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Resumo

Nesta tese propõe-se um método para reconstrução de uma classe de superfícies não rígidas a partir de

características pontuais em imagens. A classe de superfícies às quais o método se aplica consiste em

superfícies de curvatura nula, mergulhadas suavemente no espaço 3D Euclidiano em diversas configu-

rações. Um exemplo tipicamente usado consiste numa folha depapel curvado suavemente em diversas

configurações. Por reconstrução entende-se recuperar: 1) aposição das características visíveis quando a

superfície é desenrolada; 2) a pose tridimensional da superfície em cada imagem observada. As câmaras

consideradas são do tipo ortográfico com escala e não se assume a prévia calibração destas. Assume-

se que os pontos característicos observados em cada imagem foram previamente emparelhados entre

imagens, mas possibilita-se a existência de oclusões.

Dada a complexidade em representar funções isometricas, não é possível descrever uma função de

custo simples e assumir que existe um método de optimização que a resolve. Assim o problema é

separado em vários sub-problemas, onde cada um refina a solução dada pelo anterior. Os primeiros

destes sub-problemas encontram uma solução discreta, ou seja onde se consideram apenas os pontos

característicos dados. O último passo porém desenvolve umaponte que permite a passagem para um

modelo contínuo.

A solução depende fortemente de uma classe de matrizes não usadas correntemente, aqui designadas

como “sub-Stiefel”. Estas matrizes são de grande importância quando se consideram câmaras ortográ-

ficas e ortográficas com escala, mas não se encontra qualquer literatura sobre este conjunto. Aqui, estas

matrizes são caracterizadas e descritas em profundidade.

Palavras Chave: Visão Por Computador, Reconstrução Tri-Dimensional, Reconstrução Não Rígida,

Estrutura a Partir de Movimento, Mergulhos Isométricos, Optimização Não Linear
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Abstract

In this thesis a method to reconstruct a class of non-rigid surfaces from image point features is presented.

The class of surfaces to which it applies consists of flat surfaces isometrically and smoothly embedded

in Euclidean three-space of which the model example is a smoothly bent sheet of paper observed in

different configurations. Here it is proposed to recover: 1)the feature locations of the flattened surface

as well; 2) the three-dimensional pose of the surface in eachimage. The cameras are considered to be

scaled orthographic and they are not assumed to be previously calibrated. It is assumed that the features

have been previously matched between images but occlusionsare allowed.

Due to the complexity of representing isometric functions it is not possible to describe a simple cost

function and assume that there’s an optimization algorithmthat solves it. Instead, the problem is split

into subproblems, where each step refines the previously obtained solution. The first subproblems deal

with finding a discrete solution for the problem, i.e. one where only the feature points are considered.

The last step provides a bridge that allows for the whole continuous embedded surface to be considered.

The solution depends heavily on certain non-mainstream matrices, here denoted as “sub-Stiefel”.

These matrices are of great importance when considering orthographic and scaled orthographic cameras,

but no literature describing them has been found so far. Here, these matrices are characterized and

described in depth.

Keywords: Computer Vision, 3D Reconstruction, Non Rigid Reconstruction, Structure From Mo-

tion, Isometric Embeddings, Non Linear Optimization
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5.4 Redundancy of the curvec. The curvêc is can also be used to define the same torsal

ruled surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

5.5 The curvesa andc induce coordinate systems onU andS on which the isometryI is

represented as the identity function. . . . . . . . . . . . . . . . . . .. . . . . . . . 58

5.6 First estimates of the surfaces converted to the continuous model. An image wrapped

around a cylinder and the swiss roll are shown as the image ofck(tki )+ vki d
k(tki ). The

noise level on the original images wasσnoise = 0.01. . . . . . . . . . . . . . . . . . 67

5.7 The results obtained in chapter 4 are shown above, which are used to initialize the

algorithm provided in this chapter, producing the results shown below. An image

wrapped around a cylinder and the swiss roll are shown as the image ofck(tki ) +

vki d
k(tki ). The noise level on the original images wasσnoise = 0.01. . . . . . . . . . 68

5.8 Pose estimation using the differential model description. On the left the observed

image, on the right the reconstruction of the points described as a differential model. 69

B.1 Example level set of the sub-Stiefel centering problem cost function. A stereographic

projection ofRP2 was used as coordinates. Here blue lines represent low values, red

lines represent high values. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 85

xi



xii



List of Tables

2.1 Neighbor Estimation Algorithm. . . . . . . . . . . . . . . . . . . . .. . . . . . . . 13

3.1 Surface unfolding algorithm. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 24

3.2 Coordinate Descent for Improving Surface Unfolding Solution. . . . . . . . . . . . . 30

C.1 Sub-Stiefel Procrustes polynomial coefficients. . . . . .. . . . . . . . . . . . . . . 93

xiii



xiv



List of Symbols

Q Set of all unfolded points. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 2

qi Theith point in setQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 2

N Number of points in setQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

R
2 Euclidean 2 space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 2

R
3 Euclidean 3 space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 2

U Dense subset ofR2 containingQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

K Number of images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 2

Ik Thekth embedding function (usually considered isometry) . . . . .. . . . . . . . . . . . . . 2

Sk Thekth embedded surfaceSk = Ik(U) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

Rk 3D point features of surfaceSk (implyingRk ⊂ Sk) . . . . . . . . . . . . . . . . . . . . . . . . . 2

rki Theith point in setRk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2

Ck Thekth camera projection function . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .2

Pk Features set of imagek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..2

pk
i Theith point in setPk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3

Ck The linearization of thekth camera projection function . . . . . . . . . . . . . . . . . . . . . . . 3

O(m,n) The set ofm× n Stiefel matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 3
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Introduction
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1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2

1.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6

Inferring structure from image data has been one of the objectives of Computer Vision from the be-

ginning. Classical algorithms assume a rigid scene observed by different cameras and attempt to obtain

a 3D computer description from different features (e.g. color, corners, shade, etc). While these have

been studied to exhaustion, only recently has reconstruction of scenes which differ between image

frames become main-stream, probably motivated by the exponential increase in available processing

capabilities which allows for ever more complex algorithmsto be executed in reasonable time.

Once the rigidity requirement is lifted, several new classes of problems arise. One can consider

scenes with multiple rigid bodies (e.g. a robot arm consisting of several articulations), scenes which

are allowed to bend and/or stretch (e.g. a tree waving at the wind), scenes with strange dynamics (e.g.

fire), and many other variants.

The proposed thesis deals with the reconstruction of surfaces which are allowed to deform in such

a way that intrinsic distances are preserved (i.e. no stretching or shearing is allowed). A sheet of paper

waving is the prototype example, but several types of cloth which are rigid enough not to shear or

stretch may be considered as well.
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Figure 1.1: Acquisition model of the isometrically embedded surface observed by different cameras
in different points in space and time.

1.1 Problem Statement

The earliest design decision introduced is that the object to be reconstructed is represented by a finite

set of feature points, usually inferred from texture. Thesefeature points are assumed to be dense

enough with respect to the amount of deformation. The set of feature points on the unfolded surface

is here denoted byQ = {qi}N1 ⊂ U ⊂ R
2, where eachqi denotes a single 2D surface point. The

notation used means that the elements of the set are indexed from 1 toN , the number of elements in

the set. The subsetU is used to limit the extents of the continuous surface and forpractical purposes it

can be assumed to be bounded since all physical surfaces mustbe finite. If no other information other

than the point cloud is provided, it is considered to be the convex hull of the point cloud.

The object features are then embedded in specific 3D poses by aset of embedding functions
{
Ik : U ⊂ R

2 → R
3
}K

1
. Notice the same notation being used once again to state thatthe elements of

this set are indexed from 1 toK. The surface spanned by the image of each of these functions is called

anembedding poseand will be denoted bySk = Ik(U) ⊂ R
3. Of the whole surface, only a finite

number of feature points are considered, here collected in the setRk = Ik(Q) ⊂ Sk. The elements

of this set are numbered in the same order as the pointsqi soRk =
{
rki
}N

i=1
such thatrki = Ik(qi).

As previously stated, the embedding functionsIk must obey several constraints so as not to shear or

stretch the original 2D surface. For the sake of clarity, thefull characterization of these functions is

delayed.

Finally each of the embedded point setsRk is observed by a different camera which projects

the 3D feature points to a 2D image using camera projection functions
{
Ck : R3 → R

2
}K

1
. Each of

these projections generates a 2D feature point cloudPk = Ck(Rk) ⊂ R
2 which is again numbered

2



in accordance to the previously chosen orderPk =
{
pk
i

}N

i=1
such thatpk

i = Ck(rki ) . Figure 1.1

summarizes the acquisition model, which is algebraically stated as

pk
i = Ck

(

Ik (qi)
)

∀i, k . (1.1)

This equation is generic enough to be the starting point of several computer vision problems and

is more or less difficult to solve, depending on the constraints imposed and the available observed

data. In almost every case, when applied to all available data the equations define an over-constrained

system meaning that no solution satisfies them exactly in real-world applications due to the presence of

noise and sensor limitations. As a work-around these equations are often “solved” by a least-squares

optimization problem formulation. When done correctly, this finds the best solution (in a certain very

specific sense) that almost-fits. Often it also happens that these equations should admit more than

one solution when no noise is present, meaning that the problem is also ill-posed. In these cases the

geometry of the problem allows a continuum of solutions to beidentified, but the presence of noise

might mislead by allowing for a single solution to be identified if the formulation does not take this

design constraint into account. This single solution is meaningless with respect to others and is often

very ill conditioned.

A particularly successful historical example can be formulated when orthographic cameras are

considered and all embedding functionsIk are constrained to be the same(Ik = I). This implies

that all setsRk are equal and that, when zero-centered data is considered, the functionsCk are linear

functions represented as Stiefel matricesCk ∈ O(2, 3). The Stiefel setO(2, 3) is simply the set of

3D rotations where the last line has been erased. The equation thus simplifies to

pk
i = Ck I (qi)

︸ ︷︷ ︸

ri

∀i, k. (1.2)

The classic Tomasi-Kanade algorithm [41] is able to recovera meaningful solution consisting of ma-

tricesCk and pointsri ∈ R
3 from the observationspk

i ∈ Pk. As discussed above, given enough

images the problem is over-constrained, and if (Ĉk, r̂i) is a solution to the problem then any rotation

matrixR ∈ O(3) generates a new, equally valid solution (ĈkR, RT r̂i).

Unlike the Tomasi-Kanade example, in this thesis it is not considered that the embedding func-

tions Ik are the same for allk. Instead, they are assumed to belong to a class of functions known

as “isometries”, adding a new difficulty that must first be identified and represented and later over-

come. Representing the isometry functions correctly is nota trivial task and this work will focus on
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two distinct approaches, one simpler (but coarser), the other slightly more complex which is able to

completely represent these isometry functions. For the sake of clarity, the simpler description will be

given first, while delaying the more complex description to chapter 5.

Looking at equation (1.1), three problems are formulated tobe addressed in this thesis:

1. Recover the surface pointsQ solely from the multiple observationsPk. In figure 1.1 this means

from several observations (c), obtain (a). This problem is here called thesurface unfolding

problem and will be explored in chapter 3.

2. Estimate the embedded pointsRk if the observationsPk and the underlying surface pointsQ
are known. In figure 1.1 this means estimate (b) given (a) and (c). This problem is here called

thepose estimationproblem and will be addressed in chapter 4.

3. Represent and estimate the embedding functionsIk and use this information to improve the

already obtained solutions. This problem is here called theisometry estimationproblem and is

discussed in chapter 5.

Prior to exploring the solution to the stated problems, someinitial considerations are needed which

are provided in chapter 2.

1.2 State of the Art

The first known attempts at fitting developable surfaces to point clouds are described in the papers

[31, 18, 4]. The importance of these papers to this thesis wassomewhat shadowed by the book [32]

which shares a common author with the papers. Chapter 6 and, to a lesser extent, chapter 5 of this

book constitutes the primary source of information on developable surfaces used in this thesis. Other

book resources that cover the topic include sections 3-5 and5-8 of [7] and chapters 3 and 5 of the third

book in the series [38].

In [10] the importance of developable surfaces in ship-hulldesign is stated, since it allows for easy

manufacturing without stretching or tearing and without the use of heat treatment. The paper itself

focuses on approximating developable surfaces using B-splines, coining the term “quasi-developable”,

for use in computer aided design. The result is not exactly developable, but the authors claim is a good

enough approximation for engineering purposes due to metalplasticity. The intent of representing

developable surfaces within a computer is also the main motivation of [40], but now for representing

everyday objects in computer graphics. Instead of providing an approximation to developable surfaces,
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these authors consider a subclass of developable surfaces to approximate a general one. They do

so by considering a piecewise approximation by generalizedcones which are a particular kind of

developable surfaces. In [28] a technique for reconstructing a 3D developable surface from a 3D point

cloud is described. They describe developable surfaces as a1 parameter family of tangent planes

and make these tangent planes agree with the point cloud data. Using tangent plane representation

of developable surfaces is known as the dual representation(see [32]) and has the advantage that the

resulting surface is guaranteed to be developable. A different technique described in [20] uses triangle

meshes to approximate developable surfaces and for computing the development (unfolding) of these

surfaces.

Although not focused specifically on developable surfaces,in [23] techniques for smooth interpo-

lation of ruled surfaces are presented. Since ruled surfaces are a superset of developable surfaces, the

content provides insight which can be used for the later class.

In [2] the state of the art in developable surfaces is cited tobe [11] which deals with the presence

of (non-smooth) creases. Although the present thesis dealsonly with smooth surfaces, it would be

interesting to extend to creased surfaces. This is left as future work.

The paper [25] is perhaps the closest to what is done in chapter 5. The authors of the paper suggest

a discrete parameterization of the surface rulings, calledguiding rules, using the boundary contour.

These guiding rules are later smoothed by interpolation using cubic Hermite polynomials. To obtain

the rulings, the authors rely on a 3D reconstruction of the embedded surface being available. As will

be discussed in chapter 5, the authors also mention the subtle differences between developable surfaces

and torsal ruled surfaces which they deal with in the later paper [26] by segmenting into deformation

regions.

In [27] the authors propose to reconstruct a 3D surface from aperspective camera with known

intrinsic parameters when a template is available and point-wise correspondence is provided. It is

based solely on distance constraints so it does not require asmooth embedding of the surface.

Another approach is to describe the surface as an inextensible triangle mesh by imposing distance

constraints [34, 35, 33]. With this formulation the authorsare able to reconstruct smooth and sharply

folded surfaces by relaxing the distance constraints and allowing them to shorten. The authors claim

that this is a more faithful representation since extrinsicdistance is allowed to shorten, and at the

same time obtain a convex optimization problem. The formulation supposes that the correspondence

between 3D surface points and 2D locations in the input imageis known. In [36] a closed form solution

for reconstruction of surfaces by matching individual images to a reference configuration is described.
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In [37] the authors reconstructs the triangle mesh without knowing the template of the surface, which

is also a property of what’s presented in this thesis. Another interesting paper from this research

group is [34]. In [29] and [30] the authors are interested in real-time detection and augmentation of

deformable surfaces by robustly minimizing an energy cost function.

Finally, a very interesting paper is [14] in which a developable surface (called applicable surface

in the paper) is described as a differential equation. The authors show that the information on the

bounding contour is sufficient to determine the structure.

The author of this thesis has also published [8] and [9] whichare completely described in this

thesis and further refined.

1.3 Contribution

This thesis explores the three problems posed at the end of section 1.1, providing a solution and

discussing each of them. The exact contributions by chapterare

• Chapter 2 is meant to smooth the transition to the following chapters and contains the following

novel ideas

– A general description on how to compute local factorizations applied to rigid scenes.

– An algorithm for neighbor identification from scale orthographic images in the context of

isometric deformations.

• Chapter 3 describes the surface unfolding problem and a means of obtaining the surface points

Q from the observed 2D pointsPk is described.

• The solution for the pose estimation problem is provided in chapter 4.

• A new (differential) parameterization of developable surfaces is described in chapter 5 which

unites generation of the 3D surface and its unfolding.

The following are additional contributions which do not fit in a particular problem:

• An in-depth characterization of a needed set of matrices denoted as “sub-Stiefel is provided in

appendix A.

• An algorithm for computing the sub-Stiefel Procrustes solution as described in appendix C.
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Chapter 2

Local v.s. Global Factorization

Contents

2.1 The Planar Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

2.2 The Non-Planar Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10

2.3 What is Lost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Local Factorization Method . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 12

2.4.1 Neighbor Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12

2.4.2 Local Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 14

2.4.3 Integrating the Solution . . . . . . . . . . . . . . . . . . . . . . . .. . . . 15

2.4.4 Forcing the Stiefel Constraints . . . . . . . . . . . . . . . . . .. . . . . . 16

2.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

The previous chapter defined several point sets that will be used throughout this document:Q ⊂
R
2,Rk ⊂ R

3 andPk ⊂ R
2, where the superscriptk denotes thekth input image. It was assumed that

all these point sets were commonly numbered, implying that apoint matching algorithm was run prior

to the discussion. Feature extraction and matching is by itself a subject worthy of a lot of investigation

and is out of the scope of this thesis.

Assumption 2.1 (Matched Features Assumption)The input data consists of feature points and it is

assumed that the correspondence between points is available. So ifA andB are two point sets whose

elements are refered to by an indexing functionA = {ai}N1 andB = {bi}N1 , it is assumed that each

pointai is related to the corresponding elementbi.

It is not assumed that feature points are visible in all images.

The notion ofneighborhoodwill be very important throughout this document hence some partic-

ular notation is introduced. A neighborhood around a given point qi ∈ Q consists of all the points
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qj which are somehow considered to be close toqi. Define the setNi = {j : qj is a neighbor ofqi}.
The constantsNi will denote the number of elements in the setNi. Introducing an indexing function

for the setNi, the notation1i will be used to refer to the first element of the set,2i refers to the second,

up toNii which is the last element. How the setNi is chosen is discussed later, for now just consider

it as the set of points close toqi.

Due to the matched features assumption these neighborhoodscan be naturally propagated to all

other setsRk andPk. Although pointqi is always a neighbor of pointqji , there is no guarantee that

in a particular image either point is observed so some additional care is needed when stating “pk
i is

a neighbor of pointpk
ji

”. Since it will be usual to cycle through all the observed neighborhoods, the

setV = {(i, j, k) : pk
i andpk

ji
are visible} is here defined. This set is the disjoint union of smaller

per-image setsVk = {(i, j) : pk
i andpk

ji
are visible}.

Assumption 2.2 (Scale Orthographic Cameras)The assumed camera model consists of a scaled pro-

jection on a plane. Hence a camera is defined by a positive scale factors ∈ R
+ and a Stiefel matrix

P ∈ O(2, 3), yielding the projection function

C : R3 → R
2 C(x) = sPx.

The camera parameters arenot assumed to be known.

The following chapters will look at equation (1.1) from different perspectives and attempt to solve

for unknown variables when only some of them are observed. For convenience, the equation is here

repeated and the intermediate 3D pointsrki ∈ Rk ⊂ Sk are evidenced

pk
i = Ck

(

Ik (qi)
)

=







rki = Ik (qi)

pk
i = Ck

(

rki

) ∀i, k . (2.1)

In chapter 1 it was mentioned that the considered embedding functionsIk : R2 → R
3 had to obey

certain metric constraints so as not to stretch or shear the embedded points. Here these embedding

functions are defined as functions which do not change lengths of curves on the surface and called

isometries. So if c : A ⊂ R → R
2 is any 2D curve of finite length, then the 3D curveIk ◦ c must

have the same length (see theorem 3.10 of [16] for a formal proof or [3, 17] for a general overview of

Riemannian geometry). Furthermore, these isometric embedding functions are assumed to be smooth,

i.e. infinitely differentiable.

Since the camera model is assumed to be scale orthographic, the camera projection functionsCk
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are simple linear transformations as in assumption 2.2. Unfortunately, the isometry functionsIk do

not admit such a simple characterization. This motivates the search for alternative methods of solving

equation (2.1).

In order to proceed, a property of isometry functions must bestated:

Fact 2.3 The Jacobian matrix of an isometry functionI : R2 → R
3 evaluated at any pointq is Jq ∈

O(3, 2). Note that here the Stiefel matrix is a3× 3 rotation matrix without the last column.

Proof This is a simple consequence of an isometry having to preserve the norm of tangent vectors

and angles between them. See [3, 17] for details.

So although the isometry functions are hard to represent, their Jacobian matrices have a simple rep-

resentation. The question becomes how can this be exploited, while still claiming to solve something

related to equation (2.1)?

It turns out that differential geometry provides the answerwith the notion of tangent vector and

push-forwards of functions. Using these notions equation (2.1) also defines a linear relation between

the tangent vectors at corresponding points (see for example section IV.1 of [3]). When written in

coordinates, this linear relation is commonly known as the Jacobian matrix.

If the Jacobian matrix of the camera projection functionCk at a pointrki is denoted byCk
i ∈

M2×3, whereMm×n is the set ofm × n matrix, equation (2.1) may be rewritten locally in terms of

tangent vectors at a pointqi as

v k
i = Ck

i J
k
i w i =







uk
i = Jk

i w i

v k
i = Ck

i u
k
i

∀i, k. (2.2)

wherew i ∈ Tqi
R
2, uk

i ∈ Trk
i

Sk andvk
i ∈ Tpk

i

R
2 are tangent vectors. Since the considered camera

projection function is linear, its Jacobian matrix is the linear transformationCk
i = skPk, where

sk ∈ R
+ andPk ∈ O(3, 2) are the camera parameters as defined in the scale orthographic cameras

assumption. Note that the Jacobian matrix for this camera projection model does not depend on the

point. Substituting in the previous equation results in

v k
i = skPk Jk

i w i =







uk
i = Jk

i w i

v k
i = skPkuk

i

∀i, k. (2.3)

This equation is valid when true tangent vectors are considered. Unfortunately, due to the deforma-

tion of the embedded surfaceSk the vectorsuk
i ∈ Trk

i

Sk cannot be represented by point subtraction
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which is only valid on affine spaces. This in turn implies thatthe true tangent vectorsvk
i cannot be

simply computed as differences of points either. On the other hand, this does not apply tow i which

are actual tangent vectors toR2.

2.1 The Planar Case

Consider first the case where all the embedding functionsIk are rigid transformations, mapping the

setQ ⊂ U ⊂ R
2 to the planesSk ⊂ R

3. In this case the isometry functions are affine functions

defined by a Stiefel matrixJk ∈ O(3, 2) and a translation vectortk, which do not change from point

to point.

Ik(q) = Jkq+ tk (2.4)

More important than the structure ofIk, is the fact that their imagesSk = Ik(Q) are planes isometric

to R
2. In this particular case all the vectors in equation (2.3) can be represented as differences of

points. So, given two indexesi andj, the following are valid representations for the tangent vectors at

each surface

w i = qj − qi vk
i = pk

j − pk
i uk

i = rkj − rki (2.5)

all obeying equation (2.3), so it is perfectly valid to write

pk
j − pk

i = skPkJk (qj − qi) ∀(i, j, k) ∈ V (2.6)

As in any regression problem, in the presence of noise these equations are no longer strictly obeyed

and it is usual to find the values that best approximate them insome sense.

2.2 The Non-Planar Case

WhenSk are not planar, equations (2.5) can no longer be written exactly, but in order to proceed they

will be approximated by a difference of points as if they belonged to an affine space. This leads to the

following approximation

Approximation 2.4 (Locally Planar Approximation) The surface sampling is dense enough for local

neighborhoods in the embedded surfaces to be well approximated by planes.
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Figure 2.1: Going to the tangent space and back.

which allows for equations similar to (2.5) to be written

w i = qji − qi v k
i ≈ pk

ji − pk
i uk

i ≈ rkji − rki (2.7)

Notice that here the neighboring points notationji is used, so the equations are only valid when

considering neighboring points. Similarly, equation (2.3) can be approximated as

pk
ji − pk

i ≈ skPk Jk
i (qji − qi) ∀(i, j, k) ∈ V. (2.8)

In this case, the effects of surface distortion is fused withthe effects of noise in the observed

samples.

2.3 What is Lost

This chapter suggests that instead of directly solving the equation system defined by (2.1) it is easier

to solve the equation system defined by equations (2.3) instead. Is there any relevant information

not captured by the suggested alternative? The horizontal lines in figure 2.1 graphically represent

equations (2.1) and (2.3). The vertical up arrows represents equations (2.5). The question posed here

is if anything relevant is lost when coming back down throughthe dotted vertical arrows. The process

of coming down will be calledintegrating the tangent data and the answer to the question is that not

much is lost, but this needs to be clarified.

To integrate the tangent vectors back to the surface, a function known as theexponential function

needs to be available, which describes how to travel from a point along a tangent direction. In the

planar case, this function is simply

expx(vx) = x+ vx ∀x ∈ R
n, vx ∈ TxR

n

which is a fancier way of writing equations (2.5). In the noiseless case, this allows integration to
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be performed by starting from a point, building all it’s neighbors using the exponential function and

applying it recursively starting from the neighboring points. The only ambiguity is the starting point,

this information is lost when going to the tangent space and cannot be recovered when integrating.

This is not considered to be a loss since this information is actually not obtainable from the observed

data.

The exact same argument applies to the non-planar case. The added difficulty in this case is that

the exponential function is usually unknown and equation (2.5) is used as an approximation.

When the existence of noise is considered in the problem a newissue arises: noise integration. In

the simplistic algorithm for integration just given, the problem occurs when one builds a neighbor with

noise and this noise is propagated to all points reconstructed from that point onward. The algorithm

for integration will not be as simplistic as the one just described, but this issue still remains and

can be more or less relevant depending on the neighbor graph connectivity and noise distribution.

If the noise has zero mean, then simply augmenting the numberof neighbors helps to contain this

effect. Unfortunately in the non-planar case, where the surface bend is treated as noise, the “noise”

distribution cannot be assumed to have zero-mean. The next section looks at the effect of noise in a

little more detail.

2.4 Local Factorization Method

Section 2.2 suggests using a local reconstruction method. To gain a little insight and ease the transition

to the next chapter this section will describe how to implement a local factorization algorithm and use

it in the same context as the Tomasi-Kanade algorithm which uses all points at once. Note that the

algorithm presented in this section is purely for discussion purposes but will provide a high level of

parallelism with the algorithm that will be presented in thenext section.

2.4.1 Neighbor Estimation

The notion of locality has been presented but no hint on how tofind the local neighbors has been given.

This problem is simple when the pointsqi are available, but it is not trivial when only the camera

projected pointspk
i are known since the actual distances between them is not known. The problem

is aggravated by allowing the surface to fold, which allows intrinsically far points to appear closer

than the actual neighbors, and further by the fact that scaled-orthographic cameras are considered.

Although very simple, one can consider an algorithm that classifies pairs of points as neighbors if and

only if they are “close” in every image where the pair is visible. The algorithm, described in table 2.1
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Neighbor Estimation

Input: Matched point cloudsPk. Minimum number of imagesL where each point is ob-
served and the desired number of neighborsN for each point. Any point that is seen in
less thanL images is completely discarded.

Output: Builds the setsNi representing the neighboring points of pointi.
1: For each pointi and imagek where pointi is visible, compute the distancedkij , in

image coordinates, to every other visible point. Any point that is not visible in at least
L images simultaneously with pointi is not considered a candidate as a neighbor of
point i.

2: Sort the distances in each image ascendantly and attribute arankingrkij according to
the sorted position (sorkij = 1 means that pointj is the closest to pointi in imagek,
rkij = 2 is the second closest, etc)

3: Let rij = maxk r
k
ij. This is the worst rank of each neighbor in all images wherei andj

are observed simultaneously.
4: For each pointi, pick theN points with lowest worst rankrij . These are the elements

of the output setNi. Ties between 2 points can be broken by contemplating relative
distances. LetD be the index of the images wherei, j1 and j2 are simultaneously
visible, choosej1 if

∏

k∈D dkij1 <
∏

k∈D dkij2 otherwise pickj2. Ties between a higher
number of points can be broken similarly by stating thatD is the set of images where
all points are seen. IfD is empty, break ties arbitrarily.

Table 2.1: Neighbor Estimation Algorithm.

is applied to each point independently and needs two parameters besides the observed point clouds:

L is the minimum number of images in which a point pair needs to be visible to be accepted, andN

is the desired number of neighbors for each point. It works byexcluding non-neighbors, but does not

guarantee that all returned points are actual neighbors. Inpractice, as long as the images taken from

general enough configurations, the algorithm has provided very good results for the considered cases.

Note that the algorithm described produces good results forthe purposes of this document but

there is margin for improvement. For example, step 2 should still allow for many more thanN points

to be available for neighbor selection, or else risk a point being considered a neighbor simply because

all others where occluded in too many frames. In all the experiments in this thesis, it is considered

that points are visible in “enough” images and this point will not be discussed further. If in some

application this is not so simple, care must be taken as to howthe problem will be solved, e.g. take

more images, relaxL, allow a varying number of neighborsNi, etc.

The neighbor detection step may also be used to detect false matches between images. Suppose a

fairly large number of images are available and that a pair ofpoints are considered neighbors in all but

a few images. Then some feedback to the matching algorithm might be provided for it to review the
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quality of the matching step in these images. In this dissertation, the matching of points is assumed

perfect (assumption 2.1) and no further discussion on this topic is given.

2.4.2 Local Factorization

Consider in this section that one is interested in solving the system of equations (as in equations (1.2))

pk
i = Ckri ∀i, k. (2.9)

whereCk ∈ O(2, 3) when an orthographic camera is used, and the 3D points do not depend on the

imagek. Written locally, this equation becomes

v k
i = Cku i ∀i, k. (2.10)

and the vectors are defined by a difference of local neighbors:

pk
ji − pk

i = Ck (rji − ri) ∀(i, j, k) ∈ V. (2.11)

Assuming that all points are seen in every image, collect theprevious equations in a matrix form as

V i = CU i (2.12)

where

V i =











p1
1i
− p1

i p1
2i
− p1

i . . . p1
Nii
− p1

i

p2
1i
− p2

i p2
2i
− p2

i . . . p2
Nii
− p2

i

...
...

. . .
...

pK
1i
− pK

i pK
2i
− pK

i . . . pK
Nii
− pK

i











C =











C1

C2

...

CK











(2.13)

U i =
[

r1i − ri r2i − ri . . . rNii
− ri

]

(2.14)

Applying the rank factorization algorithm, the objective is to infer the values ofC and U i from

the observed valuesV i. Note that the rank factorization algorithm is being applied locally to each

neighborhood at each point. In this section a rigid 3D scene is considered so a rank 3 factorization is

applied to each matrixV i resulting in

V i ≈ Ĉ i Û i (2.15)
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The solution is not unique, and any invertible matrixG i ∈ GL(3) generates a new solution̂C iG
−1
i

andG i Û i. These matrices will be used to integrate the solution from vectors back into points.

Notice that in the standard factorization problem there is only a singleC which accounts for all the

points, while here aC i matrix is computed at each point containing information about its neighbors.

Although in this toy problem the advantage of doing this is not clear, this is done so as to be closer to

the later employed method to reconstruct embedded surfaces.

2.4.3 Integrating the Solution

Recovering the points from the vector information is accomplished by solving

[

r1i − ri r2i − ri . . . rNii
− ri

]

= G i Û i ∀i (2.16)

where Û i is the solution found previously and everything else is a variable of the problem. Notice

that now one is not considering a single neighborhood, but all at once. Collecting all the variables into

a matrixXi ∈ M3×4N :

X =
[

r1 r2 . . . rN G1 G 2 . . . GN

]

allows all the equations described by (2.16) to be written inmatrix form as

XA = 0

for some matrixA defined by the linear equations (2.16). This equation is leftinvariant in the sense

that if X̂ is a solution then left multiplication by any matrixH ∈ M3×3 originates an equally valid

solutionHX̂. This allows to search forX only in the Stiefel matrices since any matrix can be decom-

posed as a Stiefel matrix and a square matrix (known as the polar decomposition in theorem 7.3.2 of

[15]). Also the structure of the problem forces matrixA to have a trivial kernel when all the points

ri are equal andG i = 0. This solution holds no information and needs to be discarded. When no

noise is present the true pointsri and the true matricesG i also obey the equation, meaning that ma-

trix A has kernel dimension at least 4 (three from the trueX and trivial solution mentioned above).

Unfortunately, proving that the matrix has kernel dimension exactly 4, depends on the neighbor graph

connectivity and will not be done. Numerically it is easy to convince that if the neighboring points are

not singularly distributed and the neighboring graph is connected, then this matrix will have rank 4.
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With this in mind, an optimization problem can be formulatedas finding the 3 dimensional sub-

space with the lowest residual, orthogonal to the trivial solution z =
[

1TN 0T3N

]T
:

minimize
∑

i 〈XA,XA〉
s.t. X ∈ O(3, 4N )

Xz = 0

(2.17)

where hereX is seen as a projector ofA to a lower 3-dimensional space. Expanding the inner product

in equation (2.17) this can be re-written as

minimize tr
{
XAATXT

}

s.t. X ∈ O(3, 4N )

Xz = 0

(2.18)

Which, accordingly to the Rayleigh-Ritz quotient (see for example theorem 4.2.2 in [15]), is exactly

the formulation of computing the second and third lowest singular values of a symmetric matrixAAT

where the least singular vector is known to be
[

1TN 0T3N

]T
. This can be obtained with available

software taking into account the sparsity of matrixA such as functionsvds included in MATLAB or

see for example [1].

After a solutionX̂ is obtained, it contains all the reconstructed points and matrices G i up to a

global multiplication matrixH. So the solution to the original factorization problem (2.15) is updated

with the computedG i and changed to

Ĉ i ← Ĉ iG
−1
i

Û i ← G i Û i.

In the no-noise case all̂C i should be equal. When noise is considered and the reconstruction

process is working correctly, they should be similar.

2.4.4 Forcing the Stiefel Constraints

The last step of the classic Tomasi-Kanade algorithm approximates all theCk matrices to the Stiefel

set using a least squares error function. Here the exact samestep is taken to approximate all the2× 3
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Figure 2.2: Reconstruction error as a function of number of images at different noise levels (standard
deviation of 0.001, 0.01 and 0.1). The other parameters are constant, with 200 points and 20 neighbors.

sub-matrices of̂C i:

Ĉ i =











Ĉ
1
i

Ĉ
2
i

...

Ĉ
K
i











using the fact that a single matrixH can be multiplied to the obtainedG i without changing the

optimality of the previous steps.

2.4.5 Results

To test the local algorithm introduced in this section against the global Tomasi Kanade algorithm,

random points were generated using a multivariate Gaussiandistribution normalized to have unit vari-

ance.

In the noiseless case the two methods produce the same result, aside from a global rotation and

translation, which are intrinsically ambiguous in the problem. As the results in figures 2.2, 2.3 and

2.4 show, the local version results are only distinguishable from the global version when the noise

level is high. At low noise levels, both algorithms produce comparable results as long as a sufficient

number of neighbors are used. As the noise level increases, the number of neighbors required for

reconstruction also increases.

In figures 2.2, 2.4 notice that at the highest noise level (σnoise = 0.1), the local version seems to

level off instead of tending asymptotically to zero. This isdue to the fact that noise has a much higher
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Figure 2.3: Reconstruction error as a function of number of points at different noise levels (standard
deviation of 0.001, 0.01 and 0.1). The other parameters are constant, with 20 images and 20 neighbors.
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comparison.
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impact when subtracting points close together than points far away (relative noise). As points are

randomly added according to a Gaussian distribution, neighborhoods become closer together which

increases relative noise.

In terms of complexity, the local method is more complex and its use in this problem is not justifi-

able. As the next chapters show, the local method can be used to solve a broader class of problems to

which the direct Tomasi-Kanade algorithm is not applicable.
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Chapter 3

The Surface Unfolding Problem
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Starting from several observations of the feature pointsPk, the problem described in this chapter

consists of finding the flat surface pointsQ that generated them through equation (1.1), here repeated

for convenience

pk
i = Ck

(

Ik (qi)
)

∀i, k.

The left side of the equation consists of observed image points. In thesurface unfoldingproblem

everything else is unknown aside from the assumption that the cameras are scale-orthographic as in

assumption 2.2 and the first order characterization of the isometric embedding functions as in fact 2.3.

This leads to the problem statement
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Problem Statement 3.1 (Surface Unfolding Problem)Starting with setsPk ⊂ R
2 of image point ob-

servations known to have been generated by the model

pk
i = Ck

(

Ik (qi)
)

∀i, k. (3.1)

recover the generating setQ ⊂ R
2 under the following conditions:

• Ck represents the projection model of a scale-orthographic camera (see assumption 2.2).

• Ik : R2 → R
3 are isometric embedding functions.

• All points have been previously matched and the correspondence between points in differentPk

is known (see assumption 2.1 and the discussion immediatelyafter).

Chapter 2 argued that instead of solving the generating equation directly, one should solve the

local version (2.3) instead, which is here repeated for convenience

vk
i = skPk Jk

i w i =







uk
i = Jk

i w i

vk
i = skPkuk

i

∀i, k. (3.2)

wherew i ∈ Tqi
R
2, uk

i ∈ Trk
i

Sk and vk
i ∈ Tpk

i

R
2 are tangent vectors. The scale factorssk and

the matricesPk are the Jacobian matrices of the scaled orthographic cameramodel (see assumption

2.2 and the discussion leading to equation (2.3)), andJk
i are the Jacobian matrices of the isometry

functionsIk at each pointqi (see fact 2.3).

The first observation is that camera motion is itself an isometry, hence any set of matricesRk ∈
O(3) representing a rotation of the camera may be “absorbed” by the isometry parameters in equation

(3.2) as

v k
i = sk PkRk

︸ ︷︷ ︸

P̂k

(

Rk
)T

Jk
i

︸ ︷︷ ︸

Ĵ
k

i

w i ∀i, k.

This is possible since the parametersPk andJk
i are not considered relevant for the solution of problem

3.1. Also the problem formulation does not provide enough constraints to obtain a unique solution for

these. Thus the freeRk can be used to fix̂Pk =




1 0 0

0 1 0



 which, when multiplied, removes the

bottom row of the Jacobian matriceŝJ
k
i . The set of all matrices which are the topmost2 × 2 block

of a 3 × 2 Stiefel matrix is named in this thesis to be thesub-Stiefelset and denoted bySS. These
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matrices are described in detail in appendix A, which will berefered to when certain properties of

these matrices are needed. For now it is enough to know that using these matrices allows equation

(3.2) to be rewritten as

v k
i = skOk

i w i ∀i, k.

whereOk
i ∈ SS. When the locally planar approximation 2.4 is used, this equation can be written in

terms of differences of points as

pk
ji − pk

i ≈ skOk
i (qji − qi) ∀(i, j, k) ∈ V. (3.3)

As long as all the points in the neighborhood ofqi are visible in all images the objects of the

equation can be collected into matrices

V i =











p1
1i
− p1

i p1
2i
− p1

i . . . p1
Nii
− p1

i

p2
1i
− p2

i p2
2i
− p2

i . . . p2
Nii
− p2

i

...
...

.. .
...

pK
1i
− pK

i pK
2i
− pK

i . . . pK
Nii
− pK

i











M i =











s1O1
i

s2O2
i

...

sKOK
i











W i =
[

q1i − qi q2i − qi . . . qNii
− qi

]

allowing it to be written as

V i ≈ M iW i. (3.4)

SinceV i are obtained from the observations, the solution to this equation can be found by a factor-

ization algorithm similar to the local factorization algorithm presented earlier. The full problem is

broken in much simpler subproblems, chained together to obtain the final result as shown in table 3.1

and represented graphically in figure 3.1

The first step of the algorithm has already been described in section 2.4.1, the others will be treated

in the following sections.

Note that while in section 2.4.2, using local neighbors was merely academic and for comparison

purposes, here it is a requirement since the Jacobian matricesJk
i are changing from point to point.

23



Surface Unfolding

Input: Matched point cloudsPk. Minimum number of imagesL where each point is ob-
served and the desired number of neighborsN for each point.

Output: The setQ of unfolded points, the camera scale factorssk (up to a global scale
factor) and the sub-Stiefel matricesOk

i .
1: Discover local neighbors from the observed images, that is,for eachi, build the index

setNi = {j}Ni

1 as in the discussion below assumption 2.1;
2: Use bilinear factorization to factor equation (3.4);
3: Approximate the shape consistency constraints (i.e. integrate the solution)W i ≈[

q1i − qi q2i − qi . . . qNii
− qi

]
;

4: Approximate the model consistency constraintsOk
i ∈ SS and make sure that, together

with sk, they approximate the camera model.

Table 3.1: Surface unfolding algorithm.

...

Neighbour Estimation

...

Integrate the Solution Model Consistency

Final Solution

Figure 3.1: Schematic diagram of the local factorization algorithm applied to isometric surfaces.
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3.1 Bilinear Factorization

Equation (3.4) states that the observationsV i must be rank 2, so the first step after neighborhood

discovery is to project these observation matrices to the rank 2 set in a least-squares sense. This is

accomplished by performing an SVD onV i and discarding all but the first 2 singular values and

vectors. The SVD provides candidates for matricesM̂ i andŴ i, but similarly to what happened in

section 2.4.2, the solution is not unique and there are matricesG i ∈ GL(2) that allow to navigate

inside the space of all solutions. The differences with respect to what was discussed in section 2.4.2 are

that it is a rank 2 factorization instead of rank 3, and some matrices change names (compare equation

(2.15) with equation (3.4)).

When occlusion is considered, matrixV i is only partially defined (has missing entries) so a rank

completion algorithm must be applied [5, 13]. Rank completion algorithms are usually hand in hand

with the factorization method already discussed so using ithere is a trivial extension.

3.2 Integrating the Solution

The only difference with respect to what was said in section 2.4.3 is that, since the reconstruction is

planar,X belongs toO(2, 3N ) and the solution must be orthogonal to the vectorz =
[

1N 02N

]

.

Everything else applies verbatim.

After this step is complete, matriceŝM i andŴ i should be multiplied by the obtained̂G i matri-

ces as:

M̂ i ← M̂ i Ĝ
−1
i

Ŵ i ← Ĝ iŴ i.

3.3 Forcing the Sub-Stiefel Constraints

This is the main difference from what was presented in section 2.4. Previously the camera model

matrices should approximate the Stiefel matrices as close as possible, here theM i must approximate

scaled sub-Stiefel matrices, as hinted in the discussion upto equation (3.4).

To force the sub-Stiefel constraints, there is still a global H ∈ GL(2) free matrix that navigates

the space of solutions while still maintaining the previously imposed conditions. This matrix, along

with the merged scale factorssk in M̂i, will be used to “straighten the axes”.
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3.3.1 Distance Functions

Before continuing with the actual problem details a slight sidetrack is needed. Anticipating the final

result, the end result of section 3.3 shall consist of some sort of cost function grossly of the form

minimize
∑

i,k d
2
SS

(

M̂
k
i H/sk

)

s.t. H ∈ GL(2)

sk ∈ R
+

(3.5)

This is not the actual cost function that will be used, just a coarse idea that is easily grasped at this

point. Basically, the problem is to search for aH ∈ GL(2) matrix and per image scale factorssk that

forces the matricesOk
i = M̂

k
iH/sk to minimize some sort of distance to the Sub-Stiefel matrix set.

In the appendix it is proven that the set of sub-Stiefel matrices is equal to the set of2× 2 matrices

whose largest singular value is 1 (see theorem A.5). This hints that the distance functiondSS(·) should

depend on the maximum singular value of its argument, but other than this and the fact that it should

somehow measure a distance to the sub-Stiefel set, there is no naturally given choice of function. This

section’s objective is to give a convincing argument that there’s one particular good choice.

Let’s consider a grossly different function, with given scalar valuesmi ∈ R instead of matrices

and using an additive perturbation instead of multiplicative. The objective is to center a point cloud

{mi}Ni ⊂ R around a given valuea:

minimize
∑

i (mi + h− a)2

s.t. h ∈ R

It is clear that for this cost function the solution ish∗ = −E[mi] + a whereE denotes the mean value

overi function. This solution has the additional property thatE [mi + h∗] = a thus confirming that in

a certain sense, the translated cloud is indeed centered arounda as intended.

Consider now a different problem with allmi > 0 affected by a multiplicative perturbation. While

the previous distance function wasd(a, b) = |a− b|, now a new one is usedd(a, b) = | log(a/b)|:

minimize
∑

i log
2
(
mih
a

)

s.t. h ∈ R
+

(3.6)

The solution to this problem is also simple once one realizesthat it can be converted to the previous

problem by changing all variables with theirlog. Again, the solution will have the same “center-
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ing” property, only now in a multiplicative sense due to thelog change of variables:E [log(mih
∗)] =

log(a). Removing thelog, this means thata is the geometric mean ofmih
∗
(

i.e. a =
∏N

i=1(mih
∗)1/N

)

.

Since no natural choice of distance function exists to use inproblem (3.5), the best that can be

done to narrow the choice is impose desired properties for the solution. A natural one is this centering

property just discussed. With this in mind and the characterization of the Sub-Stiefel matrix set given

in theorem A.5, the following optimization problem is proposed:

minimize
∑

i,k log
2
(
σmax

(
Mk

i H/sk
))

s.t. H ∈ GL(2)

sk ∈ R
+

(3.7)

whereσmax(·) returns the maximum singular value. The cost function is essentially the same as the

previous one, using matrices instead, and it measures the distance of the maximum singular value

of the argument toa = 1. In appendix B it is proven that the solution̂H and ŝk verify the condi-

tion
∏N

i=1 σmax(M
k
i Ĥ/ŝk)1/N = 1. No equivalent property would exist if the usual squared norm

distance functiond(σmax(S i H
∗), 1) = |σmax(S i H

∗) − 1| were used. Although not canonically

chosen, the centering property makes this cost function a nicer candidate over the absolute value of

the difference.

The details on how to solve the optimization problem in equation (3.7) are left to appendix B. The

main points that should be considered are:

• The optimization problem reduces itself to a compact 2 dimensional optimization problem,

which makes it particularly easy to find a local minimum.

• Unfortunately it sometimes exhibits multiple local minimums, but these are so close together

that the particular choice is irrelevant in practice.

• It is not smooth everywhere, but the minimum solution does not usually fall on a non-smooth

point so it does not hurt gradient based algorithms.

After finding a solution to this problem, the outputĤ changes the previously found values as

M̂ i ← M̂ iĤ

Ŵ i ← Ĥ
−1

Ŵ i

q̂i ← Ĥ−1q̂i
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and the approximate sub-Stiefel matrices are

Ô
k
i = M̂

k
i /ŝ

k .

Of these,Q̂ = {q̂i}N1 are the solution to problem 3.1 posed at the beginning of thischapter.

3.4 Improving the Solution

It is hard to characterize the obtained solution in terms of optimality. Although bilinear factorization

obtains the optimal rank 2 factorization ofV i in a least squares sense, i.e it solves the optimization

problem

minimize ‖V i − M iW i‖22
s.t. M i ∈ M

2Ki×2

W i ∈ M
2×Ni

,

all other steps approximate the needed constraints while still maintaining this condition. This leads

to the question “what objective function should be optimized”? The original problem statement an-

swers this question with equation (3.1) which when certain measurement noise properties are assumed,

suggests the following problem:

minimize
∑

(i,k)∈V

∥
∥
∥
∥
∥
∥

pk
i − sk




1 0 0

0 1 0



Ik (qi)

∥
∥
∥
∥
∥
∥

2

2

s.t. sk ∈ R
+

Ik isometry

qi ∈ R ∀i

(3.8)

This problem is very hard to solve due to the second constraint as previously discussed. A similar, but

not equivalent, problem can be written based on equation (3.3) instead:

minimize
∑

(i,j,k)∈V

∥
∥
∥

(

pk
ji
− pk

i

)

− skOk
i (qji − qi)

∥
∥
∥

2

2

s.t. sk ∈ R
+ ∀k

Ok
i ∈ SS ∀i, k

qi ∈ R ∀i

(3.9)
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This problem is also hard to solve without a good initial approximate solution due to non-convexity

and high dimensionality, but can effectively be used to improve the solution previously obtained with

the algorithm described in table 3.1. Here the word “improve” is highly dependent on the assumption

that this cost function is better than the solution given by the previous algorithm. The only argu-

ment that will be given in this thesis preferring the output of one over the other is the quality of the

obtained results when compared with ground truth data. Either way, one must always compute the

initial solution using the previous algorithm since the problem in equation (3.9) is only solvable if an

initialization is provided.

There are many optimization algorithms that can be used to locally optimize equation (3.9) given

an initial starting point. The hardest condition is the sub-Stiefel condition, but it is relatively easy to

overcome by either decomposingOk
i with an SVD decomposition and using the maximum singular

value characterization, or by decomposing it using the result of theorem A.9. Here a different route

will be taken using coordinate descent, due to the interesting side-problem that it generates which

might be applicable in other contexts. The idea is that if thevariable sets
{
sk
}K

1
,Q and{Ok

i : ∀i, k}
are considered separately, the solution to the problem in equation (3.9) is globally solvable. In the

variable set
{
sk
}K

1
the problem reduces itself to a least squares problem (if thesign obtained is ever

negative, let the variablesOk
i absorve it). The same is true for the variable set{qi}N1 . Unfortunately,

in the variable set{Ok
i : ∀i, k} the problem is a little harder, but it has been successfully solved

(see appendix C). The solution is closed form up to a dependence on the factorization of a degree 6

polynomial.

At the end of section 3.3 a candidate solution to the surface unfolding problem was obtained. This

solution does not force the sub-Stiefel constraint, but rather approximates it. Since these variables are

the only ones that do not obey the constraint set of the problem in equation (3.9), this is the obvious

starting point. An iterative algorithm is given in table 3.2.

3.5 Results

Four different datasets were tested in this section, three consisting of real world data for visual evalu-

ation of the results and another consisting of synthetic data where ground truth is available.

Since scale orthographic cameras are used, the results obtained are only known up to a translation,

rotation and scale factor, thus this must be quotiented out of the numeric comparison function. To

that effect all numeric error measures of the reconstructedpointsQ are computed by solving the
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Coordinate Descent for Improving Surface Unfolding Solution

Input: ObservationsPk and initial estimates for
{
sk
}K

1
andQ.

Output: Improves the value of the cost function in equation (3.9) by providing better can-
didates for

{
sk
}K

1
,Q, and{Ok

i : ∀i, k}.
1: Solve equation (3.9) only for the sub-Stiefel matrices. This is a sub-Stiefel Procrustes

problem that can be solved as described in appendix C.
2: Solve forQ. This is a least squares problem.
3: Solve for

{
sk
}K

1
. This is a least squares problem. If anysk is negative, change the sign

so it becomes positive and commute the sign of
{
Ok

i : ∀i
}

.
4: Repeat all until some stopping condition is met (e.g. the cost function improvement is

less than a certain amount).

Table 3.2: Coordinate Descent for Improving Surface Unfolding Solution.

optimization problem

E
Q̂
(Q) = minimize 1

N

∥
∥
∥sRQ(IN − 1N1TN/N)− Q̂

∥
∥
∥

2

s.t. R ∈ SO(3)

s ∈ R

whereQ̂ is a zero mean and unit variance point cloud that represents ground truth. The matricesQ

andQ̂ are any ordering of the point cloudsQ andQ̂ where each point is represented by a column.

The optimization variableR removes the rotational ambiguity while the scale factors, together with

the unit variance of the ground truth information, remove the scale ambiguity. Translation invariance

is guaranteed by the zero mean property of the point cloudQ̂ and the mean removal projectorIN −
1N1TN/N applied to the points to be compared. HereIN is theN ×N identity matrix and1N is the

N dimensional column vector filled with ones.

The first dataset consists of a grid of20×20 points wrapped in random configuration around shapes

such as a cylinder, a sinusoidal surface and, as is traditionally known, a swiss roll (see figure 3.2 for

a sample). The original grid is assumed to ocuppy one square unit where each side of the grid is one

unit. The resulting 3D clouds of points are orthographically projected on a random plane, Gaussian

noise with a given variance is added to these projections andfinally the whole image is scaled by a

random scale factor, obeying the scale orthographic cameramodel. The images are generated before

each experiment, meaning that each has different orientations and bend directions as well as noise and

missing points (where applicable).
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Figure 3.2: Input data wrapped around different shapes. Each synthetic set contains a varying number
of images similar to the ones shown. On top a 3D image is shown which is then projected on a plane,
Gaussian noise is added and a scale factor is applied to generate the images on the bottom.

Figure 3.3: Real world data acquired with a low-resolution webcam. The dataset consists of 7 images
of which 3 are shown.

The second and third datasets consist of images taken of checkered paper. In the first case, 7

images were obtained using a laptop webcam at different distances. The corner features were then

identified and fed to the algorithm. This dataset does not contain occlusions of the points. Figure 3.3

shows 3 of the images used. In figure 3.4 another 3 images are shown of a different dataset consisting

of 17 images of a higher sampled grid at a higher resolution.

A third real world dataset consists of 12 images of a bed covertaken at various angles and differ-

ently folded as seen in figure 3.5. Here, 118 different pointswere hand clicked in each image (when

visible) and the algorithm was run on them. This data set provides real world data with a non-constant

distribution where in some areas the sampling is not very dense for the amount of bending. There is

also no hard guarantee that the embeddings truly obey the isometric properties since cloth is easily
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Figure 3.4: Real world data acquired with a consumer 10 megapixel camera. The dataset consists of
17 images of which 3 are shown.

Figure 3.5: A bedcover made of cloth acquired with a consumer5 mega pixel camera. The dataset
consists of 12 images, of which 3 are shown.

sheared.

Although the synthetic data set is used primarily to providequantitative results, this section starts

by showing the algorithm in action. First a set of 18 images asin figure 3.2 were generated, with a

significant amount of Gaussian noise added (standard deviation equal to half the inter-grid distance)

but no missing data. These images were then fed to the algorithm in two batches: one where only 6 im-

ages were used, the other using all 18 images. Figure 3.6 plots the results for visual interpretation. As

expected, an increase in the number of images helps reduce the amount of noise in the reconstruction.

The visual validation is useful to provide confidence in the results, but the synthetic data is much

more useful to provide quantitative expected results. Withthis in mind, several experiments were run

on the synthetic dataset with different parameters: noise variance, number of images and percentage

of missing data. Each experiment was run 10 times and the median of the result was taken when

plotting the results shown in figure 3.7. In the figures it is clear that there are two sources of errors: the

Gaussian noise of each feature point and the non-planar approximation. For noise levelsσnoise = 0

andσnoise = 0.001 (remember that each side of the unfolded surface is considered to be 1 unit) there

is no difference in performance, a hint that the non-planar approximation is limiting the performance

of the algorithm. Only when noise levels become of the orderσnoise = 0.01 do the results start to
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(a) 6 Images. (a) 18 Images.

Figure 3.6: Result of running the algorithm on the syntheticdataset with 6 and 18 images (red crosses).
Ground truth is provided in blue circles for comparison.
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Figure 3.7: Results of applying the algorithm with different parameters. On the left is shown the result
before applying the coordinate cycling algorithm (just thelocal algorithm), and on the right is shown
the results after applying the coordinate cycling algorithm.

deteriorate due to noise, hence becoming the major limiter of performance. In either case, adding more

images is a way of improving the results. Also notice that applying the coordinate cycling algorithm

improves the solution by about a factor of 10.

Note that the previous discussion refers to datasets where new images are used before each exper-

iment. This means that the projection plane used in each image, generating more or less degenerate

data, and the position of the missing data points is chosen independently in each experiment. An-

other useful comparison is when a single dataset is generated and several parameters are changed

in this dataset. Figure 3.8 shows this case. A single datasetof 10 images is generated and before

each experiment noise is added and random points are removed. As the results show, Gaussian noise

does not affect performance as much as missing data. The results also show that10% missing data

(unless pathological cases are considered where the data degenerates) does not impact performance
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Figure 3.8: Logarithmic mean squared error as a function of Gaussian noise with a given standard
deviation and missing data percentage. Each test is performed with 10 synthetic images and 10 neigh-
bors. The results shown represent the median of 5 experiments, where noise and missing data are
chosen randomly before each experiment.

(a) Sample acquired image. (b) Results obtained.

Figure 3.9: Results of applying the algorithm to 7 camera acquired images.

significantly, but after20% performance begins to drop rapidly.

The results obtained when applying the algorithm to the firstreal world example are shown in

figure 3.9. Note that globally the reconstruction appears tohave a slight pinch in the middle. This is

caused by the features not being dense enough for the amount of distortion introduced and the number

of images being too low. When the sampling density is increased, as well as the number of images,

better results are obtained as shown in figure 3.10.

The final dataset, consisting of images of a bed cover, provides a more realistic real world example.

The qualitative results are shown in figure 3.11. The resultsare mostly correct, except for a slight skew

that exists in “almost isolated islands” such as the one on the right middle consisting of 5 points. These

features are neighbors of each other and are linked to the rest of the features by only a few neighboring
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(a) Sample acquired image. (b) Results obtained.

Figure 3.10: Results of applying the algorithm to 17 camera acquired images.

connections. This allows for offsets to occur, even though locally the reconstruction is correct.
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Figure 3.11: Reconstruction of the bed cover cloth overlaidon an image taken of the cloth laying flat.
Blue crosses are the reference clicked points, red circles are the results given by the algorithm, both
are overlaid on a picture taken of the flatbed cover (not in thedataset).
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Chapter 4

The Pose Estimation Problem

Contents

4.1 Cold Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

The pose estimationproblem proposes to recover the actual 3D pointsrki ∈ Rk ⊂ Sk. It is

assumed that besides the observationspk
i the surface pointsqi are also available. The proper problem

statement is

Problem Statement 4.1 (Pose Estimation Problem)Starting with setsPk ⊂ R
2 of image point obser-

vations andQ ⊂ R
2 known to have been generated by the model

pk
i = Ck

(

Ik (qi)
)

=







rki = Ik (qi)

pk
i = Ck

(

rki

) ∀i, k (4.1)

recover the 3D embedded pointsrki ∈ Rk ⊂ Sk ⊂ R
3 under the following conditions:

• Ck represents the projection model of a scale-orthographic camera (see assumption 2.2).

• Ik : R2 → R
3 are isometric embedding functions.

• All points have been previously matched and the correspondence between points in differentPk

andQ is known (see assumption 2.1 and the discussion immediatelyafter).

• rki ∈ Rk are represented in the corresponding camera frame.

Since theqi are now known, the problem decouples and each image can be treated separately. The

last condition in the problem statement specifies the coordinate frame where the pointsrki ∈ Rk in
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equation (4.1) are represented. Since scale orthographic cameras are assumed, the camera model is

thus

pk
i = sk




1 0 0

0 1 0



rki . (4.2)

On the other hand, writing equation (4.1) locally in terms ofvectors as suggested in chapter 2

yields that

uk
i = Jk

iwi. (4.3)

whereuk
i ∈ Trk

i

Rk and w i ∈ Tqi
R
2. Fact 2.3 guarantees thatJk is Stiefel. Remembering that

in chapter 3 the sub-Stiefel matricesOk
i were defined as the multiplication of the camera projection

matrix and this Jacobian, results in this case that they are in fact the top-most2 × 2 entries of matrix

Jk
i :

Jk
i =




Ok

i

∗ ∗



,

where the stars∗ are placeholders for unknown entries.

If this problem is considered after solving the surface unfolding problem as described in chapter 3

matricesOk
i and the scalarssk are known. If not, a way of obtaining these solely frompk

i andqi will

be presented in section 4.1. In either case, consider that these values are known.

From the Stiefel set condition
(
Jk
i

)T
Jk
i = I2 the missing entries can be found up to a sign

ambiguity:

Jk
i =




Ok

i

±oki



. (4.4)

these entries, represented asoki can be chosen uniquely if one admits that the first non-zero entry must

be positive, but what follows does not depend on what choice is made.

Going back to equation (4.3), and once again approximating the vectorsuk
i by the differences of

points

rkji − rki ≈ Jk
i (qji − qi) , (4.5)

a new equation is obtained which, together with equation (4.2), defines a system of equations that

should be satisfied. Unfortunately, the Jacobian matricesJk
i are not completely known and an integral

constraint appears (the unknown sign in equation (4.4)).
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If the coordinates ofrki are written explicitly as

rki =








xki

yki

zki








the complete system of equations becomes

sk




xki

yki



 = pk
i ∀(i, j, k) ∈ V (4.6)




xkji

ykji



−




xki

yki



 ≈ Ok
i (qji − qi) ∀(i, j, k) ∈ V (4.7)

zkji − zki ≈ aki o
k
i (qji − qi) ∀(i, j, k) ∈ V (4.8)

(aki )
2 = 1 ∀i, k (4.9)

whereaki are the unknown sign ofoki .

The first thing to notice when solving this system of equations is that the first two equations with

variablesxki andyki are completely independent of the last two equations in variableszki andaki , hence

they can be solved separately. The first system is an over constrained system of linear equations which

can be solved in closed form as a least squares problem. Sincethe topmost equation depends only

on the image points, while the second depends only on the template points, it’s easy to include prior

information when solving the system. For example if the template is known to be error free and the

sampling is dense, it makes sense to give the second equationmore importance than the first. These

probabilistic approaches are beyond the scope of this thesis.

Unfortunately, the second system is not so simple due to the quadratic equations. The strategy

taken to get an approximate solution is to relax the system as:

zkji − zki ≈ aki o
k
i (qji − qi) ∀(i, j, k) ∈ V (4.10)

∏

i

(aki )
2 = 1 (4.11)

It might not be immediately clear why this system is easier tosolve than the original one, until one

realizes that the linear equation’s solution is given up to scale. Taking this into account, one can first

find a solution that satisfies the linear equation, and then scale the result to satisfy the second equation.
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Collecting all the variables of equation (4.10) into a vector

xk =
[

zk1 zk2 . . . zkn ak1 ak2 . . . akn

]T
,

the equation is linear, meaning that it can be written as

(

lkiji

)T
xk ≈ 0 ∀(i, j, k) ∈ V, (4.12)

wherelkiji is a constant vector, which describes the linear equation.

Collecting the constraints to all visible pairs of points inimagek into a matrix, the following

system is obtained

Lkxk ≈ 0, (4.13)

This system has a zero singular value associated with the singular vector collinear with
[

11×n 01×n

]

,

which is a non-interesting trivial solution due to the fact that an orthographic camera is insensitive to

depth. The second singular value whose corresponding singular vector is the solution up to a scale

factor.

The solution vector should have the entries corresponding to theâki all of equal magnitude, but in

the presence of noise this will not occur and the variance of these will provide a hint as to the quality

of the data. From an optimization perspective this is the solution to the singular value problem

minimize (xk)T (Lk)T Lkxk

s.t. (xk)Txk = 1
[

11×n 01×n

]

xk = 0

Since the solution was given up to a scale factor, equation (4.11) can now be used to fix the scale.

Applying the logarithm to both sides of the equation allows for the scale factorck to be found:

∏

i

(

(ck)2(âki )
2
)

= 1⇐⇒ N log
(∣
∣
∣ck

∣
∣
∣

)

+
∑

i

log(
∣
∣
∣âki

∣
∣
∣) = 0 (4.14)

⇐⇒ log(
∣
∣
∣ck

∣
∣
∣) = −

∑

i

log
(∣
∣
∣âki

∣
∣
∣

)

/N (4.15)

and ck is used to scale the whole solution vectorxk. The fact that orthographic cameras cannot

distinguish depth is present here once again in the fact thatck can only be computed up to a sign.

Unfortunately, in the presence of noise this process can be very ill-conditioned. Instead, the previous
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step will only be used to infer the sign ofaki , which will be forced to be either 1 or -1. After these have

been found, equation (4.10) is solved again where only thezik ∈ R are unknowns, resulting in a linear

system of equations.

4.1 Cold Start

The method shown hinges on knowingsk and Ok
i in advance. If this method is to be run after the

solution for the surface unfolding problem is obtained as described in chapter 3, these values are

already available. If not, they need to be pre-computed fromthe knowledge of setsQ andPk only. To

do so, the already discussed equation 3.3, here repeated forconvenience,

pk
ji − pk

i ≈ skOk
i (qji − qi) ∀(i, j, k) ∈ V, (4.16)

fits into this discussion perfectly. Collecting all the neighboring points together, the previous may be

written as

V i =
[

p1
1i
− p1

i p1
2i
− p1

i . . . p1
Nii
− p1

i

]

Mk
i =

[

skOk
i

]

W i =
[

q1i − qi q2i − qi . . . qNii
− qi

]

The easiest way to solve this system is to first relax the matricesMk
i to be inM2×2 and solving

the least squares problems to obtainM̂
k
i and obtain estimates forsk using the relaxations

∏

i

(

σmax(M̂
k
i )/s

k
)

= 1

which is solved by applying logarithms to both sides of the equation. Once initial estimates forsk are

available, the optimization problem

minimize
∑

(i,j,k)∈V

∥
∥
∥

(

pk
ji
− pk

i

)

− skOk
i (qji − qi)

∥
∥
∥

2

2

s.t. sk ∈ R
+

Ok
i ∈ SS

is solved by coordinate cycling (or a gradient descent method) in a similar way to what was done in

section 3.4. Here this problem is simplified sinceqi are already known. Solving forsk is a simple least

squares problem, while solving forOk
i is the sub-Stiefel Procrustes problem described in appendix
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C. If during the coordinate cycling any of thesk becomes negative, the sign can be absorbed by the

sub-Stiefel matrices.

4.2 Results

The results shown here use the same synthetic dataset as described in section 3.5. The results obtained

can be interpreted with mixed conclusions. The main problemstems from the fact that the signsaki

cannot be uniquely estimated with a scale orthographic camera model. Figure 4.1 shows a reconstruc-

tion where all the signs (up to a global sign change) were correctly obtained. The reconstructed 3D

cloud is visually similar to the 3D cloud that generated the image used. Unfortunately, in the same

dataset (exactly the same conditions), some of the point clouds were not correctly reconstructed as

shown in figure 4.2. Note that in this example, the retro-projected image of the reconstructed point

cloud is correct (compare the two bottom images), so the problem is due to the solution not being

unique.

In the case of reconstructions with a high noise level the same problem occurs but the results can

be catastrophic. Figure 4.3 presents some results where thealgorithm was able to recover the pose,

while figure 4.4 presents some of the bad reconstructions.

Figures 4.5 and 4.6 show the results of applying this algorithm to high resolution real world images

described in section 3.5. The quality of the reconstructionshould not go unnoticed when compared

with the previous synthetic images and it is due to the fact that real world noise, under perfect condi-

tions, is nowhere as large as the noise applied to the synthetic examples.
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(a) Original 3D point cloud and projected images.
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(b) Two views of the same reconstructed cloud.

Figure 4.1: Applying the pose estimation algorithm to an image of a set of 30 where there are20%
missing data and the noise standard deviation is 0.001 (where the inter-grid distance is 1 unit). The
bottom right image is seen from the same angle as the input image shown on the bottom left.
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(b) Two views of the same reconstructed cloud.

Figure 4.2: Applying the pose estimation algorithm to an image of a set of 30 where there are20%
missing data and the noise standard deviation is 0.001 (where the inter-grid distance is 1 unit). The
bottom right image is seen from the same angle as the input image shown on the bottom left.
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Figure 4.3: Four different reconstructions of a dataset with 30 images and a high noise level (σnoise =
0.01). On the left two half cylinder reconstructions, on the top right a sine wave and on the bottom
right a swiss roll.
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Figure 4.4: Four different reconstructions of a dataset with 30 images and a high noise level (σnoise =
0.01) when the reconstruction fails completely. Top 2 images: sine wave; Bottom left: half cylinder;
Bottom right: swiss roll.
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Figure 4.5: Original image and reconstructed 3D point cloud.

Figure 4.6: Original image and reconstructed 3D point cloud.
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Chapter 5

Isometry Estimation Problem
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The last two chapters have built themselves around a local property of the isometric embedding

functionsI (using fact 2.3). This property has allowed for surface unfolding and pose estimation

to be performed with decent results. This chapter intends togo a step further by asking and fully

answering the questions “can further properties of isometry functions be used and can these functions

be somehow parameterized?”, providing a constructive way of building developable surfaces as the

image of isometry functions.
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5.1 Torsal Ruled Surfaces

A Ruled surfaceis defined as the image of a setC ⊂ R
2 (assume it’s convex to simplify the discussion)

through a function

r : C → R
3 r(t, v) = c(t) + vd(t)

wherec : T ⊂ R → R
3 andd : T → R

3 − {0} andT is the projection ofC on the first coordinate.

The line (segments) defined as the image of the function

lt(v) = c(t) + vd(t)

are called therulings of the surface.

When talking about surfaces inR3 one usually refers to embedded surfaces. Unfortunately guar-

anteeing injectivity is not trivial and so in this section only an immersion is guaranteed which is a local

property. In the previous context it is easy to impose by stating that ċ + vḋ andd must be linearly

independent in the image ofC. Although not stated previously it is implied in the previous sentence

that the functionsc andd have to be smooth. Without loss of generality,d(t) can be forced to be

unit normed (with an appropriate change of the setC), at which point it is called thedirectrix of the

surface.

The parameterization defines a surface which is locally isometric to a plane wheṅc, d and ḋ are

everywhere linearly dependent (see the discussion after preposition 4 in chapter 5 of [39] or equation

9 in section 3.5 of [7]). In this case it is called atorsal ruled surface.

Fact 5.1 (Torsal Ruled Surface)Denote the union ofR with plus and minus infinity as̄R. Starting

from a setT ⊂ R and two functionsα : T → R̄ andβ : T → R̄ such thatα(t) < β(t), define a set

C = {(t, v) : t ∈ T , v ∈]α(t), β(t)[}.
A torsal ruled surface is defined as the image the setC through the function

r : C → R
3 : r(t, v) = c(t) + vd(t)

wherec : T ⊂ R → R
3 andd : T ⊂ R → S(2) ⊂ R

3 such that for every(t, v) ∈ C

• [immersion condition]ċ+ vḋ andd are linearly independent.

• [torsal ruled surface condition]̇c, d and ḋ are linearly dependent.
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Figure 5.1: A developable surface which is not a global isometry of a planar subset. If the two cut
disks are glued together along the bold edge, the resulting surface (on the right) cannot be flattened
onto a plane without overlap.

Figure 5.2: This plane isometry is a triangular sheet of paper whose vertices have been smoothly bent.
Each of the 3 bent parts must necessarily be torsal ruled surfaces (the rulings have been drawn), but
the whole surface is not torsal ruled.

5.2 The Relation Between Isometries of planes, Torsal RuledSurfaces

and Developable Surfaces

Developable surfacesis the classic name given to surfaces which have everywhere zero Gaussian cur-

vature. Another way of stating this definition is saying thatthey are locally the image of an open subset

of a plane by an isometry. The set of developable surfaces is larger than the set ofplane isometries

since the first is a local property while the later is global. Aclassical example of a developable surface

which is not an isometry of the plane is a cylinder. The cylinder has everywhere zero curvature, but

it is not the image of an open subset of a plane by an isometry (it fails at the topological level). If a

single straight line is removed from the cylinder then it becomes an isometry of a plane. Another way

in which a developable surface might not be an isometry of a plane is if the embedded surface is large

enough that the unfolding process forces overlapping (see the example in figure 5.1).

Another subclass of developable surfaces are the already mentionedtorsal ruled surfaceswhich

are not equivalent to planar isometries. The example shown in figure 5.1 is a torsal ruled surface which

is not a planar isometry, and figure 5.2 illustrates a planar isometry which is not torsal.

Figure 5.3 represents the mentioned classes graphically. This text is interested in plane isometries
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Developable

Plane

Isometry

Figure 5.3: The three classes of zero curvature surfaces mentioned in the text.

but unfortunately no direct way of using them is known. On theother hand, torsal ruled surfaces

are easy to work with, but the overlap with plane isometries is not perfect. Looking at the counter

example in figure 5.2 one notices that although the whole surface is not torsal ruled, it is the union

of 3 torsal ruled surfaces and a planar set (the 3 corners plusthe planar triangle at the center). This

loose statement constitutes the basis of what’s known as the“classification” of developable surfaces.

See chapter 5 of [39] for a detailed exposition. The main result is that smooth developable surfaces

can be generated as unions, along a common straight line segment, of torsal ruled surfaces and planar

sets. Although planar sets can be parameterized as a torsal ruled surface, since the rulings are not

canonically defined on the surface they are treated separately.

The rest of this chapter considers that the plane isometry isalso a torsal ruled surface that contains

no planar sections on the embedded surface. To deal with general surfaces is considered to be future

work.

5.2.1 Redundancy of the Torsal Ruled Surface Description

The description of torsal ruled surfaces provided in fact 5.1 is far from unique. In fact, two different

means of changing the parameters(T , α, β, c, d) which define the surface can be readily identified by

re-parameterizing the variables(t, v).

If the curvec is changed to any other curve that intersects the same rulingat each parametert (see

figure 5.4), a new parameterization for the surface is obtained. Given a functionf : C → R, this can

be expressed as

r̂(t, v) = c(t) + (v + f(t))d(t) = c(t) + f(t)d(t)
︸ ︷︷ ︸

ĉ(t)

+vd(t).

The under-brace makes it clear that a new parameterization for the same surface is obtained, as long

as the functionsα andβ are changed aŝα = α − f andβ̂ = β − f , thus inducing a new set̂C. Note

that the directrixd and the setT are left unchanged. One still has to make sure that the immersion and

the torsal ruled surface properties hold for the new parameterization.

To check the immersion condition, one needs to make sure that˙̂c + vḋ = ċ + ḟd + f ḋ + vḋ is
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Figure 5.4: Redundancy of the curvec. The curvêc is can also be used to define the same torsal ruled
surface.

linearly independent ofd on Ĉ. This is true becausėc + (f + v)ḋ is linearly independent ofd on the

set Ĉ (this is exactly the condition on the original parameterization), and addingḟ d does not change

the interdependent property.

To check the torsal ruled surface condition, one simply notes that if ċ, d, andḋ are linearly depen-

dent, thenċ + ḟd + f ḋ, d, andḋ are also linearly dependent since only scaling and dependent vector

additions are performed.

One way to reduce the description is to ensure that one can always find âc such that
〈

˙̂c, d
〉

= 0,

meaning that the curvec intersects each ruling orthogonally whenever˙̂c 6= 0, and add this condition

to fact 5.1. To do so, anf must be found that obeys
〈

ċ+ ḟd+ f ḋ, d
〉

= 0. Using the fact that

d(t) ∈ S(2), one knows that〈d, d〉 = 1 and
〈

ḋ, d
〉

= 0, hence the stated condition reads simply

ḟ = −〈ċ, d〉. So, given an initial condition, this differential equation can be integrated to produce

anf that obeys the condition. The resulting curveĉ is not unique since any constant can be used as

an initial condition tof . Here, changing this initial condition will be called “translating along the

rulings”.

A consequence of imposing this condition is that it allows the immersion and torsal ruled surface

conditions to be relaxed. The second condition states that it is always possible to finda, b, c ∈ R not

all zero, such thataċ+ bd+ cḋ = 0. By taking inner product withd one finds thatb = 0 necessarily.

Thus the condition can be relaxed toaċ + cḋ = 0, i.e. ċ andḋ linearly dependent. Since
〈

ḋ, d
〉

= 0

and〈ċ, d〉 = 0, the only way for the immersion condition to fail is ifċ+ vḋ = 0. Thus, the immersion

condition can assume this simpler form.

The other way to change the parameterization, without changing the resulting surface is to con-

sider a re-parameterizationφ of the parametert: r̂(t, v) = r(φ(t), v), changingT̂ = φ−1(T ). The

immersion condition states thatċ(φ(t))φ̇(t) + vḋ(φ(t))φ̇(t) must be everywhere linearly independent

of d(φ(t)) thus forcingφ̇(t) 6= 0. This means thatφ must be a strictly increasing or a strictly decreas-

ing function. The torsal ruled surface condition is also satisfied since only a nonzero rescaling of the
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vectors occurs.

The immersion condition excludesċ andḋ from being simultaneously 0. Hence, a way of reducing

the parameterization space, is to consider these two vectors to have unit joint norm, by this meaning

that the 6 dimensional vector obtained by concatenating both vectors has unit norm. This way ȧφ

can be fixed up to a sign. If this condition is imposed, the onlyre-parameterizationsφ which are still

allowed will beφ(t) = ±t+ k, wherek is any constant.

To summarize what has been said, given a torsal ruled surfacedefined by 5.1, it is always possible

to find a representation(T , α, β, c, d) such that:

Fact 5.2 (Normalized Torsal Ruled Surface)Denote the union ofR with plus and minus infinity as̄R.

Starting from a setT ⊂ R and two functionsα : T → R̄ andβ : T → R̄ such thatα(t) < β(t), define

a setC = {(t, v) : t ∈ T , v ∈]α(t), β(t)[}.
A normalized torsal ruled surface is defined as the image of the setC through the function

r : C → R
3 : r(t, v) = c(t) + vd(t)

wherec : T ⊂ R → R
3 andd : T ⊂ R → S(2) ⊂ R

3 such that for every(t, v) ∈ C

• [orthogonality condition]〈ċ, d〉 = 0.

• [immersion condition]ċ+ vḋ 6= 0.

• [torsal ruled surface condition]̇c and ḋ are linearly dependent.

• [normalizing condition]〈ċ, ċ〉+
〈

ḋ, ḋ
〉

= 1

As discussed, the representation is still not unique since translations along the rulings with a

constant functionf is still allowed. Suppose thatc andd are the functions parameterizing the surface

and consider a new parameterizationĉ = c + fd and d̂ = d, implying that ˙̂c = ċ + f ḋ and ˙̂
d = ḋ.

If the original vectors were normalized, these vectors willnot. A new re-parameterizationφ must be

chosen to satisfy the normalizing condition. After that, any otherφ of the formφ(t) = ±t+k, for any

constantk can be used to generate a new normalized ruled surface parameterization without changing

the surface itself.
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5.2.2 Differential model

Instead of considering the curvesc andd as the surface generating primitives, this section attempts a

more compact notation by using their derivatives as the generating functions. The torsal ruled surface

condition implies that there must exist a vector functions : T → S(2) and functionsγ : T → R and

δ : T → R such thaṫc = γs andḋ = δs. The normality condition imposes that there exists a function

z : T → R such thatγ(t) = cos(z(t)) andδ(t) = sin(z(t)).

The vector functions is orthogonal tod which can be seen both from the orthogonality condition

and the fact thatd is a curve on a sphere which implies
〈

d, ḋ
〉

= 0. Using boths andd as the first two

columns of a rotation matrix functionJ : T → SO(3) the third column can be uniquely completed as

a unit normal to the surface. This way,ċ = cos(z)Je1 andd = Je2. Differentiating the last equality,

results in:

ḋ(t) = J̇(t)e2 = J(t)








0 zJ(t) yJ(t)

−zJ(t) 0 xJ(t)

−yJ(t) −xJ(t) 0







e2 = J(t)(zJ (t)e1 − xJ(t)e3)

where the functionsxJ , yJ , zJ : T → R define the anti-symmetric matrix of the tangent vector to a

curve defined onSO(3).

The torsal ruled surface condition implies thatcos(z)xJ = 0. Next it will be proven thatxJ = 0

even whencos(z) = 0. To do so, consider a torsal surface parameterized by the twofunctionsc and

d, such thaṫc = 0⇒ cos(z) = 0. Since one is free to translate across the rulings, these functions can

be a translation by a non-zero constantf along the rulings of the functionŝc and d̂, i.e. c = ĉ + f d̂

andd = d̂ disregarding the normalizing re-parameterization which only affects the derivatives as a

scale factor. For this parameterization of the surface˙̂c = cos(z)J(t)e1 = −f ˙̂
d where the last equality

stems from the fact thaṫc = 0. The torsal ruled condition implies that˙̂d = J(t)(zJ (t)e1 − xJ(t)e3)

but as seen it can only linearly depend one1, hencexJ = 0. Since ˙̂
d = ḋ, this condition propagates to

the originalḋ.

The fact thatδ = sin(z) forceszJ = sin(z). Hence, the model so far is
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Fact 5.3 (Normalized Torsal Ruled Surface - Differential Model) Denote the union ofR with plus

and minus infinity as̄R. Starting from a setT ⊂ R and two functionsα : T → R̄ andβ : T → R̄ such

thatα(t) < β(t), define a setC = {(t, v) : t ∈ T , v ∈]α(t), β(t)[}.
The differential model of a normalized torsal ruled surface is defined as the septuple

(T , α, β, z, y,J0, c0) as the image of setC through the function

r : C → R
3 : r(t, v) = c(t) + vd(t)

wherec : T ⊂ R → R
3 is the function obtained by integrating

ċ = cos(z) Je1, c(0) = c0,

J : T ⊂ R → SO(3) is obtained from the integration of

J̇ = J








0 sin(z) y

− sin(z) 0 0

−y 0 0







, J(0) = J0

andd : T ⊂ R → S(2) ⊂ R
3 is defined asd = Je2.

Additionally, for everyt ∈ T the value− cos(z(t))
sin(z(t)) does not belong to the interval]α(t), β(t)[ (new

immersion condition).

Note that almost all of the previous conditions are now implicitly satisfied, apart from the immer-

sion condition which still needs to be stated. The two initial conditionsc0 andJ0 define an origin and

an orientation on the surface.

Up to now, it’s not clear why this is a better description thanthe previous one but the next section

provides the answer.

5.3 Isometries

Starting from a functionz : T → R, and using the initial conditionT0 ∈ SO(2) integrate the function

T : T → SO(2) as

Ṫ = T




0 sin(z)

− sin(z) 0



, T (0) = T0.
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Definea : T → R
2 using the initial conditiona0 ∈ R

2 and integrate the differential equation

ȧ = cos(z)Te1, a(0) = a0.

Define the functionb : T → S(1) asb = Je2. This way, the functionsa andb are defined in a similar

way as the functionsc andd in the previous section. Now it will be shown that if the function z is the

same as the functionz used in the previous section, a trivial way of defining isometries is obtained.

Consider the functionq : C → R
2 analogous tor, defined asq(t, v) = a(t) + vb(t) and pullback

the metric ofR2 to C so as to makeq a (local) isometry betweenC andR2. To do so, consider any two

tangent vectorsv,w ∈ T(t,v)C and define an inner product as

〈v,w〉C = 〈q∗v, q∗w〉R2 = vT




(cos(z) + v sin(z))2 0

0 1



w

where the last equation implies the use of orthonormal coordinates onR2. Consider now another copy

of C (call it Ĉ) and pullback the metric of the surfaceS ⊂ R
3 so thatr is a (local) isometry. The

vectors are nowv,w ∈ T(t,v)Ĉ

〈v,w〉
Ĉ
= 〈r∗v, r∗w〉R3 = vT




(cos(z) + v sin(z))2 0

0 1



w

Since the metric structure of both copies ofC agree when the same functionz is used, the function

id : C → Ĉ that maps points identically, is an isometry. See figure 5.5 for a representation. Note that

this map only guarantees a local isometry since as discussedpreviously, not all torsal ruled surfaces

admit a global isometry. Since the discussion is not dependent on the choice of initial conditionsa0

andJ0 they can be forced to be0 and the identity matrix respectively.

Is figure 5.5 the pre-image of the rulings are labelede. These are the image of the straight lines

parameterized as

et(v) = a(t) + vb(t)

and will play an important part in the next sections. These will also be calledrulings of the surface.

Figure 5.5 justifies the function equalityI ◦ q = r. These functions induce the linear functions on

the tangent space (known as push-forwards) as
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Figure 5.5: The curvesa andc induce coordinate systems onU andS on which the isometryI is
represented as the identity function.

r∗(t,v) = I∗q(t,v)q∗(t,v)
⇐⇒

[

ċ(t) + vḋ(t) d(t)
]

= I∗q(t,v)
[

ȧ(t) + vḃ(t) b(t)
]

⇐⇒







(cos z(t) + v sin z(t))J(t)e1 = (cos z(t) + v sin z(t))I∗q(t,v)T (t)e1

J(t)e2 = I∗q(t,v)T (t)e2

Since the immersion condition of the differential model fortorsal ruled surfaces states thatcos z(t)+

v sin z(t) 6= 0 for all t ∈ T , this term can be factored out of the first equation resultingin

J(t)








1 0

0 1

0 0







= I∗q(t,v)T (t)

or that the first two columns ofJ(t) satisfy the right side. Remember that the third column ofJ(t)

was simply the normal to the surface and is a function of the first two columns. In the next sections, it

saves on the symbol complexity ifR2 is identified with the plane{(x, y, z) ∈ R
3 : z = 0}. This way,

I∗q(t,v) can be completed so as to belong toSO(3) (similarly to what was done to the third column of

J) andT (t) can also be seen as a rotation around thez axis inSO(3). Here, these “extensions” are
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written asĪ∗q(t,v) ∈ SO(3) andT̄ (t) ∈ SO(3) respectively. Using this the former equation reads

J(t) = Ī∗q(t,v)T̄ (t)

The first conclusion is that̄I∗q(t,v) = J(t)T̄ T (t) is constant alongv. This way, it can be seen as a

function of the rulings parameterized byt, and will be written simply as̄I∗(t).

5.4 The Relation Between the Isometry and the Rotation Matrices

Starting from the equation

J = Ī∗T̄

differentiate it:

J̇ = ˙̄I∗T̄ + Ī∗ ˙̄T (5.1)

⇐⇒ JKJ = Ī∗KI T̄ + Ī∗T̄KT (5.2)

⇐⇒ JKJ = JT̄ TKI T̄ + JKT (5.3)

⇐⇒ KJ = T̄ TKI T̄ +KT (5.4)

where the variousK that appear are functions oft, representing the tangent vector to the corresponding

curve onSO(3). ParameterizinḡT as

T (t) =








cT (t) −sT (t) 0

sT (t) cT (t) 0

0 0 1







,
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where the functions represent the cosine and sine of a function of t, allows the previous equation to be

re-written as








0 zJ yJ

−zJ 0 0

−yJ 0 0







=








cT sT 0

−sT cT 0

0 0 1















0 zI yI

−zI 0 xI

−yI −xI 0















cT −sT 0

sT cT 0

0 0 1







+








0 zT 0

−zT 0 0

0 0 0








(5.5)

⇐⇒








0 zJ − zT yJ

−zJ + zI 0 0

−yJ 0 0







=








0 zI cT yI + sTxI

−zI 0 cTxI − sTyI

−cT yI − sTxI −cTxI + sT yI 0








(5.6)

where the anti-symmetric matrices have also been expanded to their coordinate functions. This yields

the relations

zJ − zT = zI

cT yI + sT xI = yJ

cT xI − sT yI = 0

(5.7)

the bottom two imply that

xI = sT yJ

yI = cT yJ

(5.8)

And since the last section forcedzJ = zT the first equation implies thatzI(t)=0.

From the above discussion one learns that if one considers the curveI∗(t) ∈ SO(3) then the

tangent vector to this curve must obey

İ∗ = I∗ yJ








0 0 cT

0 0 sT

−cT −sT 0








︸ ︷︷ ︸

KI

wherecT andsT parameterize the rotation matrixT (t) ∈ SO(2).

5.5 Optimization

At the end of chapter 3 the intent of optimizing the cost function in equation 3.8 was stated, but quickly

dismissed due to the difficulty posed by the constraint thatIk must be an isometry. This equation is
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here repeated for convenience

minimize
∑

(i,k)∈V

∥
∥
∥
∥
∥
∥

pk
i − sk




1 0 0

0 1 0



Ik (qi)

∥
∥
∥
∥
∥
∥

2

2

s.t. sk ∈ R
+

Ik isometry

qi ∈ R ∀i

(5.9)

This chapter removed this difficulty by providing an effective way of representing isometries. The

optimization problem is re-written as

minimize
∑

(i,k)∈V

∥
∥
∥
∥
∥
∥

pk
i − sk




1 0 0

0 1 0




(
ck

(
tki
)
+ vki d

k
(
tki
))

∥
∥
∥
∥
∥
∥

2

s.t. qi = ak(tki ) + vki b
k(tki )

ȧk(t) = cos(zk(t))T k(t)e1 ċk(t) = cos(zk(t))Jk(t)e1

bk(t) = T k(t)e2 dk(t) = Jk(t)e2

Ṫ k = T k




0 sin(zk)

− sin(zk) 0



 J̇k = Jk








0 sin(zk) yk

− sin(zk) 0 0

−yk 0 0








T k(0) = Tk
0 Jk(0) = Jk

0

ak(0) = ak0 ck(0) = ck0

Tk
0 ∈ SO(2) Jk

0 ∈ SO(3)

ak0 ∈ R
2 ck0 ∈ R

3

tki ∈ T k

vki ∈
]

αk(tki ), β
k(tki )

[

zk : T k 7→ R

yk : T k 7→ R

At first glance the problem seems overwhelming, particularly since in involves an optimization prob-

lem of infinite dimension on the space of functions (zk andyk). But it does provide a way to represent

the problem which was not previously available.

Since no reliable information exists about the setT k or Ck, these will be relaxed to beR andR2
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respectively. This implies that the immersion condition isnot being explicitelly enforced, but knowing

that the data comes from real embedded isometric surfaces ifthe optimization problem converges to

the true solution the condition will be satisfied. So as long as the algorithm is working as expected, the

immersion condition should be automatically satisfied, otherwise the solution is meaningless anyway.

Although there are people working on optimization algorithms on the space of functions, at this

time a simplified approach is taken. Instead of considering any function, the functionszk andyk will

instead be approximated by piecewise constant functions, discontinuous at half the distance between

each data point. The new symbolszki = zk(tki ) andyki = yk(tki ) are introduced to represent the

functions at the sampled values. Similarly, defineJk
i , Tk

i , cki , dk
i , aki andbk

i .

This way, the differential equations on the rotation matrices in the problem are simple to integrate.

Since it will be useful later on, the symbolsJk
i−1/2 andTk

i−1/2 are also defined, which correspond to

the integration half way between two sample points

Jk
i−1/2 = Jk

i−1 exp

















t
k
i
−t

k
i−1

2

















0 sin(zki−1) yki−1

− sin(zki−1) 0 0

−yki−1 0 0

































Jk
i = Jk

i−1/2 exp

















t
k
i
−t

k
i−1

2

















0 sin(zki ) yki

− sin(zki ) 0 0

−yki 0 0

































Tk
i−1/2 = Tk

i−1 exp









t
k
i
−t

k
i−1

2









0 sin(zki−1)

− sin(zki−1) 0

















Tk
i = Tk

i−1/2 exp









t
k
i
−t

k
i−1

2









0 sin(zki )

− sin(zki ) 0

















The matrix exponential functions for these cases are easy tocompute, using the Rodrigues rotation

formula for the 3 dimensional case and the fact thatSO(2) is group isomorphic to the circle, hence it

results in a simple rotation of an angle equal to the anti-symmetric argument.

To integrate the second set of differential equations note that the velocity vectoṙc is orthogonal to

the acceleration vector̈c and both are of constant magnitude wheneverz andy are constant. Taking

the cross product between the two, one also discovers that the result does not depend on the rotation

angle, thus the movement is planar. This implies that the curve c is piecewise circular arches. The
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same is true for the curvea. In any circular path, the angular velocity at which it is runis given by

ω = ‖ċ‖ / ‖c̈‖ and the center of the path is‖ċ‖ /ω in the direction of the acceleration vector. Thus, in

this particular caseω =
√

sin(z)2 + y2 and the center point of the trajectory isc+ c̈/(sin(z)2 + y2).

Thus, using all that was said, the following function is proposed as the integration of a section ofċ,

starting att = 0 with initial conditionsc(0) = 0 andJ0, when the functionsyk andzk are constant:

ic(t;J, y, z) =
cos(z)

sin(z)2 + y2
J








0

− sin(z)

−y







+

cos(z)
√

sin(z)2 + y2
J









sin(
√

sin(z)2 + y2 t)

sin(z)√
sin(z)2+y2

cos(
√

sin(z)2 + y2 t)

y√
sin(z)2+y2

cos(
√

sin(z)2 + y2 t)









Note that the important limitsin(z)2 + y2 → 0 where the function degenerates to

ic(t;J, y, z) = t J e1

This way, to integrate the path whenyk andzk are piecewise constant, one gets

cki = cki−1 + ic((ti − ti−1)/2;J
k
i−1, y

k
i−i, z

k
i−1) + ic((ti − ti−1)/2;J

k
i−1/2, y

k
i , z

k
i )

In a much simpler way, the integration formula forak is given by

ia(t;T, z) = −cos(z)

sin(z)
T




0

1



+
cos(z)

sin(z)
T




sin(sin(z) t)

cos(sin(z) t)





and likewise, the important limitsin(z)→ 0 where the function again degenerates to a straight line

ia(t;T, z) = t T e1

The integrated path is thus

aki = aki−1 + ia((ti − ti−1)/2;T
k
i−1, z

k
i−1) + ia((ti − ti−1)/2;T

k
i−1/2, z

k
i )

To save on the symbol complexity, all these equations will behidden behind the phrase “Ik isom-
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etry”. Thus the optimization problem is now

minimize
∑

(i,k)∈V

∥
∥
∥
∥
∥
∥

sk




1 0 0

0 1 0




(
cki + vki d

k
i

)
− pk

i

∥
∥
∥
∥
∥
∥

2

s.t. qi = aki + vki b
k
i

Ik isometry

Here the pointsqi may be assumed to be variables of the problem or known. In the later case the

optimization problem is actually an extension of what was discussed in chapter 4 with respect to pose

estimation. Either way, the usual technique of using a penalty function where a parameterµ ∈ R is

progressively increased so as to force the constraint to be obeyed may be used to solve the constrained

optimization as

minimize
∑

(i,k)∈V

∥
∥
∥
∥
∥
∥

sk




1 0 0

0 1 0




(
cki + vki d

k
i

)
− pk

i

∥
∥
∥
∥
∥
∥

2

+ µ
∥
∥aki + vki b

k
i − qi

∥
∥2

s.t. Ik isometry

Note that the remaining constraints may be plugged directely into the cost function meaning that

the problem is now unconstrained. This problem is solvable using gradient methods and the author

obtained good results using the Levenberg–Marquardt algorithm for least squares optimization. In

the case whereqi are known, the problem decouples for each imagek. In the case where they are

variables, the problem may be computationally simplified bya standard “decoupling” technique by

writting

minimize











minimize
∑

(i,k)∈V

∥
∥
∥
∥
∥
∥

sk




1 0 0

0 1 0




(
cki + vki d

k
i

)
− pk

i

∥
∥
∥
∥
∥
∥

2

+ µ
∥
∥aki + vki b

k
i − qi

∥
∥2

s.t. Ik isometry











s.t. qi ∈ R
2

where the inner problems are solved for fixedqi and then an iteration of the exterior problem is run.

These steps are cycled until a convergence criterion is met.

There is still a significant problem that must be addressed before the optimization can be carried
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out, relating to the initialization of the gradient method.The previous chapters provided a way for an

initial solution to be obtained, but unfortunately the parameters obtained are not directly convertible

to the parameters needed. The next section explains how to convert the previously obtained data into

the new description.

5.6 Numeric Initialization

In the previous chapters a way of inferring the flattened surface, represented by the pointsqi ∈ Q ⊂
R
2 and a local estimate ofI∗qi

, was presented. These estimates are going to be used to initialize the

continuous surface parameters introduced in this chapter.

Numerically, suppose that one knows the value ofI∗ at two close pointsq1,q2 ∈ R
2 which lie on

the rulings parameterized byt1 andt2: q1 ∈ el(t1) andq2 ∈ el(t2). A first order approximation for

I∗(t) is

I∗(t1 + h) ≈ I∗(t1) exph(I∗(t1))
T
İ∗(t1) = I∗(t1) exphKI(t1)

Consideringh such thatt2 = t1 + h and rearranging the equation:

log
(

(I∗(t1))T I∗(t2)
)

≈ (t2 − t1)KI(t1)

= (t2 − t1)yJ(t1)








0 0 cT (t1)

0 0 sT (t1)

−cT (t1) −sT (t1) 0








The first thing to notice is that the matrixT (t1) can be obtained up to a sign, even if(t2− t1)yJ(t1) is

unknown, by normalizing the last column ofKI(t1) to unit length. This is enough to infer the ruling

e(t1) that passes through the point.

5.6.1 Greedily Inferring the Rulings

Besides the first order approximation used in the last equation, there is also the problem introduced by

noise in the data. So the ruling that passes through a given point qi, can be better approximated from
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all the neighboring values by solving the bilinear system ofequations

h1KI = log((I∗i)TI∗1i)

h2KI = log((I∗i)TI∗2i)

h3KI = log((I∗i)TI∗3i)
...

...

where the notationji was introduced in the previous chapters and means thej’th neighbor of pointi.

Since only two independent parameters are available inKI , this system can be solved in a least squares

sense, as a rank-1 factorization on the entries(1, 3) and(2, 3) of the matrices. The solution represents

a line through each of the points, which approximates the rulingse(ti) of the surface. Note that since

neighboring points are local to each point, there is still noconsistency between non-neighboring points

on the same ruling.

5.6.2 Smoothing the Rulings to Obey the Global Constraint

To guarantee consistency between non-neighboring points apiecewise cone approximation is used.

Under this model, nearby rulings must intersect at a common point, which might be infinity allowing

for parallel lines. Suppose that a nominal ruling is available and consider all the points within a certain

distance to it. The previous discussion provided a line direction through each of these points and one

now wishes to smooth these so that they intersect at a common point. This is known in projective

geometry as a pencil of lines and can be estimated as a rank projection much the same way as the best

line that passes through a cloud of points (which is the dual problem in projective geometry). This

process assigns smoothed rulings to neighboring points, and the process can be called recursively until

all points have a smoothed ruling attributed to them. The first ruling can be found by searching the

space of lines that pass through the center of the constellation of points. Once all the rulings have

been found, one can consider circular arches that intersectthem orthogonally, yielding the image of

the curvea.

This curve must then parameterized so as to obey the constraint ‖ȧ‖2 = cos2 z and
∥
∥
∥ḃ
∥
∥
∥

2
= sin2 z,

which depends on the radius of the circular arch. This step yields the value of the parameterszki and

tki . Now thattki are available, thehi found in section 5.6.1 provide the final parametersyki .

Two examples of point clouds converted this way can be seen infigure 5.6. After the optimization

algorithm is applied, the results obtained are show in figure5.7. For the image of the half cylinder, the
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Figure 5.6: First estimates of the surfaces converted to thecontinuous model. An image wrapped
around a cylinder and the swiss roll are shown as the image ofck(tki ) + vki d

k(tki ). The noise level on
the original images wasσnoise = 0.01.

before and after mean squared errors when compared to the ground truth 3D surface are respectively

0.1014 and 0.0003. For the image of the swiss roll, the mean squared errors are respectively 0.1100 and

0.0005. Both of these confirm that applying the intrinsically correct model described in this chapter

provides better reconstructions.

Figure 5.8 presents the reconstruction of the points seen onthe real world image using the differ-

ential model presented in this chapter.
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Figure 5.7: The results obtained in chapter 4 are shown above, which are used to initialize the al-
gorithm provided in this chapter, producing the results shown below. An image wrapped around a
cylinder and the swiss roll are shown as the image ofck(tki ) + vki d

k(tki ). The noise level on the
original images wasσnoise = 0.01.
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Figure 5.8: Pose estimation using the differential model description. On the left the observed image,
on the right the reconstruction of the points described as a differential model.
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Chapter 6

Conclusion

This thesis proposed several new techniques relating to representation and reconstruction of surfaces

with the distinct property of having everywhere zero curvature. The methodology involves sequen-

tially solving several problems, starting from matched features in different 2D images and culminating

in first a point-wise characterization of the unfolded surface and later a functional description of the

surface and scene. The cameras are assumed to be scale orthographic and are not previously calibrated.

Two separate techniques are described: the first based on rank factorization of matrices relying

solely on local properties of the observed surfaces and operating solely on the observed point clouds;

the second modeling the surface as a set of differential equations on which optimization may be per-

formed which allows for all non-local properties to be satisfied implicitly.

Although the problem of reconstructing the unfolded surface has an almost unique solution, in the

sense that it is unique up to scale, rotation and translation, the problem of obtaining the embedding of

the surface as seen on an image does not. This is not a limitation of the presented work but a limitation

of the problem itself which can not be solved unless further information is provided.

6.1 Limitations and Future Work

The greatest limitation of the proposed methodology is its reliance on matched image features. Finding

the correct correspondence between points in different images is a hard enough problem when the

scene is known to be rigid. When considering non-rigid scenes with possible occlusions, as is the

case in this thesis, obtaining the needed input data automatically is a challenge. Also, a reliable way

of detecting outlier data and discarding it should be implemented, or change the methodology to be

robust to these matching errors.
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A second limitation is the sequential nature of the method, both inside the solutions provided in

chapters 3 and 4 and the sequential connection between chapters 3, 4 and 5. Changing the sequential

methods in chapters 3 and 4 would probably imply the development of a completely different algo-

rithm, but if a way to initialize the optimization problem inchapter 5 were found which did not rely on

the previous knowledge of a solution it would effectively decouple the chain and allow this algorithm

to stand by itself.

Due to the author’s limited knowledge of infinite dimensional functional optimization, the op-

timization parameters in chapter 5 were simplified to turn the problem into the finite dimensional

domain. Here two possible improvements are possible by either improving on the way the discrete

parameters are chosen and integrated or performing the optimization directly in the space of functions.

The pose estimation problem presented in chapter 4 which also affects the embedding in chapter

5 has a natural ambiguity due to the camera model not providing any information on depth. In this

thesis not much attention was payed to it, but it is the author’s belief that using second order infor-

mation (smoothness of the bending rate) near the points where the surface is almost parallel to the

camera’s projection plane should allow for more embedding information. Also, if stream information

is available (i.e. video images) using the dynamics of the surface movement should also improve both

the reconstructions and the camera ambiguities.

Finally, the presented algorithms are all batch algorithmswhich assume all information is available

at once. Since the number of observed images influences the noise of the reconstruction, it seems that

a video sequence of a waving surface would be better to minimize reconstruction noise. Unfortunately,

the amount of data that needs to be held makes this unviable for large datasets. Ideally, a way to update

the reconstructed data at each frame without relying on the past frames would be optimal.
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Appendix A

Sub-Stiefel Set

Due to their special importance to this work, a certain type of matrices here namedsub-Stiefelmatrices

(SS) will be exhaustively described in this section. These matrices are obtained from theSO(3)

matrices by truncating the last column and the last row, hence

SS =






S ∈ M

2×2 :




S ∗
∗ ∗



 ∈ SO(3)






=






S ∈ M

2×2 :




S

∗



 ∈ O(3, 2)






.

Note that either representation is equivalent.

Theorem A.1 If S ∈ SS is a sub-Stiefel matrix, then so is the matrix generated by pre and post multi-

plying rotation matricesR1,R2 ∈ SO(2)

Proof This stems from the fact thatSO(2) is canonically embedded inSO(3) as

SO(2) ≃










R 0

0T 1



 ∈ SO(3) : R ∈ SO(2)






.

S ∈ SS means that there is a rotation matrix




S ∗
∗ ∗



 ∈ SO(3). By embeddingR1,R2 ∈ SO(2) in

SO(3) and by pre and post multiplication one obtains the matrix




R1SR2 ∗
∗ ∗



 ∈ SO(3) (ignoring

the stared parts), which proves the statement.

The operation of matrix truncation has a well known effect onthe singular values. In [15] the

following theorems describe this operation for symmetric matrices:
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Fact A.2 Let A ∈ R
n×n be a given Hermitian matrix, lety ∈ Cn be a given vector, and leta ∈ R

be a given real number. Let̂A ∈ R
(n+1)×(n+1) be a Hermitian matrix obtained by borderingA with y

anda as follows:Â =




A y

y∗ a



. Let the eigenvalues ofA andÂ be denoted by{λi}n1 and
{

λ̂i

}n+1

1
,

respectively, and assume that they have been arranged in increasing orderλ1 ≤ · · · ≤ λn and λ̂1 ≤
· · · ≤ λ̂n+1. Then

λ̂1 ≤ λ1 ≤ λ̂2 ≤ λ2 ≤ · · · ≤ λ̂n ≤ λn ≤ λ̂n+1

Proof See [15] Theorem 4.3.8, page 185.

The “converse” is also true:

Fact A.3 Let {λi}n1 and
{

λ̂i

}n+1

1
be two given sequences of real numbers such thatλ̂1 ≤ λ1 ≤ λ̂2 ≤

λ2 ≤ · · · ≤ λ̂n ≤ λn ≤ λ̂n+1, then there exists a real vectory ∈ R
n anda ∈ R such that

{

λ̂i

}n+1

1

is the set of eigenvalues of the real symmetric matrixÂ =




Λ y

yT a



 ∈ M(n+1)×(n+1), whereΛ is the

diagonal matrix with entriesλi.

Proof See [15] Theorem 4.3.10, page 186.

Note that this result extends to the case whereΛ is substituted by a symmetric matrixA ∈ Mn×n

with eigenvalues{λi}n1 by considering an eigenvalue decompositionA = UΛUT whereU ∈ SO(n).

Note thatU ∈ SO(n) impliesÛ =




U 0

0T 1



 ∈ SO(n+ 1), thus:

eig
(

Â
)

= eig








Λ y

yT a







 =
{

λ̂i

}

⇐⇒ eig



Û




Λ y

yT a



 ÛT



 = eig








A Uy

yTUT a







 =
{

λ̂i

}

These are usually known as the Cauchy Interlacing Theorems.In the case where the matrix is not

hermitian, a similar theorem applies to the singular valuesby noting that the squares of the singular

values of a matrixA ∈ Mn×m are the eigenvalues ofATA to which the previous result can be applied:
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Fact A.4 LetA ∈ Mm×n be a given matrix and let̂A be the matrix obtained by deleting any one row

fromA. Let{σi}m1 denote the singular values ofA and let{σ̂i}n1 denote the singular values of̂A, both

arranged in non-increasing order.

1. If n ≥ m, then

σ1 ≥ σ̂1 ≥ σ2 ≥ σ̂2 ≥ · · · ≥ σ̂m−1 ≥ σm ≥ 0

2. If n < m, then

σ1 ≥ σ̂1 ≥ σ2 ≥ σ̂2 ≥ · · · ≥ σn ≥ σ̂n

Proof See [15] Theorem 7.3.9, page 419.

Using theorem A.4, the sub-Stiefel set can be characterizedas the set of2 × 2 matrices with the

largest singular value equal to 1:

Theorem A.5 The set of sub-Stiefel matrices is given by

SS =
{
S ∈ M

2×2 : σmax(S) = 1
}
.

Proof The proof is broken into 2 parts:

• SS ⊂
{
S ∈ M2×2 : σmax(S) = 1

}
:

Let

R =




S r

sT u



 ∈ SO(3)

whereS is a sub-Stiefel matrix. Then the matrix

Q =




S

sT





is a Stiefel matrix, hence its singular values are{1, 1, 0}. Therefore theorem A.4 applies directly,

proving that the maximum singular value ofS is 1.

• SS ⊃
{
S ∈ M2×2 : σmax(S) = 1

}
:

Let S ∈ M2×2 be a matrix whose maximum singular value is1 and the other isλ. Then the

eigenvalues ofSST are1 andλ2. By theorem A.3, there is a vectory and a scalara ∈ R such

that

eig








SST y

yT a







 = {1, 1, 0}
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Since the matrix is symmetric and positive semi-definite, there is a matrixQ =




Q1

qT



 ∈ M3×2

with singular values equal to{1, 1, 0} (Stiefel matrix) such that

QQT =




SST y

yT a



 ,

in particularQ1Q
T
1 = SST which implies that there is a matrixR ∈ SO(2) such thatS =

Q1R. SinceQ1 is sub-Stiefel by theorem A.1S is sub-Stiefel.

ThusSS =
{
S ∈ R

2×2 : σmax(S) = 1
}

.

Note that this is an intrinsic characterization of the sub-Stiefel set, not dependent on the existence

of a rotation (or Stiefel) matrix. It also leads to some interesting equalities:

Theorem A.6 LetS ∈ SS, then

σ2
min = det(S)2 = ‖S‖2 − 1

Proof The proof follows from the singular value relationsdet2(S) = σ2
max(S)σ

2
min(S) and‖S‖2 =

σ2
max(S) + σ2

min(S) by imposingσmax(S) = 1.

This last theorem, although not of great importance by itself, serves to characterize the sub-Stiefel

set as a subset of an algebraic variety:

Theorem A.7 Define the setA =
{

A ∈ R
2×2 : ‖A‖2 − det(A)2 − 1 = 0, ‖A‖2 ≤ 2

}

, thenA = SS.

Proof The proof is split into two parts:

1. SS ⊂ A:

LetS ∈ SS, thenσmax(S) = 1 which trivially satisfies the equality condition‖S‖2−det(S)2−
1 = 0:

σ2
max(S) + σ2

min(S)− σ2
max(S)σ

2
min(S)− 1 = σ2

min(S)− σ2
min(S) = 0

and sinceσ2
min(S) ≤ σ2

max(S) = 1 the inequality constraint is also satisfied:

‖S‖ = σ2
min(S) + σ2

max(S) ≤ 1 + 1 = 2
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2. A ⊂ SS:

Let A ∈ A, then the equality‖A‖2 − det(A)2 − 1 = 0 holds. Using singular values, this can

be written as

σ2
max(A) + σ2

min(A)− σ2
max(A)σ2

min(A)− 1 = 0

=⇒ σ2
max(A) =

1− σ2
min(A)

1− σ2
min(A)

This implies that eitherσ2
max(A) = 1 or σ2

min(A) = 1. The inequality constraint‖A‖2 =

σ2
max(A) + σ2

min(A) ≤ 2 imposes thatσ2
min(A) ≤ 1. If σ2

min(A) = 1 then the inequality

constraint forces that1 = σ2
min(A) ≤ σ2

max(A) ≤ 1. Either way,σmax(A) = 1.

HenceSS = A.

Hence, given a general matrixA =




a c

b d



 the implicit condition that must be satisfied isf(A) =

a2+b2+c2+d2−a2d2+2abcd+c2b2−1 = 0. A question that arises is if this set is a smooth manifold.

Since an implicit condition is available, checking for smoothness resumes itself to guaranteeing that

the rank of the differential map is 1. Hence the set is not smooth if the derivatives

∂f

∂a
= 2a− 2ad2 + 2bcd

∂f

∂b
= 2b− 2bc2 + 2acd

∂f

∂c
= 2c− 2cb2 + 2abd

∂f

∂d
= 2d− 2da2 + 2abc

are simultaneously zero (inside the allowed domain). Unfortunately the next theorem states that the

set is not smooth at certain well characterized points.

Theorem A.8 The setSS is not a smooth sub-manifold ofM2×2 only at the pointsA ∈ SS where

A ∈ O(2).

Proof To check where the derivatives are simultaneously zero, thefollowing system must be solved

a = (ad− bc)d b = −(ad− bc)c c = −(ad− bc)b d = (ad− bc)a (A.1)

substituting the first in the fourth the equationd = (ad − bc)2d is obtained, meaning that either

(ad − bc)2 = 1 or d = 0. Similarly, by substituting the fourth in the first, the second in the third
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and the third in the second, the conclusion is that either thesquared determinant is 1 or the matrix is

zero. Since the zero matrix is not inSS, the only possible case is(ad− bc)2 = 1. In SS the maximum

singular value is already unitary, hence this condition states that the minimum singular value must also

be 1 implying that it must be a rotation matrix. The remainderof the proof consists in verifying that

all rotation matrices obey the equations (A.1).

1. CaseA ∈ SO(2):

Using theSO(2) parameterizationA =




cos(θ) sin(θ)

− sin(θ) cos(θ)



 it is clear that the matrix entries

satisfy equations (A.1) since(ad− bc) = 1

2. CaseA ∈ O(2)− SO(2):

Using the parameterizationA =




sin(θ) cos(θ)

cos(θ) − sin(θ)



 it is clear that the matrix entries satisfy

the equations (A.1) since(ad− bc) = −1

HenceSS is smooth except at the points inO(2).

These orthogonal matrices are the limits of the sub-Stiefelset as the next theorem shows.

Theorem A.9 Let

C = {αR+ (1− α)Q : α ∈ [0, 1],R ∈ SO(2),Q ∈ O(2)− SO(2)} .

ThenSS = C.
Proof The proof is broken into 2 parts:

• SS ⊂ C:

Let S ∈ SS andS = U




1 0

0 σmin



V be an SVD decomposition. DefineR = UVT and

Q = U




1 0

0 −1



VT . If det(R) = −1, swapR andQ and defineα = 1−σmin
2 , otherwise

maintainR andQ and defineα = σmin+1
2 . ThenS = αR + (1 − α)Q andα ∈ [0, 1],

R ∈ SO(2), Q ∈ O(2)− SO(2) as desired.

• C ⊂ SS:

Starting fromα ∈ [0, 1], R ∈ SO(2) andQ ∈ O(2) − SO(2), the first step is to find matricesU

andV in O(2) that satisfyUVT = R andU




1 0

0 −1



VT = Q. To do so, notice thatRQT =
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U




1 0

0 −1



UT , hence matrixU contains the eigenvectors of the matrixRQT . This is due to

the fact that this matrix is inO(2)− SO(2) which means it’s symmetric. Similarly, notice as

well thatRTQ = V




1 0

0 −1



VT , which again means thatV contains the eigenvectors of this

matrix.

Then define the matrix

S = αR+ (1− α)Q

= αUVT + (1− α)U




1 0

0 −1



VT

= U




1 0

0 2α− 1



VT

which is an SVD decomposition of a sub-Stiefel matrix ifα ≥ 1/2. If α < 1/2, define matrix

E =




1 0

0 −1



 (notice it is an involution) and insert it above as

S = U




1 0

0 2α− 1



E−1EVT

= U




1 0

0 1− 2α



EVT
︸ ︷︷ ︸

V̂T

which is an SVD decomposition of a sub-Stiefel matrix.

This completes the proof.

This is an interesting result since it characterizes the sub-Stiefel matrices as the union of all line

segments connectingSO(2) to O(2) − SO(2), when seen as a subset ofR
2×2. It is also a nice rep-

resentation for optimization since all sets are connected.In the SVD representation the orthogonal

matrices could either be inSO(2) orO(2) − SO(2) which means a jump from one set to the other had

to be considered. Alternatively the SVD representation could be changed to consider only matrices in

SO(2) as long as the minimum singular value would be allowed to be negative.

Topologically, the sub-Stiefel set is homeomorphic to a 3-dimensional sphere. This result is im-

portant since it provides intuition for its shape, and completely characterizes all topological properties
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since they are inherited from the sphere, a well known topological manifold. For example, the next

theorem hides the statement that the setSS is connected, even though this same property could have

been easily proven otherwise.

Theorem A.10 The setSS is homeomorphic toS(3).

Proof Consider the function

f : SS −→ S(3)

A 7−→ vec(A)

‖A‖

with corresponding inverse function

f−1 : S(3) −→ SS











a

b

c

d











7−→




a c

b d





σmax








a c

b d









The function and its proposed inverse are continuous in opensubsets of the ambient spaces containing

the domain and the image, implying that both functions are continuous in the subspace topology ([21]

section 18, page 108).

Let S ∈ SS andS = U




1 0

0 σmin



VT an SVD decomposition. Then it is easily verified that

the functions are inverse of each other since, apart from thereshape, one function scales the singular

values to have unit norm, and the other rescales the singularvalues back toσmax = 1, both using

positive scale factors and continuous functions.

Hencef is a homeomorphism, proving the theorem.

Given a sub-Stiefel matrix, there are (in general) four waysto complete it to a3×3 rotation matrix,

of which two have positive determinant, and the other two have negative determinant. In the context

of isometric reconstructions the negative determinant solutions are meaningless and one can restrict

to the special orthogonal matrices instead of the whole orthogonal group. Unfortunately the the two

remaining choices are ambiguous and there’s no other physical characteristic to narrow the problem to

a single solution. Only if the sub-Stiefel matrix is itself arotation matrix does the ambiguity disappear,
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and only a single completion is possible. Hence, ifS =




s11 s12

s21 s22



 is a sub-Stiefel matrix it can be

completed as




s11 s12

s21 s22





︸ ︷︷ ︸

Sub-Stiefel Matrix

⇒








s11 s12 s13

s21 s22 s23

s31 s32 s33








︸ ︷︷ ︸

Rotation Matrix 1

or








s11 s12 −s13
s21 s22 −s23
−s31 −s32 s33








︸ ︷︷ ︸

Rotation Matrix 2

by choosing a sign fors31 = ±
√

1− (s11)
2 − (s21)

2 (if it is non-zero) then there a single choice fors32

such that(s32)
2 = 1− (s12)

2−s
(
22)

2 and the second column is orthogonal to the first. The third column

is simply the cross product of the first two columns so as to yield a rotation matrix with positive

determinant. As a curiosity note thats33 = det(S) which is proved by inspection when writing the

third coordinate of the cross product.

This section ends with a formula to compute the singular values of a2× 2 matrix in closed form.

Theorem A.11 The singular values of a matrixA ∈ M2×2 are given by the positive roots of the poly-

nomial

s4 − ‖A‖2 s2 + det(A)2 = 0

Proof The roots of a second degree polynomial may be found by the quadratic equation. Writing the

norm and determinant ofA in terms of its singular values results in

s2 =
σ2
max + σ2

min ±
√

(
σ2
max + σ2

min

)2 − 4σ2
maxσ

2
min

2

=
σ2
max + σ2

min ±
√

(
σ2
max − σ2

min

)2

2

since the inside of the square root is always positive (σmax ≥ σmin),

s2 =
σ2
max + σ2

min ±
(
σ2
max − σ2

min

)

2

=
{
σ2
max, σ

2
min

}

hence taking square roots yields the result.

This ends the characterization of the sub-Stiefel set.
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Appendix B

Sub-Stiefel Centering Problem

Solving the optimization problem defined in equation (3.7),here repeated for convenience

minimize
∑

i,k log
2
(
σmax

(
Mk

i H/sk
))

s.t. H ∈ GL(2)

sk ∈ R
+

(B.1)

which is a non-convex and non-compact optimization problem, is not simple but a few tricks can be

exploited. First, theσmax function is invariant to orthogonal matrix multiplicationon the right (i.e.

σmax

(
Mk

i H
)
= σmax

(
Mk

i H O
)

for anyO ∈ O(2)), meaning that these matrices can be factored

out through a polar or QR decomposition onH. This means that entryh22 of matrixH =
[

hij

]

can be

forced to 0, reducing the number of variables to 3.

To simplify the discussion, first the special case ofsk = 1 is considered (which results in consid-

ering orthographic cameras instead of scaled orthographiccameras) and later extended to the general

case.

B.1 Orthographic Cameras

The next simplification is less obvious, but will result in a compact 2 dimensional optimization prob-

lem. The key is to go to projective space by quotienting out the scale factor, using the fact that a

scale factor commutes (as an absolute value) with theσmax function. The optimization problem can
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be written as

minimize
∑

i,k log
2
(
|λ|σmax

(
Mk

i H̄
))

s.t. H̄ ∈ RP
2

|λ| ∈ R
+

Next rewrite the problem as follows

minimize








minimize
∑

i,k log
2
(
|λ|σmax

(
Mk

i H̄
))

s.t. |λ| ∈ R
+








s.t. H̄ ∈ RP
2

in which the inner optimization problem is exactly equal to the optimization problem in equation

(3.6) where the solution was already shown to belog(|λ∗|) = −E
[
log

(
σmax

(
Mk

i H̄
))]

. This is

exactly the property that made this choice of a distance function better than the traditional square of

differences. The result can be plugged back resulting in

minimize
∑

i

(
log

(
σmax

(
Mk

i H̄
))
− E

[
log

(
σmax

(
Mk

i H̄
))])2

s.t. H̄ ∈ RP
2

Dividing the cost function by the number ofMk
i matrices, the minimizer is not changed and the cost

function becomes a variance:

minimize VARi,k

[
log

(
σmax

(
Mk

i H̄
))]

s.t. H̄ ∈ RP
2

The fact that it is written as a variance is just syntactic sugar at this point, but it does give intuition

as to what is being done. Later, this will be exploited to impose different camera models but for now

just think that reducing the problem domain toRP2 makes it significantly easier to solve, since it is

a compact two dimensional differentiable manifold, definitely within the reach of branch and bound

algorithms if nothing better is possible. Maybe equally important is that the function can now be

visualized, allowing intuition and a clearer idea of how hard it is to solve (see figure B.1).

Unfortunately, as the figure shows, the problem is not convex. Worse is the fact that it sometimes

has multiple local minima and that in the presence of significant noise it might even converge to a non
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Figure B.1: Example level set of the sub-Stiefel centering problem cost function. A stereographic
projection ofRP2 was used as coordinates. Here blue lines represent low values, red lines represent
high values.

invertible H. Despite these shortcomings, when used to solve the problemat hand it does produce

seemingly good results without much concern over which local minimum is used (usually the minima

are very close together). Nonetheless, as future work, the effects of choosing a non-global local

minimum should be further studied.

Since theσmax is smooth almost everywhere (it is non-smooth when both eigenvalues are equal)

and gradient vector and Hessian are computable for every function involved (see [24] for details on

how to compute Hessians and gradients of the maximum singular value), it is relatively straightforward

to implement a Newton-like method on the projective space.

Once a solutionH̄∗ has been found,λ∗ follows naturally since it has the closed form expres-

sion shown above. Note that this provides a solution up to a global rotation (factored out in the QR

decomposition above). This is to be expected since no globalcoordinate system has been imposed.

B.2 Scale Orthographic Camera Models

Now that the solution for orthographic cameras has been revealed, a simple trick is used to solve the

case of scaled orthographic cameras. The optimization problem that needs to be solved is

minimize
∑

i,k d
2
SS

(

Mk
i
∗
H/sk

)

s.t. H ∈ GL(2)

sk ∈ R
+
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Here using the chosen cost functiondSS(X) = | log(σmax(X))|. Interestingly, the same trick used

in the previous discussion to go to projective space will be re-used to allow use of the slightly more

complicated camera model. Again, the optimization problemis separated as

minimize
∑

i








minimize
∑

k d
2
SS

(

Mk
i
∗
H/sk

)

s.t. sk ∈ R
+








s.t. H ∈ GL(2)

and remembering the discussion of usingλ to write a variance cost function in section B.1, the same

trick is used using eachsk, separately, instead. This becomes

minimize
∑

i VARk

[

log
(

σmax

(

Mk
i
∗
H
))]

s.t. H ∈ GL(2)

Notice that now the scale factorλ has no effect since it propagates outside thelog additively which has

no impact on the variance. This means that there’s an additional ambiguity in the final reconstruction

(adding to the global rotation matrix factored in the previous QR decomposition) which is expected

since the most that can be hoped for is a reconstruction that leaves the camera model invariant. Thus

the final optimization problem is

minimize
∑

i VARk

[

log
(

σmax

(

Mk
i
∗
H̄
))]

s.t. H̄ ∈ RP
2

Which is a sum of problems similar to the one that was solved inthe previous section, easily extended

in the Newton method. Once a solution forH̄ is found, the solution for the scale factorssk is simply

log(sk∗) = −Ek

[
log

(
σmax

(
Mk∗

i H∗
))]

, where any scale factor can be used to go fromH̄ ∈ RP
2

toH ∈ GL(2). The scale ambiguity is present since ifH is scaled, so will thesk∗.
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Appendix C

Sub-Stiefel Procrustes Problem

In matrix approximation theory, there’s an important classof problems which try to estimate the best

linear transformation satisfying certain properties thatbest describe the observed data. The general

problem is written as

minimize
∥
∥V −XW

∥
∥2

s.t. X ∈ {matrices with a certain property}

Under this class of problems, when no particular property isdesired for the matrixX the problem is

known as least squares fitting. When the number of rows of the matricesV andW is the same and

X is constrained to be orthogonal(XXT = I) the problem is known as the Orthogonal Procrustes

Problem and has a simple solution involving a singular valuedecomposition. In this section a new

problem in this class, thesub-Stiefel Procrustes problem, is proposed whereX ∈ SS:

Problem Statement C.1 (Sub-Stiefel Procrustes Problem)Solve

minimize
∥
∥V −XW

∥
∥2

s.t. X ∈ SS

(C.1)

Although computationally involved, the solution of this problem is exact up to finding the real roots

of a 6 degree polynomial. The solution involves the use of Gröbner basis from Algebraic Geometry

to solve a system of polynomial equations, but note that thistime consuming step only needs to be

done once (here) and the final algorithm takes very little time to run being practically instantaneous on

modern hardware. In the end the algorithm does not need to compute a Gröbner basis with each run.
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Using theorem A.5 the problem in equation (C.1) can be rewritten as

minimize
∥
∥V −OW

∥
∥2

s.t. σmax(O) = 1

O ∈ M
2×2

Usingγ as a Lagrangian multiplier, the Lagrangian function is then

L = tr
{

(V −OW)T (V −OW)
}

+ γ (σmax(O)− 1)

the functionσmax(·) is differentiable everywhere except when both eigenvaluesare equal (see [24]).

This case is handled separately later. IfO = S




σmax 0

0 σmin



TT is a singular value decomposition

then

∂σmax(O)

∂O
= smaxtmax

T

wheresmax andtmax are the columns ofS andT corresponding to the maximum singular value.

Hence, the Karush-Kuhn-Tucker system for this problem is (see [19] for matrix derivative rules

and a constrained optimization book such as [22] for the Karush-Kuhn-Tucker conditions):

−VWT +OWWT + γsmaxtmax
T = 0

σmax(O) = 1

the last constraint can be implicitly included in the first using the previously mentioned SVD decom-

position:

−VWT + S




1 0

0 σmin



TTWWT + S




γ 0

0 0



TT = 0

STS = I

TTT = I

σmin ≤ 1

(C.2)

There’s a hidden subtlety with the current problem formulation. The constraintσmin ≤ 1 in-

volves enumerating both singular values and choosing the lowest. It also hides the afore-mentioned
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problem of non-differentiability when the lowest singularvalue is equal to 1. This is not trivial in an

optimization setting, hence the problem is going to be splitinto two separate optimization problems.

First, notice that ifxi ∈ D enumerates all the critical points of a given function with domain

D, then the critical points of the same function restricted toa closed (with respect toD) subdomain

E ⊂ D are{xi}
⋂ E joined with the critical points of the function restricted to the border ofE inD. In

the problem at hand considerD = {Set of2× 2 matrices with at least one singular value equal to 1}
andE = SS. The border in this case will be the2× 2 Orthogonal matrices where both singular values

are equal to 1. Hence, if all critical points of the cost function for the relaxed problem can be found,

then either the original problem’s global minimum is in these points intersected with the domain or is

given by a simple Procrustes problem.

Notice that if the last constraint is removed, the problem consists strictly of polynomial equal-

ities, hence algebraic geometry is able to solve the system using Gröbner basis. Unfortunately the

equations are still too complex to tackle with modern computer algebra systems (such as Maple and

Mathematica) and any attempt made by the author to tackle theproblem directly quickly exhausted

the computational resources of a modest desktop computer. The problem with the equations (C.2) is

that it involves too many different symbols which quickly choke the software. Fortunately there are a

few tricks which can be used to reduce the complexity.

First pre and post multiply byST andTT so that the first equation becomes

−STVWTT+




1 0

0 σmin



TTWWTT+




γ 0

0 0



 = 0 (C.3)

Now pre and post multiply by the vectors
[

1 0
]

and
[

0 1
]T

which generates a scalar equation

without any dependencies onσ or γ:

−sT1 VWT t2 + tT1 WWT t2 = 0

Where the new vectors are the matrices’ columns asS =
[

s1 s2

]

T =
[

t1 t2

]

.

Noting thatO(2) is a one dimensional manifold, one needs at least a second equation for a solution

to be obtained (since there are two orthogonal matrices). Toobtain a second equation which only

depends onT andS, rewrite the equation as



−STVWT
(
WWT

)−1
T+




1 0

0 σmin







TTWWTT+




γ 0

0 0



 = 0 (C.4)
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Since the points are assumed to be non-degenerate, this can be re-written as

−STVWT
(
WWT

)−1
T+




1 0

0 σmin



+




γ 0

0 0



TT
(
WWT

)−1
T = 0 (C.5)

And now pre and post multiply by the vectors
[

0 1
]

and
[

1 0
]T

which yields the second equation

sT2 VWT
(
WWT

)−1
t1 = 0 (C.6)

Since a matrix inSO(2) can be parameterized as




c s

−s c



 wheres and c obey the constraint

s2+ c2 = 1, the polynomial system of equations is reduced to 4 variables and 4 equations. A question

arises on whether or not the orthogonal matrices of the SVD decomposition can be assumed to be in

SO(2). The answer is yes, as long asσmin is allowed to take negative values.

Before writing the explicit system lets further reduce the number of constants that appear in the

description. To do so, notice that a change of variables in the optimization problem in statement

C.1 can be used to impose thatWWT is diagonal and the matrixVWT is upper triangular. To do

so, suppose thatE is the orthogonal matrix of an eigenvalue decomposition of the symmetric matrix

WWT and thatQ is the orthogonal matrix of a QR decomposition ofVWTE. Since the norm is left

and right invariant to multiplication by orthogonal matrices,

∥
∥V −XW

∥
∥2 =

∥
∥RV
︸︷︷︸

V̂

−RTXE
︸ ︷︷ ︸

X̂

ETW
︸ ︷︷ ︸

Ŵ

∥
∥2

Theorem A.1 guarantees thatX̂ is sub-Stieffel and by construction̂WŴT is diagonal and the matrix

V̂ŴT is upper triangular.

There’s a further redundancy in the cost function due to the fact that the minimizer does not change

if a scale factor is applied. thus the cost function can be divided by a constant so that the first entry of

WWT is 1.
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If VWT
(
WWT

)−1
=




x1 x2

0 x4



 andWWT =




1 0

0 b



 then the following system can be

written explicitly

s21 + s22 − 1 = 0

t21 + t22 − 1 = 0

x1t2s1 − bx2s1t1 + bx4t1s2 + bt2t1 − t1t2 = 0

−x1s2t1 − x2s2t2 + x4s1t2 = 0

where the orthogonal matrices, which are the variables of the problem, were written asS =




s1 −s2
s2 s1





andT =




t1 −t2
t2 t1



. This system is finally solvable with Maple. Without going into too much detail

on algebraic geometry (a very good book on the subject is [6])the system has 12 solutions which

some of which might be complex. Using Gröbner basis techniques, this polynomial system (or, in the

language of the field, this “ideal”) can be re-written as another system where the second equation de-

pends on less variables, than the first, the third depends on less variables than the second, etc, up to the

last equation only depending on a single variable. This is analogous to the QR matrix decomposition

in linear algebra, which is in fact a special case.

Although the actual coefficients of the polynomial (in the variablet1) are shown later, for now it’s

enough to state that only the even coefficients are non-zero and thus it can be written as

a12t
12
1 + a10t

10
1 + a8t

8
1 + a6t

6
1 + a4t

4
1 + a2t

2
1 + a0 = 0

where the coefficientsai depend only on the constants of the problem (x1, x2, x4 andb). Since the

odd powers are all zero, the zeros of this polynomial may be obtained from a polynomial of degree 6,

where each root counts twice with a different sign. Of these,only the real (since numeric errors are

unavoidable, one should check the ones that are close to being real as well) are of interest.

From here, one can consider the second polynomial given by the Gröbner basis, but since its

expression is very ugly a more direct approach is attempted.For each of the possible solutions fort1,

two possible solutions are possible fort2 since they form a column of an orthogonal matrix. Hence

t2 = ±
√

1− t21 and two possibilities for matrixT are obtained. These possibilities must be kept and

later checked for consistency.
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Next, equation (C.5) holds implicitly the information thatthe matrixS is the orthogonal factor of a

QR decomposition ofVWT
(
WWT

)−1
T. This is due to (almost) uniqueness of the decomposition

and the fact that every other term in the equation has the lower left entry equal to zero. Also, in the

same QR decomposition, the non-zero entry of the second lineof the triangular matrix must be equal

to σmin. Depending on the implementation of the QR decomposition, if the resultingσmin value is

negative, change its sign and the sign of the second row ofS. Finally, both signs of the first row ofS

are possible, hence for each possible matrixT, two possibilities forS are obtained. Since the variable

γ is of no interest, there’s no point in computing it.

After all the possible solutions are enumerated, they must be checked and any solution which does

not obey equation (C.3) or ifσmin > 1, must be discarded. As discussed previously, the solutions

which are left must be compared with the solution on the border of the set, which is obtained from

a simple orthogonal Procrustes problem (see for example chapter 4 of [12]). All these solutions are

evaluated in the cost function and the one that produces the least cost is chosen.

Finally, in the previous discussion the polynomial coefficients of the Gröbner basis were not writ-

ten explicitly. They are listed in table C.1 for reference purposes.
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Table C.1: Sub-Stiefel Procrustes polynomial coefficients.
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