompositior= UAUT whereU € SO(n).

N U o0
Note thatU € SO(n) impliesU = € SO(n + 1), thus:

ol 1
) A )
eig (A) = eig Y = {)\i}
y' a
A y]. [ A U )
< eig [U Y| or = eig Y :{)\i}
yI' a yI'u?T a

These are usually known as the Cauchy Interlacing Theorbmte case where the matrix is not
hermitian, a similar theorem applies to the singular valmesoting that the squares of the singular

values of a matribxA € M™*™ are the eigenvalues &’ A to which the previous result can be applied:
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Fact A.4 Let A € M™*™ be a given matrix and leA be the matrix obtained by deleting any one row
from A. Let{o;}" denote the singular values @f and let{s;}’ denote the singular values @, both

arranged in non-increasing order.

1. If n > m, then

2. Ifn < m, then

012012022022 20,20y

Proof See [15] Theorem 7.3.9, page 419. |}

Using theorem A.4, the sub-Stiefel set can be characteegdtie set o2 x 2 matrices with the
largest singular value equal to 1:

Theorem A.5 The set of sub-Stiefel matrices is given by

SS = {S e MP2: 5 (S) = 1} }
Proof The proof is broken into 2 parts:
e SSC {S €M™ :0,(S) =1}:
Let

S r
R = € S0O(3)
T

S u

wheresS is a sub-Stiefel matrix. Then the matrix

is a Stiefel matrix, hence its singular values ftel, 0}. Therefore theorem A.4 applies directly,

proving that the maximum singular value $fis 1.

e SSDO {S € M2 5. (S) = 1}:
Let S € M2X? be a matrix whose maximum singular valueliand the other is\. Then the
eigenvalues o8S” arel and\2. By theorem A.3, there is a vectgrand a scalan € R such

that

cig = {1,1,0}



Since the matrix is symmetric and positive semi-definiteréhs a matrixQ = . € M3x2
q
with singular values equal tol, 1,0} (Stiefel matrix) such that

in particularQ; Q7 = SST which implies that there is a matriR. € SO(2) such thatS =
Q:1R. SinceQ; is sub-Stiefel by theorem A8 is sub-Stiefel.

ThusSS = {S € R¥?: gax(S) =1} |11

Note that this is an intrinsic characterization of the stile{€l set, not dependent on the existence

of a rotation (or Stiefel) matrix. It also leads to some iagging equalities:

Theorem A.6 LetS € SS, then
o2, =det(S)? = |IS|I* -1

min

Proof The proof follows from the singular value relatiodst?(S) = o2, (S)o2. (S) and|S|* =

max min

Oimax(8) + 031 (S) by imposingomax(S) = 1.

This last theorem, although not of great importance byfitselves to characterize the sub-Stiefel

set as a subset of an algebraic variety:
Theorem A.7 Define the setl — {A e R22: ||A|> — det(A)2 —1 =0, |A|2 < 2}, thenA = SS.

Proof The proof is split into two parts:

1. SSc A
LetS € SS, theno,ax(S) = 1 which trivially satisfies the equality conditids||* — det(S)2 —
1=0:

Tmax(S) + Tmin(8) = Tiax (8) 05 (S) — 1 = 0743 (8) — 07 (S) = 0

max min min

and sincer?. (S) < o2 (S) = 1 the inequality constraint is also satisfied:

IS|| = 02,,(S) + 02, (S) <1+1=2

min max
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2. ACSS:
Let A € A, then the equality{A ||> — det(A)2 — 1 = 0 holds. Using singular values, this can
be written as

02 (A) + 02, (A) — 02 (Ao (A) —1=0

max min max min

1—-02. (A)
2
A — min
= Jmax( ) 1 o O_IQHin(A)

This implies that either2, (A) = 1 or 2. (A) = 1. The inequality constrainfA|* =

max min

02 (A) +02. (A) < 2imposes that?, (A) < 1. If 02, (A) = 1 then the inequality

max min min
(A) < 0fhax

constraint forces that = o2 (A) < 1. Either way,omax (A) = 1.

min

HenceSS = A. |}

a ¢
Hence, given a general matikx = the implicit condition that must be satisfiedfisA) =
b d

>+ b2+ +d? —a’d® +2abed+c*b*> —1 = 0. A question that arises is if this set is a smooth manifold.
Since an implicit condition is available, checking for srttowess resumes itself to guaranteeing that

the rank of the differential map is 1. Hence the set is not mifdhe derivatives

g = 2a — 2ad? + 2bcd
Oa

af 2

%= 2b — 2bc” + 2acd
g = 2¢ — 2cb® + 2abd
Oc

% = 2d — 2da® + 2abe

are simultaneously zero (inside the allowed domain). Uofately the next theorem states that the

set is not smooth at certain well characterized points.

Theorem A.8 The setSS is not a smooth sub-manifold ®2*2 only at the pointsA € SS where
A €0(2).

Proof To check where the derivatives are simultaneously zerdollmving system must be solved

a = (ad — be)d b= —(ad — bc)c ¢ = —(ad — be)b d = (ad — bc)a (A1)

substituting the first in the fourth the equatidn= (ad — bc)%d is obtained, meaning that either

(ad — bc)? = 1 ord = 0. Similarly, by substituting the fourth in the first, the sadain the third
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and the third in the second, the conclusion is that eithesthiared determinant is 1 or the matrix is
zero. Since the zero matrix is not§i$, the only possible case {gd — bc)? = 1. In SS the maximum
singular value is already unitary, hence this conditiotest¢éhat the minimum singular value must also
be 1 implying that it must be a rotation matrix. The remainalethe proof consists in verifying that

all rotation matrices obey the equations (A.1).

1. CaseA € SO(2):

cos(f)  sin(6)
—sin(f) cos(0)
satisfy equations (A.1) sindgd — bc) = 1

Using theSO(2) parameterizatiorA = { } it is clear that the matrix entries

2. CaseA € 0(2) —SO(2):
_ o sin(f) cos(6) | . . _ _ _
Using the parameterizatioA = it is clear that the matrix entries satisfy
cos(f) —sin(0)
the equations (A.1) sindad — bc) = —1
HenceSS is smooth except at the points@(2). |

These orthogonal matrices are the limits of the sub-Stgfths the next theorem shows.

Theorem A.9 Let
C={aR+(1-a)Q:a€[0,1],R €S0(2),Q € O(2) —SO(2)} .

ThenSS = C.

Proof The proof is broken into 2 parts:

e SScCC:
0
LetS € SSandS = U } V be an SVD decomposition. Defiie = UV and
0 Omin
1 , o .
Q=1U VT, If det(R) = —1, swapR andQ and definen = ——gmin - otherwise
0 -1

maintainR and Q and definea = Z=ietl. ThenS = aR + (1 — «)Q anda € [0,1],
R € S0(2),Q € O(2) — SO(2) as desired.

e C CSS:
Starting froma € [0, 1], R € SO(2) andQ € O(2) — SO(2), the first step is to find matricds

andV in O(2) that satisiUV? = R andU VT = Q. Todo so, notice thaRQ” =

0 -1
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0
U U7’ hence matriXU contains the eigenvectors of the ma®Q?. This is due to
0 -1

the fact that this matrix is i©(2) — SO(2) which means it's symmetric. Similarly, notice as

0
well thatRTQ = V VT, which again means thaf contains the eigenvectors of this
0 —1
matrix.

Then define the matrix

1 0
=aUVT 4+ (1 -a)U vT
0 —1
1 0
=U vT
0 2a—1

which is an SVD decomposition of a sub-Stiefel matrixvit> 1/2. If & < 1/2, define matrix

1 0
E= (notice it is an involution) and insert it above as

0 —1
S=U E'EVT

=U EVT
0 1—2« -

vT
which is an SVD decomposition of a sub-Stiefel matrix.

This completes the proof. |}

This is an interesting result since it characterizes theStidgfel matrices as the union of all line
segments connectirg0(2) to O(2) — SO(2), when seen as a subset®?*2. It is also a nice rep-
resentation for optimization since all sets are connectadhe SVD representation the orthogonal
matrices could either be $0(2) or O(2) — SO(2) which means a jump from one set to the other had
to be considered. Alternatively the SVD representatiodcdtcbe changed to consider only matrices in
SO(2) as long as the minimum singular value would be allowed to loatiee.

Topologically, the sub-Stiefel set is homeomorphic to arBeshsional sphere. This result is im-

portant since it provides intuition for its shape, and cagtgldly characterizes all topological properties
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since they are inherited from the sphere, a well known tagodd manifold. For example, the next
theorem hides the statement that theSsets connected, even though this same property could have

been easily proven otherwise.
Theorem A.10 The sefSS is homeomorphic t&(3).

Proof Consider the function

f:SS—S(3)
vec(A)

A—
A

with corresponding inverse function

a a cC
b b d
—
C a C
Omax
_d_ b d

The function and its proposed inverse are continuous in spbgets of the ambient spaces containing
the domain and the image, implying that both functions arginaous in the subspace topology ([21]

section 18, page 108).

1 0
LetS € SSandS = U VT an SVD decomposition. Then it is easily verified that
0 Omin
the functions are inverse of each other since, apart frometsigape, one function scales the singular

values to have unit norm, and the other rescales the singalaes back t@r,., = 1, both using
positive scale factors and continuous functions.

Hencef is a homeomorphism, proving the theorem. |j

Given a sub-Stiefel matrix, there are (in general) four waysomplete it to 8 x 3 rotation matrix,
of which two have positive determinant, and the other twoehaegative determinant. In the context
of isometric reconstructions the negative determinanitemis are meaningless and one can restrict
to the special orthogonal matrices instead of the wholeogdhal group. Unfortunately the the two
remaining choices are ambiguous and there’s no other @iydiaracteristic to narrow the problem to

a single solution. Only if the sub-Stiefel matrix is itselfaation matrix does the ambiguity disappear,
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and only a single completion is possible. Hences i is a sub-Stiefel matrix it can be

»
=R =

S S%
completed as

1 o1 1 1 1 1
11 1 %2 53 S1 S22 783
51 52 2 2 2 2 2 2
s o T|S1 s2 sz OF | si sy —sy

T %2 3 3 3 3 3 3

— 51 %2 83 51 TS2 53

Sub-Stiefel Matrix ~
Rotation Matrix 1 Rotation Matrix 2

by choosing a sign fos? = +./1 — (s})2 — (s})2 (if it is non-zero) then there a single choice fgr
such that(s3)? = 1— (s})2 — s$2)2 and the second column is orthogonal to the first. The thirdroal
is simply the cross product of the first two columns so as tédyéerotation matrix with positive
determinant. As a curiosity note the = det(S) which is proved by inspection when writing the
third coordinate of the cross product.

This section ends with a formula to compute the singularasbf a2 x 2 matrix in closed form.
Theorem A.11 The singular values of a matriA € M?*2 are given by the positive roots of the poly-
nomial

s*—[|A|]* s2 + det(A)2 =0
Proof The roots of a second degree polynomial may be found by thérgtia equation. Writing the

norm and determinant @ in terms of its singular values results in

2 2 2 2 )2 2 2
2 O max + O min + \/(Jmax + Jmin) - 4Urnauxo-min
2

02 2 + (O-rznax - Jr2111n)2
2

since the inside of the square root is always positg.{ > omin),

2 2 2 2
82 _ Omax + O min + (Umax - Jmin)
2

= {Uila)u U?nin}
hence taking square roots yields the result.|j

This ends the characterization of the sub-Stiefel set.
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Appendix B

Sub-Stiefel Centering Problem

Solving the optimization problem defined in equation (3h&xe repeated for convenience

minimize Y,  log® (omax (M} H/s%)) (B.1)
st. HeGL(2)
sP e RT

which is a non-convex and non-compact optimization problismot simple but a few tricks can be
exploited. First, ther,,.x function is invariant to orthogonal matrix multiplicatiamn the right (i.e.

O max (Mf H) = Omax (Mf H 0) for anyO € O(2)), meaning that these matrices can be factored
out through a polar or QR decomposition Hn This means that entry3 of matrix H = [hé] can be

forced to 0O, reducing the number of variables to 3.

To simplify the discussion, first the special casef= 1 is considered (which results in consid-
ering orthographic cameras instead of scaled orthogragameras) and later extended to the general

case.

B.1 Orthographic Cameras

The next simplification is less obvious, but will result in@mpact 2 dimensional optimization prob-
lem. The key is to go to projective space by quotienting oetdbale factor, using the fact that a

scale factor commutes (as an absolute value) withvthe function. The optimization problem can
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be written as

minimize Y, ; log® (|A|lomax (M} H))
st. H e RP?
|\l € RT

Next rewrite the problem as follows

minimize [ minimize 3, log® (|A|omax (MF H))
st |A|eRT
st. H < RP?

in which the inner optimization problem is exactly equal e toptimization problem in equation
(3.6) where the solution was already shown tol@g(|\*|) = —E [log (omax (M¥ H))]. This is
exactly the property that made this choice of a distancetimmdetter than the traditional square of

differences. The result can be plugged back resulting in

minimize ", (log (omax (M% H)) — E [log (omax (M7 ﬁ))])Q
s.t. H e RP?

Dividing the cost function by the number & * matrices, the minimizer is not changed and the cost

function becomes a variance:

minimize VAR; j, [log (0max (M¥ H))]
s.t. H e RP?

The fact that it is written as a variance is just syntacticasigj this point, but it does give intuition
as to what is being done. Later, this will be exploited to isgdifferent camera models but for now
just think that reducing the problem domainR®? makes it significantly easier to solve, since it is
a compact two dimensional differentiable manifold, deélyitwithin the reach of branch and bound
algorithms if nothing better is possible. Maybe equally artpnt is that the function can now be

visualized, allowing intuition and a clearer idea of howdéiris to solve (see figure B.1).

Unfortunately, as the figure shows, the problem is not conVéorse is the fact that it sometimes

has multiple local minima and that in the presence of siggnificoise it might even converge to a non
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Figure B.1: Example level set of the sub-Stiefel centeringbfem cost function. A stereographic
projection ofRP? was used as coordinates. Here blue lines represent lowsyake lines represent
high values.

invertible H. Despite these shortcomings, when used to solve the proatdrand it does produce
seemingly good results without much concern over whichllogaimum is used (usually the minima
are very close together). Nonetheless, as future work, fleete of choosing a non-global local
minimum should be further studied.

Since thery,.x is smooth almost everywhere (it is non-smooth when bothne@jaes are equal)
and gradient vector and Hessian are computable for evegtifuminvolved (see [24] for details on
how to compute Hessians and gradients of the maximum singgilae), it is relatively straightforward

to implement a Newton-like method on the projective space.

Once a solutiorH* has been found)* follows naturally since it has the closed form expres-
sion shown above. Note that this provides a solution up twbajlrotation (factored out in the QR

decomposition above). This is to be expected since no gtamakinate system has been imposed.

B.2 Scale Orthographic Camera Models

Now that the solution for orthographic cameras has beeraledega simple trick is used to solve the

case of scaled orthographic cameras. The optimizatiorigmothat needs to be solved is

minimize Y, , dZg (Mf* H/sk)
st. HeGL(2)

s e Rt
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Here using the chosen cost functidgs(X) = |log(omax(X))|. Interestingly, the same trick used
in the previous discussion to go to projective space willé@sed to allow use of the slightly more

complicated camera model. Again, the optimization prohleseparated as

minimize Y, [ minimize Y7, 3 <Mf* H/sk)
st sPeRT

st. HeGL(2)

and remembering the discussion of uskp write a variance cost function in section B.1, the same

trick is used using eackf’, separately, instead. This becomes

minimize ", VAR, [105% (O'max <Mf* H))]
st. HeGL(2)

Notice that now the scale factarhas no effect since it propagates outsideltigeadditively which has
no impact on the variance. This means that there’s an addltembiguity in the final reconstruction
(adding to the global rotation matrix factored in the pre&dR decomposition) which is expected
since the most that can be hoped for is a reconstructiongbsaes the camera model invariant. Thus

the final optimization problem is

minimize Y, VAR, [log (o—max (Mf* ﬂ))]
s.t. H e RP?

Which is a sum of problems similar to the one that was solvetérmprevious section, easily extended
in the Newton method. Once a solution ris found, the solution for the scale factafsis simply
log(s"*) = —Ey, [log (omax (M¥* H*))], where any scale factor can be used to go fidne RP?

to H € GLL(2). The scale ambiguity is present sinc&ffis scaled, so will the"*.
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Appendix C

Sub-Stiefel Procrustes Problem

In matrix approximation theory, there’s an important clasproblems which try to estimate the best
linear transformation satisfying certain properties the$t describe the observed data. The general

problem is written as

minimize HV — XVVH2

s.t. X € {matrices with a certain property

Under this class of problems, when no particular propertyesired for the matriX the problem is
known as least squares fitting. When the number of rows of thigicesV andW is the same and
X is constrained to be orthogon&XX” = I) the problem is known as the Orthogonal Procrustes
Problem and has a simple solution involving a singular valeeomposition. In this section a new

problem in this class, theub-Stiefel Procrustes problemis proposed wherX € SS:

Problem Statement C.1 (Sub-Stiefel Procrustes Problemgolve

minimize ||V — XW||’ (C.1)
st. XeSS

Although computationally involved, the solution of thisptem is exact up to finding the real roots
of a 6 degree polynomial. The solution involves the use ofb@ed basis from Algebraic Geometry
to solve a system of polynomial equations, but note thattthie consuming step only needs to be
done once (here) and the final algorithm takes very littleetiowrun being practically instantaneous on

modern hardware. In the end the algorithm does not need tpuena Grébner basis with each run.
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Using theorem A.5 the problem in equation (C.1) can be réswrias
minimize ||V — OWH2

St omax(0) =1
0 € M?x2

Using~ as a Lagrangian multiplier, the Lagrangian function is then
L=tr {(V —ow)' (v - OW)} 4 (Cmax (0) — 1)

the functiono,,.«(+) is differentiable everywhere except when both eigenvatwesequal (see [24]).

Omax 0 : . .
This case is handled separately laterOlf= S * T7 is a singular value decomposition
0 Omin
then
00 max (O
ngao( ) - SmaxtmaxT

wheres,.x andt,,., are the columns d andT corresponding to the maximum singular value.

Hence, the Karush-Kuhn-Tucker system for this problem ég (49] for matrix derivative rules

and a constrained optimization book such as [22] for the &akiuhn-Tucker conditions):

_VWT + OWWT + WSmaxtmaxT =0

Omax(0) =1

the last constraint can be implicitly included in the firsingsthe previously mentioned SVD decom-

position:

1 0 0
- Vw7’ + 8 TTVVV\7T+S7 T =0

0 Omin 0 0
STs =1 (C.2)
TI'T =1
Omin < 1

There’s a hidden subtlety with the current problem formatat The constraint,;, < 1 in-

volves enumerating both singular values and choosing thedb It also hides the afore-mentioned
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problem of non-differentiability when the lowest singulalue is equal to 1. This is not trivial in an
optimization setting, hence the problem is going to be §miit two separate optimization problems.

First, notice that ifz; € D enumerates all the critical points of a given function witthin
D, then the critical points of the same function restrictec tosed (with respect t®) subdomain
&€ C Dare{z;}() € joined with the critical points of the function restrictemlthe border of in D. In
the problem at hand consid@ = {Set of2 x 2 matrices with at least one singular value equaljto 1
and& = SS. The border in this case will be ttex 2 Orthogonal matrices where both singular values
are equal to 1. Hence, if all critical points of the cost fumetfor the relaxed problem can be found,
then either the original problem’s global minimum is in tgmints intersected with the domain or is
given by a simple Procrustes problem.

Notice that if the last constraint is removed, the problemsisis strictly of polynomial equal-
ities, hence algebraic geometry is able to solve the systng uGrobner basis. Unfortunately the
equations are still too complex to tackle with modern corapatgebra systems (such as Maple and
Mathematica) and any attempt made by the author to tacklpriitdem directly quickly exhausted
the computational resources of a modest desktop computerprfioblem with the equations (C.2) is
that it involves too many different symbols which quicklyoste the software. Fortunately there are a
few tricks which can be used to reduce the complexity.

First pre and post multiply bg” andT” so that the first equation becomes

1 0 0
—sTvwTT + TTWWIT + || =0 (C.3)
0 0

0 Omin

T
Now pre and post multiply by the vectoh 0} and [0 1} which generates a scalar equation

without any dependencies onor ~:
—sTVWTty + tTWWTt, =0

Where the new vectors are the matrices’ columnS as [Sl SQ] T = [tl tQ].
Noting thatO(2) is a one dimensional manifold, one needs at least a secoati@uor a solution
to be obtained (since there are two orthogonal matrices)oblain a second equation which only

depends o' andS, rewrite the equation as

B 1 0 0
~STVWT (WWT) ' T + TTWW T+ || | =0 (C.4)
0 Omin 0 0
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Since the points are assumed to be non-degenerate, thig cannitten as

_ 10 0 .
—STVWT (WWT) ' T + + |7 T T (ww?) ' =0 (C.5)
0

0 Omin 0

- T
And now pre and post multiply by the vecto[r@ 1| and [1 0} which yields the second equation

sSEVWT (WWT) "ty =0 (C.6)

C S
Since a matrix inSO(2) can be parameterized gs where s and ¢ obey the constraint

—S C

s? + ¢? = 1, the polynomial system of equations is reduced to 4 varsaatel 4 equations. A question
arises on whether or not the orthogonal matrices of the S\dmeosition can be assumed to be in

SO(2). The answer is yes, as long @si, is allowed to take negative values.

Before writing the explicit system lets further reduce thenber of constants that appear in the
description. To do so, notice that a change of variables éngjtimization problem in statement
C.1 can be used to impose tf&W7 is diagonal and the matri¥ W7 is upper triangular. To do
S0, suppose thdt is the orthogonal matrix of an eigenvalue decompositiorhefdymmetric matrix
WWT7 and thatQ is the orthogonal matrix of a QR decomposition\dW’ E. Since the norm is left

and right invariant to multiplication by orthogonal magt;
V-XW|*=||RV.-R'XEE"W|*
A% X A%

Theorem A.1 guarantees thXtis sub-Stieffel and by constructidW W7 is diagonal and the matrix

VWT is upper triangular.

There’s a further redundancy in the cost function due todbethat the minimizer does not change
if a scale factor is applied. thus the cost function can ba&ldivby a constant so that the first entry of

WWT s 1.
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- Tl oz 10 .
If VWT (WwW7) Lo ™ 7] andww? = then the following system can be
0 Ty 0 b
written explicitly
s1452-1=0
2 4ti—1=0

T1tos1 — bxosity + bratyse + btoty — t1t =0

—x189t] — xoSoto + 1481t =0

—S
where the orthogonal matrices, which are the variablesagbtbblem, were written & = ?
59 S1
t1 —t2 . . . , . .
andT = . This system is finally solvable with Maple. Without goingdrioo much detail
to 11

on algebraic geometry (a very good book on the subject istf@])system has 12 solutions which
some of which might be complex. Using Grobner basis teclasigtihis polynomial system (or, in the
language of the field, this “ideal”) can be re-written as aArosystem where the second equation de-
pends on less variables, than the first, the third dependsssrvariables than the second, etc, up to the
last equation only depending on a single variable. This &agous to the QR matrix decomposition

in linear algebra, which is in fact a special case.

Although the actual coefficients of the polynomial (in theighlet;) are shown later, for now it's

enough to state that only the even coefficients are non-zefahaus it can be written as
a19t? + arotl® + agt? + agts + agt] + ast? + ag =0

where the coefficients; depend only on the constants of the problem, (2, 4 andb). Since the
odd powers are all zero, the zeros of this polynomial may heioéd from a polynomial of degree 6,
where each root counts twice with a different sign. Of thesdy the real (since numeric errors are

unavoidable, one should check the ones that are close tg keahas well) are of interest.

From here, one can consider the second polynomial given éyGifbbner basis, but since its
expression is very ugly a more direct approach is attempiedeach of the possible solutions fqr
two possible solutions are possible forsince they form a column of an orthogonal matrix. Hence
ty = +4/1 — 12 and two possibilities for matriT" are obtained. These possibilities must be kept and

later checked for consistency.
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Next, equation (C.5) holds implicitly the information thihe matrixS is the orthogonal factor of a
QR decomposition oW W7 (WWT)_1 T. This is due to (almost) uniqueness of the decompaosition
and the fact that every other term in the equation has therltefteentry equal to zero. Also, in the
same QR decomposition, the non-zero entry of the seconaflitiee triangular matrix must be equal
to omin. Depending on the implementation of the QR decompositibthei resultingo i, value is
negative, change its sign and the sign of the second rd8v &inally, both signs of the first row &
are possible, hence for each possible maftjtwo possibilities forS are obtained. Since the variable
~ is of no interest, there’s no point in computing it.

After all the possible solutions are enumerated, they meishiecked and any solution which does
not obey equation (C.3) or #,;, > 1, must be discarded. As discussed previously, the solutions
which are left must be compared with the solution on the boofi¢he set, which is obtained from
a simple orthogonal Procrustes problem (see for exampletehd of [12]). All these solutions are
evaluated in the cost function and the one that produces#st tost is chosen.

Finally, in the previous discussion the polynomial coeffits of the Grobner basis were not writ-

ten explicitly. They are listed in table C.1 for referencegmses.
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2 4 2. 2 2 4 2 2 4
+8x]xy +8xjwyay +ay +2x5xy + )
'Uz:7(2b21§zg+4b21?z§zz+2b21§zg+2bzzfz§zi
+2bzz?z§zz74bzéllz§zz74bz?z§74bz?z§zz+21?z§+4z%z%+21?z§+21§z§zz)

_ .4 4
vy = T Ty

Table C.1: Sub-Stiefel Procrustes polynomial coefficients
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