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Abstract

This thesis develops and analyzes distributed algorithms for convex optimization in networks, when nodes

cooperatively minimize the sum of their locally known costs subject to a global variable of common interest.

This setup encompasses very relevant applications in networked systems, including distributed estimation

and source localization in sensor networks, and distributed learning. Generally, existing literature offers

two types of distributed algorithms to solve the above problem: 1) distributed (consensus-based) gradient

methods; and 2) distributed augmented Lagrangian methods; but both types present several limitations. 1)

Distributed gradient-like methods have slow practical convergence rate; further, they are usually studied for

very general, non-differentiable costs, and the possibilities for speed-ups on more structured functions are

not sufficiently explored. 2) Distributed augmented Lagrangian methods generally show good performance

in practice, but there is a limited understanding of their convergence rates, specially how the rates depend

on the underlying network.

This thesis contributes to both classes of algorithms in several ways. We propose a new class of fast

distributed gradient algorithms that are Nesterov-like. We achieve this by exploiting the structure of convex,

differentiable costs with Lipschitz continuous and bounded gradients. We establish their fast convergence

rates in terms of the number of per-node communications, per-node gradient evaluations, and the network

spectral gap. Furthermore, we show that current distributed gradient methods cannot achieve the rates of

our methods under the same function classes. Our distributed Nesterov-like gradient algorithms achieve

guaranteed rates for both static and random networks, including the scenario with intermittently failing

links or randomized communication protocols. With respect to distributed augmented Lagrangian methods,

we consider both deterministic and randomized distributed methods, subsuming known methods but also

introducing novel algorithms. Assuming twice continuously differentiable costs with a bounded Hessian,

we establish global linear convergence rates, in terms of the number of per-node communications, and,

unlike most of the existing work, in terms of the network spectral gap. We illustrate our methods with

several applications in sensor networks and distributed learning.
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Chapter 1

Introduction

1.1 Motivation and thesis objective

Motivated by applications in sensor, multi-robot, and cognitive networks, as well as in distributed learning,

we consider synthesis and analysis of distributed optimization algorithms. We study the problem where

each node i in a connected network acquires data Di to infer a vector quantity x? 2 Rd. Node i’s own data

Di give only partial knowledge on x?, but the quantity x? can be successfully reconstructed based on all

nodes’ data. More formally, each node i has a local convex cost function fi(x) = fi(x;Di) of the variable

x (parameterized by data Di), known only to node i. The goal is for each node to find x? that solves the

unconstrained problem:

minimize
N
X

i=1

fi(x) =: f(x). (1.1)

(See also Figure 1.1 for an illustration of the model with a generic network of N = 6 nodes.) Problem (1.1) is

highly relevant as it encompasses, among many other network applications, the following: 1) distributed in-

ference (detection and estimation) [3] and distributed source localization in sensor networks [4]; 2) spectrum

sensing [5] and resource allocation [6] in cognitive radio networks; 3) emulation of swarms in biological

networks [7]; and 4) distributed Lasso [8], linear classification [9], and other learning problems. Section 1.5

details several applications in networked systems that we consider throughout the thesis.

The main objectives of this thesis are to: 1) develop distributed iterative algorithms whereby each node i

obtains a solution to (1.1); and 2) establish convergence and convergence rate guarantees of these methods,

in the presence of inter-neighbor communication failures and communication asynchrony. At iteration k,

nodes exchangetheir current solution estimate xi(k) (and, possibly, an additional low-overhead quantity)

only with their immediate neighbors in the network. Nodes do not exchange the raw data Di, either due to
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Figure 1.1: An example of a connected network with N = 6 nodes. Each node i has a local convex cost
function fi(x).

extremely high dimension of Di, as may arise with massive distributed learning problems, or due to privacy

constraints.

The remainder of the introductory Chapter is organized as follows. Section 1.2 states our main contri-

butions. Section 1.3 reviews existing literature and contrasts it with this thesis. Section 1.4 outlines novel

technical tools that this thesis developed and that may find use in other contexts. Finally, we finish the

Chapter in Section 1.5 with a list of motivating engineering applications, explored throughout the thesis.

1.2 Thesis contributions

To solve (1.1), in general, existing literature proposes two types of algorithms: 1) distributed (consensus-

based) gradient-type algorithms; and 2) distributed augmented Lagrangian (AL) dual algorithms. This thesis

contributes to both types of methods.

Distributed gradient-type methods. With respect to distributed gradient-type methods, our main con-

tributions include the following.

• We develop novel distributed gradient methods that converge significantly faster than existing dis-

tributed gradient methods;

• We establish global convergence rates of our methods in terms of the cost function parameters (e.g.,

Lipschitz constant of the gradient) and the underlying network parameters; remarkably, acceleration

techniques guarantee convergence rates (in expectation) even on random networks;

• We show that existing distributed gradient methods cannot achieve the rates of our methods under

equal network and cost functions conditions.

Distributed augmented Lagrangian methods. With respect to distributed augmented Lagrangian

methods, our main contributions include the following.

• We develop novel distributed AL algorithms that operate with asynchronous inter-node communica-

tion;

2



• We establish global linear convergence rates of a wide class of distributed AL methods under the

convex twice continuously differentiable costs with bounded Hessian, in terms of the overall per-node

communications at any stage of the algorithm.

We now detail each of our contributions, namely, on distributed nesterov-like gradient methods, distributed

consensus and averaging, and distributed AL methods.

Chapters 2–4: Distributed Nesterov-like gradient methods

We propose distributed Nesterov-like gradient methods, and we establish their convergence rate guarantees

for both static and random networks. Random networks account for random packet dropouts with wireless

sensor networks, as well as random inter-node communication protocols, like gossip [10]. In Chapters 2

and 3, we achieve this on the class F of convex, differentiable costs fi’s that have Lipschitz continuous

and bounded gradients. Chapter 4 establishes the convergence rates for alternative function classes, hence

further broadening the applications that our methods can handle. We now detail specific contributions in

Chapters 2, 3, and 4.

Chapter 2: Static networks

We propose two distributed gradient methods based on a Nesterov’s centralized fast gradient method [11].

We assume the fi’s in (1.1) are in class F . We refer to our first method as Distributed Nesterov-Gradient

(D–NG for short). With D–NG, each node i in the network updates its solution estimate xi(k) at time k

by: 1) weight-averaging its own and its neighbors’ estimates (we denote by Wij the weights and by Oi the

neighborhood of node i, including i); 2) performing a negative local gradient step with steps size ↵k with

respect to fi; and 3) updating an auxiliary variable yi(k) to accelerate convergence via a distributed version

of a Nesterov-like step [11]:

xi(k + 1) =

X

j2Oi

Wij yj(k)� ↵krfi(yi(k)) (1.2)

yi(k + 1) = xi(k + 1) +

k

k + 3

(xi(k + 1)� xi(k)) . (1.3)

Iterations (1.2)–(1.3) are computationally simple; the price paid with respect to the standard distributed gra-

dient method [2] is negligible. However, we show that our method achieves, at each node i, the convergence

3



rates in the optimality gap at the cost function 1

N ( f(xi)� f?
):

O

✓

1

(1� µ)1+⇠

log k

k

◆

and O

✓

1

(1� µ)1+⇠

logK
K

◆

, (1.4)

in the number of per-node communications K and per-node gradient evaluations k. In (1.4), the quantity

(1� µ) 2 (0, 1] is the network’s spectral gap1, and ⇠ > 0 is arbitrarily small.

We refer to our second method, whose details are in Chapter 3, as Distributed Nesterov gradient with

Consensus iterations (D–NC for short.) Under the class F , D–NC achieves convergence rates:

O

✓

1

(1� µ)2
1

K2�⇠

◆

and O

✓

1

k2

◆

. (1.5)

(See also Table 1.1, rows 1 and 2.)2 Both distributed gradient methods D–NG and D–NC show significant

gains over existing, standard distributed gradient methods [2]. We show that existing methods cannot per-

form better than ⌦
⇣

1

k2/3

⌘

and ⌦
⇣

1

K2/3

⌘

.3 In other words, our methods achieve significantly faster rates

than [2] on the class F , both in terms of k and K, while maintaining algorithm simplicity.

Chapter 3: Random Networks

We modify our D–NG and D–NC methods to handle random networks. We refer to the modified methods

as mD–NG and mD–NC, respectively. We model the network by a sequence of independent, identically

distributed matrices W (k), drawn from the set of symmetric, stochastic4 matrices with positive diagonals.

We assume that the underlying network is connected on average5. We establish with mD–NG and mD–NC

methods the rates in terms of the expected normalized optimality gap 1

N (E [f(xi)]� f?
), at arbitrary node

i, as a function of k, K, the number of nodes N , and the quantity 1�µ that is a generalization of the spectral

gap 1 � µ for random networks.6 The rates of mD–NG and mD–NC for random networks are shown in

Table 1.1., rows 3 and 4. We can see that, in expectation, mD–NG and mD–NC achieve the same rates in k

and K that D–NG and D–NC achieve on static networks. Hence, remarkably, acceleration ideas of Nesterov

apply also to random networks and allow for much faster algorithms than offered by the existing literature.

1The quantity µ is the modulus of the second largest (in modulus) eigenvalue of the N ⇥N matrix W that collects the weights
Wij’a.

2The rates’ constants shown in the Table 1.1 are for the optimized step-sizes; for details and constants under generic step-sizes,
we refer to Chapters 2 and 3.

3For two positive sequences ak and bk, notation bk = O(ak) means that lim supk!1
b
k

a
k

< 1; bk = ⌦(ak) means that
lim infk!1

b
k

a
k

> 0; and bk = ⇥(ak) if bk = O(ak) and bk = ⌦(ak).
4Stochastic means that the rows of the matrix sum to one and all its entries are nonnegative.
5This means that the graph that supports the nonzero entries of the expected matrix E [W (k)] is connected.
6More precisely, µ2 is the second largest eigenvalue of the second moment E

⇥
W (k)2

⇤
.
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Gradient evaluations Communications

D–NG (Static): O
⇣

1

(1�µ)1+⇠
log k
k

⌘

O
⇣

1

(1�µ)1+⇠
logK
K

⌘

D–NC (Static): O
�

1

k2

�

O
⇣

1

(1�µ)2
1

K2�⇠

⌘

mD–NG (Random): O
⇣

N
(1�µ)4/3

log k
k

⌘

O
⇣

N
(1�µ)4/3

logK
K

⌘

mD–NC (Random): O
�

1

k2

�

O
⇣

N⇠

(1�µ)2
1

K2�⇠

⌘

Table 1.1: Convergence rates in the normalized cost function optimality gaps 1

N (f(xi) � f?
) at arbitrary

node i for the proposed distributed Nesterov-like gradient methods: D–NG, D–NC, mD–NG, and mD–NC.
The cost functions fi’s belong to the class F of convex, differentiable, costs, with Lipschitz continuous and
bounded gradients.

As explained above, existing distributed gradient methods cannot achieve better rates than ⌦(1/k2/3) and

⌦(1/K2/3
) even on static networks.

Chapter 4: Alternative function classes

We establish convergence and convergence rate guarantees for our distributed gradient methods under prob-

lem classes different than F . In particular, we do not explicitly require that the gradients be bounded, and we

allow for constrained optimization, where each node i has the same closed, convex constraint set X . Thus,

we enlarge the class of applications for our distributed gradient methods with provable rate guarantees. In

particular, we show the following: 1) We establish rates O(log k/k) and O(logK/K) for D–NG and un-

constrained problems, when the bounded gradients assumption is replaced with a certain growth condition;

2) We establish convergence to ✏-solution neighborhood (in terms of the cost function) of D–NG under a

constant step-size after O(1/✏) per-node communications and per-node gradient evaluations, for constrained

optimization with a compact constrain set; and 3) We establish rates O(1/k2) and O(1/K2�⇠
) of the mD–

NC method for constrained optimization with compact constraints. Further details on the assumed problem

setups can be found in Chapter 4.

Chapter 5: Weight Optimization for Consensus in Random Networks

Performance of distributed consensus-based gradient algorithms, like our D–NG and D–NC and their mod-

ifications mD–NG and mD–NC, as well as [2] and [12], significantly depend on the underlying averaging

(consensus) dynamics – see the weighed averaging in (1.2). Consensus dynamics significantly depends on

the weights Wij’s in (1.2) that nodes assign to their neighbors. We address the problem of optimal weight
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design such that consensus dynamics are the fastest possible, allowing for random networks with spatially

correlated link failures. Our weight design is clearly of direct interest for consensus and distributed aver-

aging, but also allows for faster convergence of distributed optimization methods, as we demonstrate by

simulation in Chapter 5. Our weight design is applicable to: 1) networks with correlated random link fail-

ures (see, e.g., [13] and 2) networks with randomized algorithms (see, e.g, [10, 1]). We address the weight

design problem for both symmetric and asymmetric random links.

With symmetric random links, we use as optimization criterion the mean squared consensus convergence

rate that equals µ2. We express express the rate as a function of the link occurence probabilities, their

correlations, and the weights. We prove that µ2 is a convex, nonsmooth function of the weights. This enables

global optimization of the weights for arbitrary link occurrence probabilities and arbitrary link correlation

structures. We provide insights into weight design with a simple example of complete random network

that admits closed form solution for the optimal weights and convergence rate and show how the optimal

weights depend on the number of nodes, the link occurence probabilities, and their correlations. Finally, we

extend our results to the case of asymmetric random links, adopting as an optimization criterion the mean

squared deviation (from the current average state) rate, and show that this metric is a convex function of the

weights. Simulation examples demonstrate the gains with our weight design compared with existing weight

assignment choices, both in distributed averaging and in distributed optimization.

Chapters 6 and 7: Distributed augmented Lagrangian (AL) methods

A popular approach to solve (1.1) is through the AL dual; we briefly outline it here to help us state our

contributions. (Derivations can be found in Chapter 6.) Each node i updates its solution estimate xi(k)

(primal variable), and a dual variable ⌘i(k), by:

(x
1

(k + 1), ..., xN (k + 1) ) = argmin

(x
1

,...,xN )2RdN La (x1, ..., xN ; ⌘
1

(k), ..., ⌘N (k) ) (1.6)

⌘i(k + 1) = ⌘i(k) + ↵
X

j2Oi

Wij (xi(k + 1)� xj(k + 1) ) , (1.7)

where ↵ > 0 is the (dual) step-size, La : RdN ⇥ RdN ! R, is the AL function:

La(x1, ... , xN ; ⌘
1

, ..., ⌘N ) =

N
X

i=1

fi(xi) +
N
X

i=1

⌘>i xi +
⇢

2

X

{i,j}2E, i<j

Wij kxi � xjk2, (1.8)

⇢ � 0 is the AL penalty parameter, and E is the edge set. Dual updates (1.7) are performed in a distributed

way, as each node i needs only the primal variables xj(k+1) from its immediate neighbors in the network.
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When ⇢ = 0, the primal update (1.6) decouples as well, and node i solves for xi(k + 1) locally (without

inter-neighbor communications.) When ⇢ > 0 (which is advantageous in many sistuations), the quadratic

coupling term in (1.8) induces the need for an iterative solution of (1.6) that involves the inter-neighbor

communications.

Our main contributions with respect to (1.6)–(1.7) are two-fold: 1) We design efficient novel algorithms

to iteratively solve (1.6); and 2) We establish convergence rates for the overall scheme (1.6)–(1.7), in terms

of the overall per-node communications K at any algorithm stage.

We now highlight our specific contributions.

Chapter 6: Distributed augmented Lagrangian algorithms for generic costs

We propose a randomized distributed AL method, termed Augmented Lagrangian algorithm with Gossip

communication (AL–G), that: 1) handles very general, nondifferentiable costs fi’s; 2) allows a private con-

straint set Xi at each node i; and 3) utilizes asynchronous, unidirectional, gossip communication. This

contrasts with existing distributed AL methods that handle only static networks and synchronous communi-

cation, while the AL–G algorithm handles random networks and uses gossip communication. In distinction

with existing distributed gradient algorithms that essentially handle only symmetric link failures, AL–G

handles asymmetric link failures.

The AL–G method operates in two time scales. Nodes update their dual variable synchronously via a step

of type (1.7),7 at a slow time scale. To solve (1.6), nodes update their primal variables via a novel nonlinear

Gauss-Seidel method. The method uses asynchronous, gossip operations, at a fast time scale, as follows. At

a time, one node is selected at random; upon selection, it updates its primal variable xi, and transmits it to a

randomly selected neighbor. We further propose two variants of AL–G, the AL–BG (augmented Lagrangian

with broadcast gossiping) and AL–MG (augmented Lagrangian with multi-neighbor gossiping) methods.

We prove convergence of the inner primal algorithms (1.6), when the number of inner iterations goes

to infinity. This establishes convergence of the nonlinear Gauss-Seidel method with random order of mini-

mizations, while existing literature previously showed convergence only under the cyclic or the essentially

cyclic rules, [14, 15]. We illustrate the performance of AL–G with two simulation examples, l
1

–regularized

logistic regression for classification and cooperative spectrum sensing for cognitive radios.

7The step is similar but not the same; we refer to Chapter 6 for details.
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Chapter 7: Distributed augmented Lagrangian algorithms for costs with bounded Hessian

We assume a restricted class of functions with respect to Chapter 6, namely convex, twice differentiable

fi’s with a bounded Hessian. We establish globally linear convergence rates for a class of methods of

type (1.6)–(1.7) in the overall per-node communications K. Furthermore, we give explicit dependence of

the convergence rate on the network spectral gap 1� µ.

Specifically, we study a class of deterministic and randomized methods of type (1.6)–(1.7). Both de-

terministic and randomized methods update the dual variables via (1.7). With the deterministic variants,

step (1.6) is done via multiple inner iterations of either: 1) the nonlinear Jacobi (NJ) method on L(·; ⌘(k));

or 2) the gradient descent on L(·; ⌘(k)). With both cases, one inner iteration corresponds to one per-node

broadcast communication to all neighbors. With the randomized methods, step (1.6) is done either via mul-

tiple inner iterations of: 1) a randomized nonlinear Gauss-Seidel (NGS) method on L(·; ⌘(k)) (this variant

is precisely the AL–BG method from the previous Chapter); or 2) a randomized coordinate gradient descent

on L(·; ⌘(k)). Hence, we consider the total of four algorithm variants: 1) deterministic NJ; 2) deterministic

gradient; 3) randomized NGS (this is AL–BG in Chapter 6); and 4) randomized gradient. With all variants,

we establish linear convergence rates in the total number of elapsed per-node communications K(k) after k

outer iterations, assuming that nodes know beforehand a Hessian lower bound h
min

, a Hessian upper bound

h
max

, and (a lower bound) on the network spectral gap 1� µ. The distance to the solution x? of (1.1), at

any node i and any outer iteration k decays as:8

kxi(k)� x?k = O
⇣

RK(k)
⌘

, (1.9)

with the communication rate R 2 [0, 1) (the smaller it is, the better) shown in Table 1.2. The quantity

� := h
max

/h
min

is the condition number of the fi’s. Our results, in contradistinction with the literature,

establish how the convergence rate depends on the underlying network (spectral gap 1 � µ.) For example,

for the deterministic NJ method (row 1 in Table 1.2), the rate is jointly negatively affected by the condition

number � and the network “connectivity,” measured by 1� µ. For a poorly connected chain network of N

nodes, 1� µ = ⇥(1/N2

), and hence the rate is 1�⌦
⇣

1

(1+�)N2

⌘

. In contrast, for well-connected expander

networks, 1� µ = ⌦(1), i.e., it stays bounded away from one, and so the rate essentially does not deteriorate

with the increase of N .

8With randomized methods, the result is in terms of the expected distance E [kxi � x?k] and in terms of the expected overall
communications E [K(k)], see Chapter 7 for details.
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Convergence Rate R
Deterministic, NJ: 1� ⌦

⇣

1�µ
1+�

⌘

Deterministic, Gradient: 1� ⌦
 

1�µ
1+�

log

⇣
1+

1

1+�

⌘

log(1+�)+ log

(

(1�µ)�1

)

!

Randomized, NGS: 1� ⌦
✓

1�µ
1+�

1

log(1+�)+ log

(

(1�µ)�1

)

◆

Randomized, Gradient: 1� ⌦
✓

1�µ
(1+�)2

1

log(1+�)+ log

(

(1�µ)�1

)

◆

Table 1.2: Convergence rates R in (1.9) for the four variants of (1.6)–(1.7).

1.3 Review of the literature

We briefly review the literature to contrast ours with existing work. We consider: (1) distributed gradient

methods; and (2) distributed AL methods.

Distributed gradient methods

Distributed gradient methods have been studied in the past [16, 17], with main focus on parallel architectures

(star networks) and on distributing the optimization variable’s components across different processors (for

generic networks). More recent literature proposes and analyzes: 1) diffusion algorithms, e.g., [18, 19];

2) primal (sub)gradient methods [2, 20, 21, 22, 23, 24, 25, 26]; 3) dual averaging methods [12, 4, 27];

and 4) primal-dual (sub)gradient methods [28]. These methods are usually studied under a broad class of

convex fi’s (possibly non-differentiable) with bounded gradients. With respect to convergence rate, [12]

establishes the convergence rates O
⇣

log k
k1/2

⌘

and O
⇣

logK
K1/2

⌘

for the algorithm presented in [12]. Recent

references [29, 30] that appeared after our initial works on Nesterov-like gradient methods develop and

analyze accelerated proximal methods for time varying networks that resemble D–NC, but have no parallels

with our D–NG methods. Their rates are worse than ours in terms of the number of nodes N . (We contrast

in detail our work with [29, 30] in Chapter 2.)

In summary, we identify the following limitations of the existing work on distributed gradient-like meth-

ods:

1. The methods show a slow (theoretical and practical) convergence rates; see, e.g., our simulation ex-

amples in Chapter 2.

2. Theoretical studies are available only for very wide classes of non-differentiable costs, where it is not

possible to achieve fast convergence rates. In particular, no faster rates than O(1/
p
k) are possible,
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even in a centralized setting. The literature does not sufficiently explore the relevant scenario of more

restricted classes of functions, where in a centralized setting faster rates are known to be achievable.

For example, with differentiable costs that have Lipschitz continuous gradients, centralized gradient

methods can achieve rates O(1/k2).

3. Acceleration techniques by Nesterov and others for gradient methods have not been sufficiently ex-

plored.

This thesis and [29, 30] respond to the above limitations. In particular, we achieve the following: 1) We

propose fast distributed gradient methods D–NG, D–NC, and their modifications mD–NG and mD–NC.

Our methods converge faster than existing distributed gradient methods, both in theory and in simulation.

2) We study distributed gradient methods under the class F when the costs fi’s are differentiable, and

have Lipschitz continuous and bounded gradients. This setup allows for convergence rates O(1/k2) in a

centralized setting. Our distributed D–NC method achieves rates O(1/k2) and O(1/K2�⇠
) and is hence

close to the best achievable (centralized) rates. 3) We show that the acceleration techniques due to Nesterov

allow for speed-ups in distributed optimization as well, remarkably, even on random networks.

Distributed augmented Lagrangian methods

In a classical, centralized setting, augmented Lagrangian (AL) and alternating direction method of multipli-

ers (ADMM) methods have been studied for a long time; e.g., references [31, 32, 33] show locally linear

or superlinear convergence rates of AL methods. Recently, there has been a strong renewed interest and

progress in the convergence rate analysis of the classical AL and ADMM methods. References [34, 35]

show that the ADMM method converges globally linearly for certain cost function classes.

Reference [36] analyzes the AL methods under more general costs than ours and is not concerned with

the distributed optimization problem (1.1). The work [36] is related to ours in the sense that it analyzes

the AL methods when the primal problems are solved inexactly, but, under their setup, the AL methods

converge to a solution neighborhood. By contrast, in our setup studied in Chapter 7, distributed AL methods

converge linearly to the exact solution, in spite of the inexact solutions of the (inner) primal problems.

Lagrangian dual methods for parallel computation (star configuration) have been studied in the past [37].

More recently, the literature considers generic networks, e.g., [8, 38, 39, 40] for AL methods, and [41]

for ordinary dual methods. References [40, 8, 5] propose different versions of the distributed alternating

direction method of multipliers methods (ADMM). They have been particularly extensively studied in the

signal processing literature, demonstrating their effectiveness in various applications, e.g., [42, 43, 39, 8, 40].
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These works do not study the convergence rates of their proposed methods. The results in [34, 35] may

imply linear convergence of the D-Lasso and related methods in, e.g., [8, 5]. Hence, the results in [34, 35]

may imply linear convergence for a sub-class of methods that we consider in this thesis. Our analysis is

technically different from the analysis in [34, 35].

Reference [44] considers the distributed optimization problem (1.1) over generic networks as we do here,

under a wider class of functions than what we study. The reference shows O (1/K) rate of convergence in

the number of per-node communications for a distributed ADMM method. Hence, with respect to our

work, [44] studies a wider class of problems but establishes much slower rates. Reference [45] considers

both resource allocation problems and (1.1) and develops accelerated dual gradient methods. For (1.1), this

reference gives the methods’ local rates as 1 � ⌦
⇣

q

�
min

(AA>
)

� �
max

(AA>
)

⌘

, where A is the edge-node incidence

matrix and �
min

(·) and �
max

(·) denote the minimal and maximal eigenvalues, respectively. An important

distinction is that [45] considers ordinary dual problems, with the AL parameter ⇢ = 0; in contrast, we

consider both cases ⇢ = 0 and ⇢ > 0.

In summary, we identify the following limitations of the literature on distributed AL and ADMM meth-

ods:

1. The literature offers a limited understanding on how global convergence rates depend on the underly-

ing network parameters, e.g., spectral gap.

2. There is a limited study of the convergence rates of these algorithms in an asynchronous operation, or

in the presence of random link failures.

We respond to the above literature limitations as follows: 1) We establish globally linear convergence rates

for a wide class of distributed AL algorithms; 2) We explicitly characterize the rates in terms of the network

spectral gap; and 3) We establish linear convergence rates (in expectation) for distributed AL methods that

utilize asynchronous communication.

Portions of this thesis have been published in journal papers [46, 38], submitted to journals [9, 47], and

are to be submitted to a journal in [48]; and published in conference proceedings [49, 50].

During the course of this thesis, we also published journal [3, 51, 52] and conference [53, 54, 55, 56, 57,

58] papers.
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1.4 Technical tools developed in the thesis

This thesis develops technical tools that are, to the authors’ best knowledge, not available in the literature,

and may find use in further developments of distributed optimization or other contexts. These tools are

detailed below.

Stability of random time-varying systems

In Chapters 2 and 3, we analyze the following time-varying random systems that arise with distributed

methods that employ Nesterov’s acceleration techniques:

ez(k) =

0

@

2

4

(1 + �k�1

) ��k�1

1 0

3

5⌦ (W (k)� J)

1

A

ez(k � 1) +

1

k
u(k � 1), k = 1, 2, ..., (1.10)

where⌦ is the Kronecker product; ez(k) is the 2N ⇥1 system state; J =

1

N 11

>; �k = k/(k+3); W (k) is a

random, symmetric, stochastic matrix; and u(k) is an almost surely bounded random vector. System (1.10)

involves 2N -dimensional states, it is random, time varying, and more complex than the systems that arise

with standard distributed gradient methods, e.g., [2, 12]. We show that:

E
⇥

kez(k)k2
⇤

= O

✓

N4

(1� µ̄)4 k2

◆

,

hence establishing the mean square convergence rate to zero. We refer to Chapters 2 and 3 for further details.

Inexact projected Nesterov gradient method

We establish optimality gap bounds for the inexact projected and non-projected (centralized) Nesterov gra-

dient method [11], in the presence of gradient inexactness and projection inexactness. This contributes to

existing studies of such methods [59, 60]. Reference [60] considers only gradient inexactness and a differ-

ent Nesterov’s method. Reference [59] considers both gradient and projections (in fact, inexact proximal

steps). However, it establishes bounds in terms of the norms of the gradient inexactness ✏k. In contrast, we

establish (in this context, refined) bounds in terms of the squared norms of gradient inexactness ✏2k. While

the bounds that involve ✏k are sufficient to study the methods of type D–NC and [29, 30], they do not allow

for meaningful bounds for D–NG type methods; for such methods, one needs to work with the bounds that

involve ✏2k. We refer to Chapters 2 and 3 for further details.
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Lower bounds on the performance of distributed gradient methods

We establish lower bounds on the performance of distributed gradient like methods. Our techniques con-

struct “hard” problem instances. Generally, they account for the fact that, with distributed consensus-based

methods like D–NG, D–NC, and [2, 12], the local nodes’ gradients at a global solution x? of (1.1) are non-

zero. In particular, we show that [2, 12] cannot achieve worst-case rates better than ⌦(1/k2/3), as well as

that all three methods D–NG, D–NC, and [2] are arbitrarily slow in the worst case when the functions do

not have uniformly bounded gradients. We refer to Chapters 2 and 3 for further details.

Analysis of augmented Lagrangian methods with a fixed number of inner iterations

We analyze augmented Lagrangian methods of type (1.6)–(1.7) with a fixed number of inner iterations so

that problems (1.6) are solved inexactly. When the fi’s are twice continuously differentiable with a bounded

Hessian, we establish globally linear convergence to the exact solution in the primal domain, in terms of

the overall communications (overall number of the inner iterations.) This contrasts with the literature that

usually 1) uses an increasing number ⌧k of the inner iterations at the outer iteration k; or 2) establishes only

convergence to a solution neighborhood. We refer to Chapter 7 for further details.

1.5 Motivating applications

We give several examples of problem (1.1) from existing literature that are relevant in engineering applica-

tions; we study each of these examples in subsequent Chapters.

Example 1: Consensus

We explain consensus in the context of sensor networks, but many other contexts, e.g., social networks, are

possible [61]. Let N nodes (sensors) be deployed in a field; each sensor acquires a scalar measurement di,

e.g., temperature at its location. The goal is for each sensor to compute the average temperature in the field:
1

N

PN
i=1

di. Consensus can be cast as (1.1) by setting fi(x) =
1

2

(x� di)2.

Example 2: Distributed learning: linear classifier

For concreteness, we focus on linear classification, but other distributed learning problems fit naturally (1.1).

Training data (e.g., data about patients, as illustrated in [62]) is distributed across nodes in the network

(different hospitals); each node has Ns data samples, {aij , bij}Ns

j=1

, where aij 2 Rm is a feature vector
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(patient signature – blood pressure, etc) and bij 2 {�1,+1} is the class label of the vector aij (patient

healthy or ill). For the purpose of future feature vector classifications, each node wants to learn the linear

classifier a 7! sign

�

a>x0 + x00
�

, i.e., to determine a vector x0 2 Rm and a scalar x00 2 R, based on all

nodes’ data samples, that makes the best classification in a certain sense. Specifically, we seek x0 2 Rm and

x00 2 R that minimize a convex surrogate loss with respect to x = ((x0)>, x00)>:

minimize
PN

i=1

PNs
j=1

�
⇣

�bij(a>ijx0 + x00)
⌘

+ ⌫ R(x0) . (1.11)

Here �(z) is a surrogate loss function, e.g., logistic, exponential, or hinge loss [63], ⌫ > 0 is a param-

eter, and R(x0) is the regularization, e.g., l
1

norm or quadratic. Problem (1.11) fits (1.1), with fi(x) :=

PNs
j=1

�
⇣

�bij(a>ijx0 + x00)
⌘

+

⌫
NR(x0).

Example 3: Acoustic source localization in sensor networks

A sensor network instruments the environment where an acoustic source is positioned at an unknown loca-

tion ✓ 2 R2, e.g., [64]. The source emits a signal isotropically. Each node (sensor) i measures the received

signal strength:

yi =
A

k✓ � rik�
+ ⇣i.

Here ri 2 R2 is node i’s location, known to node i, A > 0 and � > 0 are constants known to all nodes, and ⇣i

is zero-mean additive noise. The goal is for each node to estimate the source’s position ✓. A straightforward

approach is to find the nonlinear least squares estimate ✓ = x? by minimizing the following cost function

(of the variable x):

minimize
PN

i=1

⇣

yi � A
kx�rik�

⌘

2

. (1.12)

Problem (4.81) is nonconvex and hence difficult; still, it is possible to efficiently obtain an estimator b✓ based

on the data yi, i = 1, ..., N , by solving the following convex problem:

minimize 1

2

PN
i=1

dist

2

(x,Ci) , (1.13)

where Ci is the disk Ci =

⇢

x 2 R2

: kx� rik 
⇣

A
yi

⌘

1/�
�

, and dist(x,C) = infy2C kx � yk is the

distance from x to the set C. In words, (4.82) finds a point b✓ that has the minimal total squared distance

from disks Ci, i = 1, ..., N. Problem (4.82) fits our framework (1.1) with fi(x) =
1

2

dist

2

(x,Ci) .
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Example 4: Spectrum sensing for cognitive radio networks

Consider N secondary users (CRs) connected by a generic network. The CRs sense the power spectral

density (PSD) to reconstruct the PSD map of primary users (PUs), i.e., the CRs want to determine at what

physical locations the PUs are present, and what frequencies they use; this example is studied in [5, 8].

The model assumes Np potential locations (a grid) of PUs; each “potential” PU p has a power spectral

density (PSD) expressed as:

�p(!) =
Nb
X

b=1

✓bp b(!),

where ! is the frequency,  b(!) is rectangle over interval b, and ✓bp is a coefficient that says how much

PSD is generated by the pth (potential) PU in the frequency range b. The PSD at CR i is modeled as a

superposition of all potential PU’s PSDs:

�i(!) =

Np
X

p=1

gip�p(!) =

Np
X

p=1

gip

Nb
X

b=1

✓bp b(!), (1.14)

where gip is the channel gain between PU p and CR i. Denote by ✓ the vector that stacks all the ✓bp’s. Each

CR collects samples at frequencies !l, l = 1, ..., L, modeled as:

yi,l = �i(!l) + ⇣i,l = hi,l(✓) + ⇣i,l,

where ⇣i,l is a zero-mean additive noise, and hi,l(✓) is a linear function of ✓. Reference [5] assumes that

most of the coefficients ✓bp are zero, i.e., the vector ✓ is sparse. Hence, the spectrum sensing problem of

determining the vector x? – an estimate of ✓ – is:

minimize
PN

i=1

PL
l=1

(hi,l(x)� yi,l)2 + ⌫ kxk
1

, (1.15)

where kxk
1

is the l
1

-norm that sums the absolute values of the entries of the vector. In framework (1.1), we

now have fi(x) =
PL

l=1

(hi,l(x)� yi,l)2 +
⌫
N kxk1.

We consider Example 1 is Chapter 5; example 2 in Chapters 2, 6, and 7; example 3 in Chapter 4; and

example 4 in Chapter 6.

Comment on organization. The chapters are designed such that it is possible to read them indepen-

dently. Each chapter carefully explains the problem considered, the assumptions underlying the chapter, and

the new algorithms and corresponding results. The price paid is some repetition in problem formulation and
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set-up.
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Chapter 2

Distributed Nesterov-like Gradient

Methods: Static Networks

2.1 Introduction

In this Chapter, we propose distributed Nesterov-like gradient methods for static networks that solve (1.1).

We consider the class F of convex, differentiable costs fi’s, with Lipschitz continuous and bounded gradi-

ents. Existing work [2, 12] usually assumes a wider class, where the fi’s are (possibly) non-differentiable

and convex, and: 1) for unconstrained minimization, the fi’s have bounded gradients, while 2) for con-

strained minimization, they are Lipschitz continuous over the constraint set. It is well established in cen-

tralized optimization, [11], that one expects faster convergence rates on classes of more structured func-

tions; e.g., for convex, non-smooth functions, the best achievable rate for centralized (sub)gradient methods

is O(1/
p
k), while, for convex functions with Lipschitz continuous gradient, the best rate is O(1/k2),

achieved, e.g., by the Nesterov gradient method [11]. Here k is the number of iterations, i.e., the number of

gradient evaluations.

Contributions. Building from the centralized Nesterov gradient method, we develop for the class F two

distributed gradient methods and prove their convergence rates, in terms of the number of per-node commu-

nications K, the per-node gradient evaluations k, and the network topology. Our first method, the Distributed

Nesterov Gradient (D–NG), achieves convergence rate O
⇣

1

(1�µ(W ))

3+⇠
log k
k

⌘

, where ⇠ > 0 is an arbitrarily

small quantity, when the nodes have no global knowledge of the parameters underlying the optimization

problem and the network: L and G the fi’s gradient’s Lispchitz constant and the gradient bound, respec-

tively, 1�µ(W ) the spectral gap, and R a bound on the distance to a solution. When L and µ(W ) are known
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by all, the Distributed Nesterov Gradient method with optimized step-size achieves O
⇣

1

(1�µ(W ))

1+⇠
log k
k

⌘

.

Our second method, Distributed Nesterov gradient with Consensus iterations (D–NC), assumes global

knowledge or at least upper bounds on µ(W ) and L. It achieves convergence rate O
⇣

1

(1�µ(W ))

2

1

K2�⇠

⌘

in

the number of communications per node K, and O
�

1

k2

�

in the number of gradient evaluations. Further,

we establish that, for the class F , both our methods (achieving at least O(log k/k)) are strictly better than

the distributed (sub)gradient method [2] and the distributed dual averaging in [12], even when these algo-

rithms are restricted to functions in F . We show analytically that [2] cannot be better than ⌦
�

1/k2/3
�

and

⌦

�

1/K2/3
�

(see Subsection 2.7.1), and by simulation examples that [2] and [12] perform similarly.

Distributed versus centralized Nesterov gradient methods. The centralized Nesterov gradient method

does not require bounded gradients – an assumption that we make for our distributed methods. We prove

here that if we drop the bounded gradients assumption, the convergence rates that we establish do not hold

for either of our algorithms. (It may be possible to replace the bounded gradients assumption with a weaker

requirement.) In fact, the worst case convergence rates of D–NG and D–NC become arbitrarily slow. (See

Subsection 2.7.2 for details.) This important result illustrates a distinction between the allowed function

classes by the centralized and distributed methods. The result is not specific to our accelerated methods; it

can be shown that the standard distributed gradient method in [2] is also arbitrarily slow when the assumption

of bounded gradients is dropped (while convexity and Lipschitz continuous gradient hold), see Appendix A.

Remark. The bounded gradients Assumption cannot be relaxed, but we show that it can be replaced

with certain different setups, with both D–NG and D–NC methods. We consider these alternative setups in

Chapter 4.

Remark. We comment on references [29] and [30] (see also Subsection 2.7.1 and Appendix A). They

develop accelerated proximal methods for time varying networks that resemble D–NC. The methods in [29]

and [30] use only one consensus algorithm per outer iteration k, while we use two with D–NC. Adapting the

results in [29, 30] to our framework, it can be shown that the optimality gap bounds in [29, 30] expressed in

terms of N, 1�µ(W ), and K have the same or worse (depending on the variant of their methods) dependence

on K and µ(W ) than the one we show for D–NC, and a worse dependence on N . (See Subsection 2.7.1 and

Appendix A.)

Chapter organization. The next paragraph introduces notation. Section 2.2 describes the network and

optimization models that we assume. Section 2.3 presents our algorithms, the distributed Nesterov gradient

and the distributed Nesterov gradient with consensus iterations, D–NG and D–NC for short. Section 2.4

explains the framework of the (centralized) inexact Nesterov gradient method; we use this framework to

establish the convergence rate results for D–NG and D–NC. Sections 2.5 and 2.6 prove convergence rate
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results for the algorithms D–NG and D–NC, respectively. Section 2.7 compares our algorithms D–NG

and D–NC with existing distributed gradient type methods, discusses the algorithms’ implementation, and

discusses the need for our Assumptions. Section 2.9 provides simulation examples. Finally, we conclude

in Section 2.10. Proofs of certain lengthy arguments are relegated to Appendix A.

Notation. We index by a subscript i a (possibly vector) quantity assigned to node i; e.g., xi(k) is node i’s

estimate at iteration k. Further, we denote by: Rd the d-dimensional real coordinate space; j the imaginary

unit (j2 = �1); Alm or [A]lm the entry in the l-th row and m-th column of matrix A; a(l) the l-th entry

of vector a; (·)> the transpose and (·)H the conjugate transpose; I , 0, 1, and ei, respectively, the identity

matrix, the zero matrix, the column vector with unit entries, and the i-th column of I; � and ⌦ the direct

sum and Kronecker product of matrices, respectively; k · kl the vector (respectively, matrix) l-norm of its

vector (respectively, matrix) argument; k · k = k · k
2

the Euclidean (respectively, spectral) norm of its vector

(respectively, matrix) argument (k ·k also denotes the modulus of a scalar); �i(·) the i-th smallest in modulus

eigenvalue; A ⌫ 0 means that a Hermitian matrix A is positive semi-definite; dae the smallest integer not

smaller than a real scalar a; r�(x) and r2�(x) the gradient and Hessian at x of a twice differentiable

function � : Rd ! R, d � 1. For two positive sequences ak and bk, the following is the standard notation:

bk = O(ak) if lim supk!1
bk
ak

< 1; bk = ⌦(ak) if lim infk!1
bk
ak

> 0; and bk = ⇥(ak) if bk = O(ak)

and bk = ⌦(ak).

Part of the material in Chapter 2 has been submitted for publication in [9].

2.2 Model and preliminaries

In this Section, we present our model and preliminaries. Specifically, Subsection 2.2.1 introduces the net-

work and optimization models that we assume, subsection 2.2.2 reviews the consensus algorithm, and Sub-

section 2.2.1 reviews the centralized Nesterov gradient method.

2.2.1 Model

Network model

We consider a (sparse) network N of N nodes (sensors, processors, agents,) each communicating only

locally, i.e., with a subset of the remaining nodes. The communication pattern is captured by the graph

G = (N , E), where E ⇢ N ⇥ N is the set of links. The graph G is connected, undirected and simple

(no self/multiple links.)
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Weight matrix. We associate to the graph G a symmetric, doubly stochastic (rows and columns sum to

one and all the entries are non-negative), N ⇥N weight matrix W , with, for i 6= j, Wij > 0 if and only if,

{i, j} 2 E, and Wii = 1 �
P

j 6=iWij . Denote by fW = W � J, where J :=

1

N 11> is the ideal consensus

matrix. We let fW = Qe

⇤Q>, where e

⇤ is the diagonal matrix with e

⇤ii = �i(fW ), and Q = [q
1

, ..., qN ] is

the matrix of the eigenvectors of fW . With D–NC, we impose Assumption 2.1 (a) below; with D–NG, we

require both Assumptions 2.1 (a) and (b).

Assumption 2.1 (Weight matrix) We assume that (a) µ(W ) < 1; and (b) W ⌫  I, where  < 1 is an

arbitrarily small positive quantity.

Note that Assumption 2.1 (a) can be fulfilled only by a connected network. Assumption 2.1 (a) is standard

and is also needed with the existing algorithms in [2, 12]. For a connected network, nodes can assign the

weights W and fulfill Assumption 2.1 (a), e.g., through the Metropolis weights [65]; to set the Metropolis

weights, each node needs to know its own degree and its neighbors’ degrees. Assumption 2.1 (b) required

by D–NG is not common in the literature. We discuss the impact of Assumption 2.1 (b) in Subsection 2.7.1.

Distributed optimization model

The nodes solve the unconstrained problem:

minimize
N
X

i=1

fi(x) =: f(x). (2.1)

The function fi : Rd ! R is known only to node i. We impose Assumptions 2.2 and 2.3.

Assumption 2.2 (Solvability and Lipschitz continuity of the derivative) (a) There exists a solution x? 2 Rd

with f(x?) = infx2Rd f(x) =: f?.

(b) 8i, fi is convex, differentiable, with Lipschitz continuous derivative with constant L 2 [0,1):

krfi(x)�rfi(y)k  Lkx� yk, 8x, y 2 Rd.

Assumption 2.3 (Bounded gradients) 9G 2 [0,1) such that, 8i, krfi(x)k  G, 8x 2 Rd.

Examples of fi’s that satisfy Assumptions 2.2–2.3 include the logistic and Huber losses (See Sec-

tion 2.9), or the “fair” loss in robust statistics, � : R 7! R, �(x) = b2
0

⇣

|x|
b
0

� log

⇣

1 +

|x|
b
0

⌘⌘

, where b
0
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is a positive parameter, e.g., [66]. Assumption 2.2 is precisely the assumption required by [11] in the con-

vergence analysis of the (centralized) Nesterov gradient method. With respect to the centralized Nesterov

gradient method [11], we additionally require bounded gradients as given by Assumption 2.3. We explain

the need for Assumption 2.3 in Subsection 2.7.2. We refer to Chapter 4 for different optimization models.

2.2.2 Consensus algorithm

We review the standard consensus algorithm that serves as a building block for our D–NG and D–NC

methods, as well as other distributed methods in the literature, e.g., [2, 12]. Suppose that each node i in a

network acquires a scalar measurement zi(0). The goal for each node i is to obtain the global average of the

measurements z(0) := 1

N

PN
i=1

zi(0), by communicating only with its immediate neighbors in the network.

This can be accomplished by the standard consensus algorithm, whereby nodes iteratively update their state

zi(k) as:

zi(k) =
X

j2Oi

Wij zj(k � 1), k = 1, 2, ... (2.2)

Here, Wij are the averaging weights (the entries of W ), and Oi is the neighborhood set of node i (including

i). Operation of consensus is as follows. At iteration k, node i transmits its state zi(k � 1) to all neighbors

j 2 Oi � {i}, as well as receives the states zj(k� 1), for j 2 Oi � {i}. Upon reception, each node i makes

the weighted average as in (2.2). Introducing the network-wide state vector z(k) = (z
1

(k), ..., zN (k))>,

consensus is rewritten in compact form as:

z(k) = W z(k � 1), k = 1, 2, ... (2.3)

2.2.3 Centralized Nesterov gradient method

We briefly review the fast (centralized) gradient method proposed by Nesterov in [11]. Consider a differ-

entiable convex function f : Rd ! R that has Lipschitz continuous gradient with constant L. The goal

is to find x? 2 Rd
= argminx2Rdf(x). (We assume that such a x? exists.) The fast centralized gradient

method [11] updates the solution estimate x(k) and an auxiliary variable y(k) as follows:1

x(k) = x(k � 1)� ↵rf(y(k � 1)) (2.4)

y(k) = x(k) + �k�1

(x(k)� x(k � 1) ) , k = 1, 2, ... (2.5)

1For convenience, we denote the iterates here by x(k) and y(k). We will show later that the global averages, also denoted by
x(k), y(k), of the nodes estimates with our distributed methods evolve according to an inexact version of (2.4)–(2.5).
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with the initialization x(0) = y(0) 2 Rd. The constant step size ↵  1/L and �k = k/(k + 3), for

k = 0, 1, ... Compared with the standard gradient method:

x(k) = x(k � 1)� ↵rf(x(k � 1)), k = 1, 2, ...,

the Nesterov gradient method introduces an auxiliary variable y(k) and an inexpensive update (2.5). With

this small overhead per iteration k, the Nesterov gradient method significantly increases the convergence

rate in the cost function optimality gap f (x(k)) � f(x?), from O(1/k) to O(1/k2) [11].2 There seems to

be little explanation in the literature about the geometric intuition of the Nesterov gradient method. See,

e.g., ([67], Chapter 5.3), for relations of the Nesterov gradient method with the earlier proposed heavy ball

method by Polyak and the conjugate gradient method; see also ([68], Chapter 3.2). Finally, we remark

that there exist other variants of fast gradient methods in [69, 70]; see also for a method for composite,

nondifferentiable optimization [71], and [72].

2.3 Distributed Nesterov based algorithms

We now consider our two proposed algorithms. Subsection 2.3.1 presents algorithm D–NG, while subsec-

tion 2.3.2 presents algorithm D–NC.

2.3.1 Distributed Nesterov gradient algorithm (D–NG)

Algorithm D–NG generates the sequence (xi(k), yi(k)), k = 0, 1, 2, ..., at each node i, where yi(k) is

an auxiliary variable. D–NG is initialized by xi(0) = yi(0) 2 Rd, for all i. The update at node i and

iteration k = 1, 2, ... is:

xi(k) =

X

j2Oi

Wij yj(k � 1)� ↵k�1

rfi(yi(k � 1)) (2.6)

yi(k) = xi(k) + �k�1

(xi(k)� xi(k � 1)) . (2.7)

Here, the step-size ↵k and the sequence �k are:

↵k =

c

k + 1

, c > 0; �k =

k

k + 3

, k = 0, 1, ... (2.8)

2The convergence rate O(1/k2) with the Nesterov gradient method holds on the class of convex, differentiable costs, with
Lipschitz continuous gradient of constant L.
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With algorithm (2.6)–(2.7), each node i, at each iteration k, performs the following: 1) broadcasts its variable

yi(k�1) to all its neighbors j 2 Oi; 2) receives yj(k�1) from all its neighbors j 2 Oi; 3) updates xi(k) by

weight-averaging its own yi(k � 1) and its neighbors variables yj(k � 1), and performs a negative gradient

step with respect to fi; and 4) updates yi(k) via the inexpensive update in (2.7). To avoid notation explosion

in the analysis further ahead, we assume throughout the chapter, with both D–NG and D–NC, equal initial

estimates xi(0) = yi(0) = xj(0) = yj(0) for all i, j; e.g., nodes can set them to zero.

We adopt the sequence �k as in the centralized fast gradient method by Nesterov [11]; see also [72, 73].

With the centralized Nesterov gradient, ↵k = ↵ is constant along the iterations. However, under a constant

step-size, algorithm (2.6)–(2.7) does not converge to the exact solution, but only to a solution neighborhood.

More precisely, in general, f(xi(k)) does not converge to f? (See [49] for details.) We force f(xi(k)) to

converge to f? with (2.6)–(2.7) by adopting a diminishing step-size ↵k, as in (2.8). The constant c > 0

in (2.8) can be arbitrary (See also ahead Theorem 2.8.)

Vector form. Let x(k) = (x
1

(k)>, x
2

(k)>, ..., xN (k)>)>, y(k) = (y
1

(k)>, y
2

(k)>, ..., yN (k)>)>,

and introduce F : RNd ! R as: F (x) = F (x
1

, x
2

, ..., xN ) = f
1

(x
1

) + f
2

(x
2

) + ..., fN (xN ). Then, given

initialization x(0) = y(0), D–NG in vector form is:

x(k) = (W ⌦ I)y(k � 1)� ↵k�1

rF (y(k � 1)) (2.9)

y(k) = x(k) + �k�1

(x(k)� x(k � 1)) , k = 1, 2, ..., (2.10)

where the identity matrix is of size d – the dimension of the optimization variable in (2.1).

2.3.2 Algorithm D–NC

Algorithm D–NC uses a constant step-size ↵  1/(2L) and operates in two time scales. In the outer (slow

time scale) iterations k, each node i updates its solution estimate xi(k), and updates an auxiliary variable

yi(k) (as with the D–NG);3 in the inner iterations s, nodes perform two rounds of consensus with the number

of inner iterations given in (2.11) and (2.12) below, respectively. D–NC is Summarized in Algorithm 1.

The number of inner consensus iterations in (2.11) increases as log k and depends on the underlying

network through µ(W ). Note an important difference between D–NC and D–NG. D–NC uses explicitly a

number of consensus steps at each k. In contrast, D–NG does not explicitly use multi-step consensus at

each k; consensus occurs implicitly, similarly to [2, 12].

Vector form. Using the same compact notation for x(k), y(k), andrF (y(k)) as with D–NG, D–NC in

3To avoid notation explosion, we use the same letters to denote the iterates of D–NG and D–NC.
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Algorithm 1 Algorithm D–NC
1: Initialization: Node i sets: xi(0) = yi(0) 2 Rd; and k = 1.

2: Node i calculates: x(a)
i (k) = yi(k � 1)� ↵rfi(yi(k � 1)).

3: (First consensus) Nodes run average consensus initialized by x(c)
i (s = 0, k) = x(a)

i (k):

x(c)
i (s, k) =

X

j2O
i

Wijx
(c)
j (s� 1, k), s = 1, 2, ..., ⌧x(k), ⌧x(k) =

⇠

2 log k

� logµ(W )

⇡

, (2.11)

and set xi(k) := x(c)
i (s = ⌧x(k), k).

4: Node i calculates y(a)i (k) = xi(k) + �k�1 (xi(k)� xi(k � 1)) .

5: (Second consensus) Nodes run average consensus initialized by y(c)i (s = 0, k) = y(a)i (k):

y(c)i (s, k) =
X

j2O
i

Wijy
(c)
j (s� 1, k), s = 1, 2, ..., ⌧y(k), ⌧y(k) =

⇠

log 3

� logµ(W )

+

2 log k

� logµ(W )

⇡

, (2.12)

and set yi(k) := y(c)i (s = ⌧y(k), k).
6: Set k 7! k + 1 and go to step 2.

vector form is:

x(k) = (W ⌦ I)⌧x(k) [ y(k � 1)� ↵rF (y(k � 1)) ] (2.13)

y(k) = (W ⌦ I)⌧y(k) [ x(k) + �k�1

(x(k)� x(k � 1)) ] . (2.14)

The power (W ⌦ I)⌧x(k) in (2.13) corresponds to the first consensus in (2.11), and the power (W ⌦ I)⌧y(k)

in (2.14) corresponds to the second consensus in (2.12). The connection between D–NC and the (central-

ized) Nesterov gradient method becomes clearer in Subsection 2.4.2. The matrix powers (2.13)–(2.14) are

implemented in a distributed way through multiple iterative steps – they require respectively ⌧x(k) and ⌧y(k)

iterative (distributed) consensus steps. This is clear from the representation in Algorithm 1.

2.4 Intermediate results: Inexact Nesterov gradient method

We will analyze the convergence rates of D–NG and D–NC by considering the evolution of the global

averages x(k) :=

1

N

PN
i=1

xi(k) and y(k) :=

1

N

PN
i=1

yi(k). We will show that, with both distributed

methods, the evolution of x(k) and y(k) can be studied through the framework of the inexact (centralized)

Nesterov gradient method, essentially like the one in [60]. Subsection 2.4.1 introduces this framework and

gives the relation for the progress in one iteration. Subsection 2.4.2 then demonstrates that we can cast our

algorithms D–NG and D–NC in this framework.
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2.4.1 Inexact Nesterov gradient method

We next introduce the definition of a (pointwise) inexact first order oracle.

Definition 2.4 (Pointwise inexact first order oracle) Consider a function f : Rd ! R that is convex and has

Lipschitz continuous gradient with constant Lf . We say that a pair
⇣

bfy, bgy
⌘

2 R⇥Rd is a (Ly, �y) inexact

oracle of f at point y if:

bfy + bg>y (x� y)  f(x)  bfy + bg>y (x� y) +
Ly

2

kx� yk2 + �y, 8x 2 Rd. (2.15)

For any y 2 Rd, the pair (f(y),rf(y)) satisfies Definition 4.11 with (Ly = Lf , �y = 0). If
⇣

bfy, bgy
⌘

is a

(Ly, �y) inexact oracle at y, then it is also a
�

L0
y, �y

�

inexact oracle at y, with L0
y � Ly.

Remark. The prefix pointwise in Definition 4.11 emphasizes that we are concerned with finding
⇣

bfy, bgy
⌘

that satisfy (4.49) with (Ly, �y) at a fixed point y. This differs from the conventional definition

(Definition 1) in [60]. Throughout, we always refer to the inexact oracle in the sense of Definition 4.11 here

and drop the prefix pointwise.

Inexact Nesterov gradient method

Lemma 2.5 gives the progress in one iteration of the inexact (centralized) Nesterov gradient method for

the unconstrained minimization of f . Consider a point (x(k � 1), y(k � 1)) 2 Rd ⇥ Rd, for some fixed

k = 1, 2, ... Let
⇣

bfk�1

, bgk�1

⌘

be a (Lk�1

, �k�1

) inexact oracle of the function f at point y(k � 1) and:4

x(k) = y(k � 1)� 1

Lk�1

bgk�1

, y(k) = x(k) + �k�1

(x(k)� x(k � 1)) . (2.16)

Lemma 2.5 (Progress per iteration) Consider the update rule (4.51) for some k = 1, 2, ... Then:

(k + 1)

2

(f(x(k))� f(x•)) + 2Lk�1

kv(k)� x•k2 (2.17)

 (k2 � 1) (f(x(k � 1))� f(x•)) + 2Lk�1

kv(k � 1)� x•k2 + (k + 1)

2�k�1

,

for any x• 2 Rd, where �k = 2/(k + 2) and v(k) = y(k)�(1��k)x(k)
�k

.

Lemma 2.5 is similar to [[60], Theorem 5], although [60] considers a different accelerated Nesterov method.

It is intuitive: the progress per iteration is the same as with the exact Nesterov gradient algorithm, except that
4For convenience, we denote the iterates in (4.51) by x(k), y(k) – the same notation as we use for the global averages with

D–NG and D–NC, as we later apply Lemma 2.5 to these global averages.
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it is deteriorated by the “gradient direction inexactness” ((k + 1)

2�k�1

). The proof follows the arguments

of [60] and [73, 11, 72] and is in Appendix A.

2.4.2 Algorithms D–NG and D–NC in the inexact oracle framework

We now cast algorithms D–NG and D–NC in the inexact oracle framework.

Algorithm D–NG

Recall the global averages x(k) := 1

N

PN
i=1

xi(k) and y(k) := 1

N

PN
i=1

yi(k), and define:

bfk =

N
X

i=1

n

fi(yi(k)) +rfi(yi(k))>(y(k)� yi(k))
o

, bgk =

N
X

i=1

rfi(yi(k)). (2.18)

Multiplying (2.9)–(2.10) from the left by (1/N)(1> ⌦ I), using (1> ⌦ I)(W ⌦ I) = 1> ⌦ I , letting

L0
k�1

:=

N
↵k�1

, and using bgk in (2.18), we obtain that x(k), y(k) evolve according to:

x(k) = y(k � 1)� 1

L0
k�1

bgk�1

, y(k) = x(k) + �k�1

(x(k)� x(k � 1)) , (2.19)

The following Lemma shows how we can analyze convergence of (2.19) in the inexact oracle framework.

Define eyi(k) := yi(k) � y(k) and ey(k) := (ey
1

(k)>, ..., eyN (k))>. Define analogously exi(k) and ex(k). We

refer to ex(k) and ey(k) as the disagreement vectors, as they indicate how mutually apart the estimates of

different nodes are.

Lemma 2.6 Let Assumption 2.2 hold. Then, ( bfk, bgk) in (2.18) is a (Lk, �k) inexact oracle of f =

PN
i=1

fi

at point y(k) with constants Lk = 2NL and �k = Lkey(k)k2.

Lemma 2.6 implies that, if L0
k�1

=

Nk
c � 2NL, i.e., if c  k

2L , then the progress per iteration in Lemma 2.5

holds for (2.19) with �k�1

:= Lkey(k�1)k2. If c  1/(2L), Lemma 2.5 applies for all iterations k = 1, 2, ...;

otherwise, it holds for all k � 2cL.

Proof: [Proof of Lemma 2.6] For notation simplicity, we re-write y(k) and y(k) as y and y, and

bfk, bgk, Lk, �k as bfy, bgy, Ly, �y. In view of Definition 4.11, we need to show inequalities (4.49). We first show

the left one. By convexity of fi(·): fi(x) � fi(yi) +rfi(yi)>(x � yi), 8x; summing over i = 1, ..., N ,

using f(x) =
PN

i=1

fi(x), and expressing x� yi = x� y + y � yi:

f(x) �
N
X

i=1

⇣

fi(yi) +rfi(yi)>(y � yi)
⌘

+

 

N
X

i=1

rfi(yi)
!>

(x� y) = bfy + bg>y (x� y).
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We now prove the right inequality in (4.49). As fi(·) is convex and has Lipschitz continuous derivative

with constant L, we have: fi(x)  fi(yi) +rfi(yi)>(x� yi) +
L
2

kx� yik2, which, after summation over

i = 1, ..., N , expressing x� yi = (x� y)+ (y� yi), and using the inequality kx� yik2 = k(x� y)+ (y�

yi)k2  2kx� yk2 + 2ky � yik2, gives:

f(x) 
N
X

i=1

⇣

fi(yi) +rfi(yi)>(y � yi)
⌘

+

 

N
X

i=1

rfi(yi)
!>

(x� y)

+ NLkx� yk2 + L
N
X

i=1

ky � yik2 = bfy + bg>y (x� y) +
2NL

2

kx� yk2 + �y,

and so (

bfy, bgy) satisfy the right inequality in (4.49) with Ly = 2NL and �y = L
PN

i=1

ky � yik2. 2

Algorithm D–NC

Consider algorithm D–NC in (2.13)–(2.14). To avoid notational clutter, use the same notation as with D–

NG for the global averages: x(k) := 1

N

PN
i=1

xi(k), and y(k) := 1

N

PN
i=1

yi(k), re-define bfk, bgk for D–NC

as in (2.18), and let L0
k�1

:=

N
↵ . Multiplying (2.13)–(2.14) from the left by (1/N)1> ⌦ I , and using

(1> ⌦ I)(W ⌦ I) = 1> ⌦ I , we get that x(k), y(k) satisfy (2.19). As ↵  1/(2L), we have L0
k�1

� 2NL,

and so, by Lemma 2.6, the progress per iteration in Lemma 2.5 applies to x(k), y(k) of D–NC for all k,

with �k�1

= Lkey(k � 1)k2.

In summary, the analysis of the convergence rates of both D–NG and D–NC boils down to finding the

disagreements key(k)k and then applying Lemma 2.5.

2.5 Algorithm D–NG: Convergence analysis

This Section studies the convergence of D–NG. Subsection 2.5.1 bounds the disagreements kex(k)k and key(k)k

with D–NG; Subsection 2.5.2 combines these bounds with Lemma 2.5 to derive the convergence rate of D–

NG and its dependence on the underlying network.

2.5.1 Algorithm D–NG: Disagreement estimate

This subsection shows that kex(k)k and key(k)k are O(1/k), hence establishing asymptotic consensus – the

differences of the nodes’ estimates xi(k) (and yi(k)) converge to zero. Recall the step-size constant c > 0

in (2.8) and the gradient bound G in Assumption 2.3.
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Theorem 2.7 (Consensus with D–NG) For D–NG in (2.6)–(2.8) under Assumptions 2.1 and 2.3:

kex(k)k 
p
N cGC

cons

1

k
and key(k)k  4

p
N cGC

cons

1

k
, k = 1, 2, ..., (2.20)

C
cons

=

8

p

(1� µ(W ))

⇢

2B
⇣

p

µ(W )

⌘

+

7

1� µ(W )

�

, (2.21)

with B(r) := supz�1/2 (zr
z
log(1 + z)) 2 (0,1), r 2 (0, 1).

For notational simplicity, we prove Theorem 2.7 for d = 1, but the proof extends to a generic d > 1.

We model the dynamics of the augmented state (ex(k)>, ex(k � 1)

>
)

> as a linear time varying system with

inputs (I � J)rF (y(k)). We present here the linear system and solve it in the Appendix. Substitute the

expression for y(k � 1) in (2.9); multiply the resulting equation from the left by (I � J); use (I � J)W =

fW =

fW (I � J); and set ex(0) = 0 by assumption. We obtain:

2

4

ex(k)

ex(k � 1)

3

5

=

2

4

(1 + �k�2)
fW ��k�2

fW

I 0

3

5

2

4

ex(k � 1)

ex(k � 2)

3

5� ↵k�1

2

4

(I � J)rF (y(k � 1))

0

3

5 , (2.22)

for all k = 1, 2, ..., where �k, for k = 0, 1, ..., is in (2.8), ��1

= 0, and (ex(0)>, ex(�1)>)> = 0. We

emphasize that system (2.22) is more complex than the corresponding systems in, e.g., [2, 12], because the

systems in [2, 12] involve only a single state ex(k) and are not time varying (when W is constant); the upper

bound on kex(k)k from (2.22) is an important technical contribution of this chapter; see Theorem 2.7 and

Appendix A.

2.5.2 Convergence rate and network scaling

Theorem 2.8 (a) states the O (log k/k) convergence rate result for D–NG when the step-size constant c 

1/(2L); Theorem 2.8 (b) (proved in Appendix A) demonstrates that the O (log k/k) convergence rate still

holds if c > 1/(2L), with a deterioration in the convergence constant. Part (b) assumes xi(0) = yi(0) = 0,

8i, to avoid notational clutter.

Theorem 2.8 Consider the algorithm D–NG in (2.6)–(2.8) under Assumptions 2.1–2.3. Let kx(0)� x?k 

R, R � 0. Then:
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(a) If c  1/(2L), we have, 8i, 8k = 1, 2, ...:

f(xi(k))� f?

N
 2R2

c

✓

1

k

◆

+ 16 c2 LC2

cons

G2

 

1

k

k�1

X

t=1

(t+ 2)

2

(t+ 1)t2

!

+ cG2C
cons

✓

1

k

◆

C
 

1

k

k
X

t=1

(t+ 2)

2

(t+ 1)t2

!

, C =

2R2

c
+ 16c2LC2

cons

G2

+ cG2C
cons

. (2.23)

(b) Let xi(0) = yi(0) = 0, 8i. If c > 1/(2L), (2.23) holds 8i, 8k � 2 cL, with C replaced with C0
=

C00
(L,G,R, c) + 16c2LC2

cons

G2

+ cG2C
cons

, and C00
(L,G,R, c) 2 [0,1) is a constant that depends

on L,G,R, c, and is independent of N,µ(W ).

We prove here Theorem 2.8 (a); for part (b), see Appendix A.

Proof: [Proof of Theorem 2.8 (a)] The proof consists of two parts. In Step 1 of the proof, we estimate

the optimality gap 1

N (f(x(k)) � f?
) at the point x(k) = 1

N

PN
i=1

xi(k) using Lemma 2.5 and the inexact

oracle machinery. In Step 2, we estimate the optimality gap 1

N (f(xi(k))�f?
) at any node i using convexity

of the fi’s and the bound on kex(k)k from Theorem 2.7. 2

Step 1. Optimality gap (f(x(k))� f?
)

Recall that, for k = 1, 2, ..., ( bfk, bgk) in (2.18) is a (Lk, �k) inexact oracle of f at point y(k) with Lk = 2NL

and �k = Lkey(k)k2. Note that ( bfk, bgk) is also a (L0
k, �k) inexact oracle of f at point y(k) with L0

k =

N 1

c (k + 1) =

N
↵k

, because 1

c � 2L, and so L0
k � Lk. Now, we apply Lemma 2.5 to (2.19), with x• = x?,

and the Lipschitz constant L0
k = 1/(↵k/N). Recall that v(k) = y(k)�(1��k)x(k)

�k
. We get:

(k + 1)

2

k
(f(x(k))� f?

) +

2N

c
kv(k)� x?k2 (2.24)

 k2 � 1

k
(f(x(k � 1))� f?

) +

2N

c
kv(k � 1)� x?k2 + Lkey(k � 1)k2 (k + 1)

2

k
.

Because (k+1)

2

k � (k+1)

2�1

k+1

, and (f(x(k))� f?
) � 0, we have:

(k + 1)

2 � 1

k + 1

(f(x(k))� f?
) +

2N

c
kv(k)� x?k2

 k2 � 1

k
(f(x(k � 1))� f?

) +

2N

c
kv(k � 1)� x?k2 + Lkey(k � 1)k2 (k + 1)

2

k
.

By unwinding the above recursion, and using v(0) = x(0), gives: (k+1)

2�1

k+1

(f(x(k))� f?
)  2N

c kx(0)�

x?k2 + L
Pk

t=1

key(t � 1)k2 (t+1)

2

t . Applying Theorem 2.7 to the last equation, and using k+1

(k+1)

2�1

=
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k+1

k(k+2)

 k+2

k(k+2)

=

1

k , and the assumption key(0)k = 0, leads to, as desired:

(f(x(k))� f?
)  1

k

2N

c
kx(0)� x?k2 + 16 c2N

k
LC2

cons

G2

k
X

t=2

(t+ 1)

2

t(t� 1)

2

. (2.25)

Optimality gap (f(xi(k))� f?
)

Fix an arbitrary node i; then, by convexity of fj , j = 1, 2, ..., N : fj(x(k)) � fj(xi(k))+rfj(xi(k))>(x(k)�

xi(k)), and so: fj(xi(k))  fj(x(k))+Gkx(k)�xi(k)k. Summing the above inequalities for j = 1, ..., N ,

using
PN

i=1

kx(k) � xi(k)k =

PN
i=1

kexi(k)k 
p
Nkex(k)k, subtracting f? from both sides, and us-

ing kex(k)k 
p
NcGC

cons

(1/k) from Theorem 2.7:

f(xi(k))� f?  f(x(k))� f?
+G
p
Nkex(k)k  f(x(k))� f?

+ cN C
cons

G2

1

k
, (2.26)

which, with (2.25) where the summation variable t is replaced by t+ 1, completes the proof. 2

Network Scaling

Using Theorem 2.8, Theorem 2.9 studies the dependence of the convergence rate on the underlying network

– N and W , when: 1) nodes do not know L and µ(W ) before the algorithm run, and they set the step-size

constant c to a constant independent of N,L,W , e.g., c = 1; and 2) nodes know L, µ(W ), and they set

c = 1�µ(W )

2L . See [12] for dependence of 1/(1 � µ(W )) on N for commonly used models, e.g., expanders

or geometric graphs.

Theorem 2.9 Consider the algorithm D–NG in (2.6)–(2.8) under Assumptions 2.1–2.3. Then:

(a) For arbitrary c = const > 0: 1

N (f(xi(k))� f?
) = O

⇣

1

(1�µ(W ))

3+⇠
log k
k

⌘

.

(b) For c = 1�µ(W )

2L : 1

N (f(xi(k))� f?
) = O

⇣

1

(1�µ(W ))

1+⇠
log k
k

⌘

.

Proof: [Proof of Theorem 2.9] Fix  2 (0, 1) and ⇠ 2 (0, 1) (two arbitrarily small positive constants).

By Assumption 2.1 (b), µ = µ(W ) 2 [, 1]. We show that for C
cons

in (2.21):

C
cons

 A(⇠,)
1

(1� µ)3/2+⇠
, 8µ 2 [, 1], (2.27)
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where A(⇠,) 2 (0,1) depends only on ⇠,. Consider B(r) = supz�1/2 {z rz log(1 + z)} , r 2 (0, 1);

there exists KB(⇠) 2 (0,1) such that: log(1 + z)  KB(⇠)z⇠, 8z � 1/2. Thus:

B(r)  KB(⇠) sup

z�1/2

n

z1+⇠rz
o

= KB(⇠) e
�(1+⇠)

(1 + ⇠)(1+⇠) 1

(� log r)1+⇠
=:

A0
(⇠)

(� log r)1+⇠
,

for all r 2 (0, 1). From the above equation, and using 1/(� log

p
u)  2/(1 � u), 8u 2 [0, 1), we have

B
�p

µ
�

 2A0
(⇠)/(1� µ)1+⇠. The latter, applied to (2.21), yields (2.27) , with

A(⇠,) :=
8p

max

�

3A0
(⇠), 7

 

.

Claim (a) now follows by taking arbitrary c = ⇥(1) and applying (2.27) to Theorem 2.8 (b); and claim (b)

follows by taking c = 1�µ
2L and applying (2.27) to Theorem 2.8 (a). 2

2.6 Algorithm D–NC: Convergence analysis

We now consider the D–NC algorithm. Subsection 2.6.1 provides the disagreement estimate, while Subsec-

tion 2.6.1 gives the convergence rate and network scaling.

2.6.1 Disagreement estimate

We estimate the disagreements ex(k), and ey(k) with D–NC.

Theorem 2.10 (Consensus with D–NC) Let Assumptions 2.1 (a) and 2.3 hold, and consider the algorithm

D–NC. Then, for k = 1, 2, ...:

kex(k)k  2↵
p
NG

1

k2
and key(k)k  2↵

p
NG

1

k2
. (2.28)

For notational simplicity, we perform the proof for d = 1, but it extends to a generic d > 1. Denote by

Bt�1

:= max {kex(t� 1)k, key(t� 1)k}, and fix t � 1. We want to upper bound Bt. Multiplying (2.13)–

(2.14) by (I � J) from the left, using (I � J)W =

fW (I � J):

ex(t) =

fW ⌧x(t)
ey(t� 1)� ↵fW ⌧x(t)

(I � J)rF (y(t� 1)) (2.29)

ey(t) =

fW ⌧y(t)
[ ex(t) + �t�1

(ex(t)� ex(t� 1)) ] . (2.30)

We upper bound kex(t)k and key(t)k from (2.29), (2.30). Recall kfWk = µ(W ) := µ 2 (0, 1); from (2.11)
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and (2.12), we have µ⌧x(t)  1

t2 and µ⌧y(t)  1

3t2 . From (2.29), using the sub-additive and sub-multiplicative

properties of norms, and using key(t�1)k  Bt�1

, µ 2 (0, 1), k(I�J)rF (y(t�1))k  krF (y(t�1))k 
p
NG, �t�1

 1:

kex(t)k  µ⌧x(t)Bt�1

+ ↵µ⌧x(t)
p
NG  1

t2
Bt�1

+ ↵
p
NG

1

t2
(2.31)

key(t)k  2µ⌧y(t)kex(t)k+ µ⌧y(t)kex(t� 1)k

 2µ⌧x(t)+⌧y(t)Bt�1

+ 2↵
p
NGµ⌧x(t)+⌧y(t)

+ µ⌧y(t)Bt�1

 3µ⌧y(t)Bt�1

+ 2↵
p
NGµ⌧y(t)  1

t2
Bt�1

+ ↵
p
NG

1

t2
. (2.32)

Clearly, from (2.31) and (2.32):Bt  1

t2Bt�1

+

1

t2↵
p
NG. Next, using B

0

= 0, unwind the latter

recursion for k = 1, 2, to obtain, respectively: B
1

 ↵
p
NG and B

2

 ↵
p
NG/2, and so (2.28) holds for

k = 1, 2. Further, for k � 3 unwinding the same recursion for t = k, k � 1, ..., 1:

Bk  ↵
p
NG

k2

 

1 +

k�1

X

t=2

1

(k � 1)

2

(k � 2)

2...t2
+

1

(k � 1)

2

(k � 2)

2...22

!

 ↵
p
NG

k2

 

1 +

k�1

X

t=2

1

t2
+

1

2

2

!

 ↵
p
NG

k2

✓

⇡2

6

+

1

4

◆

 2↵
p
NG

k2
, k = 1, 2, ...,

where we use 1 +

Pk�1

t=2

1

t2  ⇡
2/6, 8k � 3. 2

2.6.2 Convergence rate and network scaling

We are now ready to state the Theorem on the convergence rate of D–NC.

Theorem 2.11 Consider the algorithm D–NC under Assumptions 2.1 (a), 2.2, and 2.3. Let kx(0)�x?k  R,

R � 0. Then, after K =

Pk
t=1

(⌧x(t) + ⌧y(t))  2

� log µ(W )

(k log 3 + 2(k + 1) log(k + 1)) = O (k log k)

communication rounds, i.e., after k outer iterations, at any node i:

1

N
(f(xi(k))� f?

)  1

k2

✓

2

↵
R2

+ 11↵2LG2

+ ↵G2

◆

, k = 1, 2, ... (2.33)

[Proof outline] The proof is very similar to the proof of Theorem 2.8 (a) (for details see the second version v2

on arxiv [9]); first upper bound f(x(k))� f?, and then f(xi(k))� f?. To upper bound f(x(k))� f?, recall

that the evolution (2.19) with ↵k = ↵ for (x(k), y(k)) is the inexact Nesterov gradient with the inexact

oracle (

bfk, bgk) in (2.18), and (Lk = 2NL, �k = Lkey(k)k2). Then, apply Lemma 2.5 with x• ⌘ x? and

L0
k�1

= N/↵, and use the bound on key(k)k from Theorem 2.10, to obtain the bound on f(x(k)) � f?.
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Finally, find the bound on f(xi(k))� f? analogously to the proof of Theorem 2.8 (a).

Network scaling

We now give the network scaling for algorithm D–NC in Theorem 2.12. We assume that nodes know L and

µ(W ) before the algorithm run.

Theorem 2.12 Consider D–NC under Assumptions 2.1 (a), 2.2, and 2.3 with step-size ↵  1/(2L). Then,

after K communication rounds, at any node i, 1

N (f(xi)� f?
) is O

⇣

1

(1�µ(W ))

2

1

K2�⇠

⌘

.

Proof: Fix ⇠ 2 (0, 1), and let K be the number of elapsed communication rounds after k outer iterations.

There exists C
0

(⇠) 2 (1,1), such that, 2 (k log 3 + 2(k + 1) log(k + 1))  C
0

(⇠)k1+⇠, 8k � 1. The

latter, combined with 1/(� logµ(W ))  1/(1� µ(W )), µ(W ) 2 [0, 1), and the upper bound bound on K

in Theorem 2.11, gives: 1/k2  (C
0

(⇠))2 1

(1�µ(W ))

2

1

K2�2⇠ . Plugging the latter in the optimality gap bound

in Theorem 2.11, the result follows (replacing ⇠ with ⇠/2.) 2

2.7 Comparisons with the literature and discussion of the Assumptions

Subsection 2.7.1 compares D–NG, D–NC, and the distributed (sub)gradient algorithms in [2, 12, 29], from

the aspects of implementation and convergence rate; Subsection 2.7.2 gives a detailed discussion on As-

sumptions 2.1–2.3.

2.7.1 Comparisons of D–NG and D–NC with the literature

We first set up the comparisons by explaining how to account for Assumption 2.1 (b) and by adapting the

results in [29, 30] to our framework.

Assumption 2.1 (b). We account for Assumption 2.1 (b) with D–NG as follows. Suppose that the nodes

are given arbitrary symmetric, doubly stochastic weights W with µ(W ) < 1 – the matrix required by D–NC

and [2, 12, 29]. (For example, the Metropolis weights W .) As the nodes may not be allowed to check

whether the given W obeys Assumption 2.1 (b) or not, they modify the weights to W 0
:=

1+
2

I +

1�
2

W ,

where  2 (0, 1) can be taken arbitrarily small. The matrix W 0 obeys Assumption 2.1 (b), whether W

obeys it or not.5 The modification is done without any required knowledge of the system parameters nor

inter-node communication; node i sets: 1) W 0
ij =

1�
2

Wij , for {i, j} 2 E, i 6= j; 2) W 0
ij = 0, for

{i, j} /2 E, i 6= j; and 3) W 0
ii := 1 �

P

j 6=iW
0
ij . To be fair, when we compare D–NG with other methods

5Note that �
1

(W 0) � 1+
2

� 1�
2

|�
1

(W )| � , because |�
1

(W )| < 1, and so W 0 ⌫  I whether W ⌫  I or not.
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(either theoretically as we do here or numerically as done in Section 2.9), we set its weights to W 0. For

theoretical comparisons, from Theorem 2.8, the convergence rate of D–NG depends on W 0 through the

inverse spectral gap 1/(1 � µ(W 0
)). It can be shown that 1

1�µ(W 0
)

=

2

1�
1

1�µ(W )

, i.e., the spectral gaps

of W and W 0 differ only by a constant factor and the weight modification does not affect the convergence

rate (up to a numerical constant); henceforth, we express the theoretical rate for D–NG in terms of W .

References [29, 30] develop and analyze non-accelerated and accelerated distributed gradient and prox-

imal gradient methods for time-varying networks and convex fi’s that have a differentiable component with

Lipschitz continuous and bounded gradient and a non-differentiable component with bounded gradient. To

compare with reference [30], we adapt it to our framework of static networks and differentiable fi’s. (We

set the non-differentiable components of the fi’s to zero.) The accelerated methods in [30] achieve faster

rates than the non-accelerated ones; we focus only on the former. References [29, 30] assume determinis-

tic time-varying networks. To adapt their results to our static network setup in a fair way, we replace the

parameter � in [29] (see equation (7) in [29]) with µ(W ). The references propose two variants of the ac-

celerated algorithm: the first (see (6a)–(6d) in [29]) has k inner consensus iterations at the outer iteration k,

while the second one has d4 log(k + 1)/(� logµ)e (See Subsection III-C in [29].) The bounds established

in [29] for the second variant give its rate: 1) O
⇣

N2

(1�µ(W ))

2K2�⇠

⌘

, when nodes know only µ(W ) and L;

and 2) O
⇣

N1/2

(1�µ(W ))

2K2�⇠

⌘

, when they in addition know N and set the step-size ↵ = ⇥(1/
p
N). The first

variant has a slower rate (see Appendix A).

Algorithm implementation and convergence rate

Table 2.1 compares D–NG, D–NC, the algorithm in [12] and the second algorithm in [29] with respect to

implementation and the number of communications K(✏;N,W ) to achieve ✏-accuracy. Here K(✏;N,W ) is

the smallest number of communication rounds K after which 1

N (f(xi)� f?
)  ✏, 8i. Regarding implemen-

tation, we discuss the knowledge required a priori by all nodes for: 1) convergence (row 1); and 2) stopping

and optimizing the step-size (row 2). By stopping, we mean determining a priori the (outer) iteration k
0

such that 1

N (f(xi(k))�f?
)  ✏, 8k � k

0

, 8i. Optimizing the step size here means finding the step-size that

minimizes the established upper bound (in the reference of interest) on the optimality gap (e.g., the bound

for D–NG in Theorem 2.8 (a).) We assume, with all methods, that W is already given (e.g., Metropolis.)

Regarding K(✏;N,W ), we neglect the logarithmic and ⇠-small factors and distinguish two cases: 1) the

nodes have no global knowledge (row 3); and 2) the nodes know L, µ(W ) =: µ. We can see from Table 2.1

that, without global knowledge (row 3), D–NG has better dependence on ✏ than [12] and worse dependence

on µ. Under global knowledge (row 4), D–NC has the best complexity. When with the second method
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D–NG D–NC [12] [29]
Knowledge for convergence none L, µ none L, µ
Knowledge for stopping; stepsize µ,R,G,L µ,R,G,L µ,R,G µ,R,G,L,N

K(✏;N,W ): No knowledge O
⇣

1

(1�µ)3✏

⌘

not guaranteed O
⇣

1

(1�µ)2✏2

⌘

not studied

K(✏;N,W ): L, µ O
⇣

1

(1�µ)✏

⌘

O
⇣

1

(1�µ)
p
✏

⌘

O
⇣

1

(1�µ)✏2

⌘

O
⇣

N
(1�µ)

p
✏

⌘

Table 2.1: Comparisons of algorithms D–NG, D–NC, [12], and [29] (algorithms 1 and 2).

in [29] nodes in addition know N , their bound improves to O
⇣

N1/4

(1�µ)
p
✏

⌘

(see Appednix A.) Further, while

D–NG and [12] require no knowledge of any global parameters for convergence (row 1), D–NC and the

second algorithm in [29] need L and µ(W ). The first variant in [29] requires only L. Also, the bounds

in [12] in Table 2.1 hold for a wider class of functions; see [12] for details.

Global knowledge µ(W ), L,G,R

Global knowledge µ(W ), L,G,R (as needed, e.g., by D–NG for stopping) can be obtained as follows.

Consider first L (see Assumption 2.2) and suppose that each node knows a Lipschitz constant Li of its

own fi. Then, L can be taken as L = maxi=1,...,N Li. Thus, each node can compute L if nodes run

a distributed algorithm for maximum computation, e.g., ([74], (1)); all nodes get L after O(Diam) per-

node communicated scalars, where Diam is the network diameter. Likewise, a gradient bound G (see

Assumption 2.3) can be taken as G = maxi=1,...,N Gi, where Gi is a gradient bound for the fi. The quantity

µ(W ) (equal to the second largest eigenvalue of W ) can be computed in a distributed way, e.g., by algorithm

DECENTRALOI, proposed for a more general setting in [75], and adapted to the problem like ours in [[10],

Subsection IV-A, p. 2519]. With DECENTRALOI, node i obtains qµi , the i-th coordinate of the N ⇥

1 eigenvector qµ of W that corresponds to µ(W ), (up to ✏-accuracy) after O
⇣

log

2

(N/✏) logN
1�µ(W )

⌘

per-node

communicated scalars [75]; then, node i obtains µ(W ) as:
P

j2Oi
Wijq

µ
j

qµi
.

Consider now D–NC when nodes do not have available their local gradient Lipschitz constants Li.

Nodes can take a diminishing step size ↵k = 1/(k+ 1)

p, p 2 (0, 1], and still guarantee convergence, with a

deteriorated rate O
�

1

K2�p�⇠

�

. In alternative, it may be possible to employ a “distributed line search,” sim-

ilarly to [76]. Namely, in the absence of knowledge of the gradient’s Lipschitz constant L, the centralized

Nesterov gradient method with a backtracking line search achieves the same rate O(1/k2), with an addi-

tional computational cost per iteration k; see [73, 77]. It is an interesting research direction to develop a

variant of distributed line search for D–NC type methods and explore the amount of incurred additional

communications/computations per outer iteration k; due to lack of space, this is left for future work.
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The ⌦(1/k2/3) lower bound on the worst-case optimality gap for [2]

We now focus on the dependence of the convergence rate on k and K only (assuming a finite, fixed 1/(1�

µ(W )).) We demonstrate that D–NG has a strictly better worst-case convergence rate in k (and K) than [2],

when applied to the fi’s defined by Assumptions 2.2 and 2.3. Thus, D–NC also has a better rate.

Fix a generic, connected network G with N nodes and a weight matrix W that obeys Assumption 2.1.

Let F = F(L,G) be the class of all N -element sets of functions {fi}Ni=1

, such that: 1) each fi : Rd ! R

is convex, has Lipschitz continuous derivative with constant L, and bounded gradient with bound G; and

2) problem (2.1) is solvable in the sense of Assumption 2.2 (a). Consider (2.1) with {fi}Ni=1

2 F , for all

i; consider D–NG with the step-size ↵k =

c
(k+1)

, k = 0, 1, ..., c  1/(2L). Denote by: ED�NG

(k,R) =

sup{fi}Ni=1

2F sup{x(0): kx(0)�x?kR}maxi=1,...,N {f(xi(k))� f?} the optimality gap at the k-th iteration of

D–NG for the worst {fi}Ni=1

2 F , and the worst x(0) (provided kx(0) � x?k  R.) From Theorem 2.8,

for any k = 1, 2, ...: ED�NG

(k,R)  C log k
k = O(log k/k), with C in (2.23). Now, consider the algorithm

in [2] with the step-size ↵k =

c
(k+1)

⌧ , k = 0, 1, ..., where c 2 [c
0

, 1/(2L)], ⌧ � 0 are the degrees of

freedom, and c
0

is an arbitrarily small positive number. With this algorithm, k = K. We show that, for the

N = 2-node connected network, the weight matrix W with Wii = 7/8, i = 1, 2, and Wij = 1/8, i 6= j

(which satisfies Assumption 2.1), and R =

p
2, L =

p
2 and G = 10, with [2]:

inf

⌧�0, c2[c
0

,1/(2L)]
E (k,R; ⌧, c) = ⌦

✓

1

k2/3

◆

, (2.34)

where E (k,R; ⌧, c) = sup{fi}Ni=1

2F sup{x(0): kx(0)�x?kR}maxi=1,...,N {f(xi(k))� f?} is the worst-case

optimality gap when the step-size ↵k =

c
(k+1)

⌧ is used. We perform the proof by constructing a “hard”

example of the functions fi 2 F(L,G) and a “hard” initial condition to upper bound E (k,R; ⌧, c); for any

fixed k, c, ⌧ , we set: xi(0) =: (1, 0)>, i = 1, 2; fi =: f✓k
i , where:

f✓
i (x) =

8

<

:

✓(x(1)+(�1)i)2

2 +

(x(2)+(�1)i)2

2 if ✓(x(1)
+ (�1)i)2 + (x(2)

+ (�1)i)2  �2

�
⇣

⇥

✓(x(1)
+ (�1)i)2 + (x(2)

+ (�1)i)2
⇤1/2 � �

2

⌘

else;
(2.35)

✓k =

1Pk�1

t=0

(t+1)

�⌧
; and � = 6. The proof of (2.34) is in the Appendix. We convey here the underlying

intuition. When ⌧ is ✏-smaller (away) from one, we show:

max

i=1,2
(f✓k

(xi(k))� f?,✓k
) � ⌦

✓

1

k1�⌧
+

1

k2⌧

◆

.

The first summand is the “optimization term,” for which a counterpart exists in the centralized gradient

36



method also. The second, “distributed problem” term, arises because the gradientsrfi(x?) of the individual

nodes functions are non-zero at the solution x?. Note the two opposing effects with respect to ⌧ : 1

k1�⌧ (the

smaller ⌧ � 0, the better) and 1

k2⌧ (the larger ⌧ � 0, the better.) To balance the opposing effects of the

two summands, one needs to take a diminishing step-size; ⌧ = 1/3 strikes the needed balance to give the

⌦(1/k2/3) bound.

2.7.2 Discussion on Assumptions

We now discuss what may occur if we drop each of the Assumptions made in our main results–Theorems 2.7

and 2.8 for D–NG, and Theorems 2.10 and 2.11 for D–NC.

Assumption 2.1 (a)

Consider Theorems 2.7 and 2.10. If Assumption 2.1 (a) is relaxed, then ex(k) with both methods may not

converge to zero. Similarly, consider Theorems 2.8 and 2.11. Without Assumption 2.1 (a), f(xi(k)) may not

converge to f? at any node. Consider the following simple example: N = 2, W = I; let fi : R ! R, i =

1, 2, obey Assumptions 2.2 and 2.3, with the three quantities: x?i := argminx2Rfi(x), i = 1, 2, and x? =

argminx2R [ f(x) = f
1

(x) + f
2

(x) ] all unique and mutually different; set arbitrary intialization x(0) =

y(0). Then, xi(k) converges to x?i (by convergence of the centralized Nesterov gradient method,) while

ex(k) and f(xi(k)) � f?, i = 1, 2, converge respectively to the non-zero values: (

x?
1

�x?
2

2

,
x?
2

�x?
1

2

)

> and

f(x?i )� f?, i = 1, 2.

Assumption 2.1 (b)

Assumption 2.1 (b) is imposed only for D–NG – Theorems 2.7 and 2.8. We show by simulation that, if

relaxed, kex(k)k and f(xi(k)) � f? may grow unbounded. Take N = 2 and W
11

= W
22

= 1/10, W
12

=

W
21

= 9/10; the Huber losses fi : R! R, fi(x) = 1

2

(x�ai)2 if kx�aik  1 and fi(x) = kx�aik�1/2

else, ai = (�1)i+1; c = 1, and x(0) = y(0) = (0, 0)>. Then, we verify by simulation (see Figure 2.1)

that kex(k)k and mini=1,2( f(xi(k))� f?
) grow unbounded.

Assumption 2.2

Assumption 2.2 is not needed for consensus with D–NG and D–NC (Theorems 2.7 and 2.10), but we impose

it for Theorems 2.8 and 2.11 (convergence rates of D–NG and D–NC). This Assumption is standard and

widely present in the convergence analysis of gradient methods, e.g., [11]. Nonetheless, we consider what
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may occur if we relax the requirement on the Lipschitz continuity of the gradient of the fi’s. For both

D–NG and D–NC, we borrow the example functions fi : R ! R, i = 1, 2, from [30], pages 29–31:

f
1

(x) = 4x3 +

3x2

2

, x � 1; f
1

(x) =

15x2

2

� 2, x < 1; and f
2

(x) := f
1

(�x). Then, for D–NG with

W
11

= W
22

= 1 �W
12

= 1 �W
21

= 9/10, c = 1, and x(0) = y(0) = (�1, 1)>, simulations show that

kx(k)k and f(xi(k)) � f?, i = 1, 2, grow unbounded. Similarly, with D–NC, for the same W , ↵ = 0.1,

and x(0) = y(0) = (�1, 1)>, simulations show that f(xi(k))� f?, i = 1, 2, stays away from zero when k

grows (see Figure 2.1.)
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Figure 2.1: Top: Divergence of D–NG for the N = 2-node network with W that violates Assumption 1 (b);
Left: mini=1,2(f(xi(k)) � f?

); Right: kex(k)k = k(I � J)x(k)k; Bottom: Example fi’s, i = 1, 2, in
reference [30], pages 29–31 that do not have the Lipschitz continuous gradients; Left: D–NG diverges;
Right: D–NC does not converge to a solution – mini=1,2(f(xi(k))� f?

) does not converge to zero.

Assumption 2.3

First consider Theorems 2.8 and 2.11 on the convergence rates of D–NG and D–NC. Define the class F(L) to

be the collection of all N -element sets of convex functions {fi}Ni=1

, where each fi : Rd ! R has Lipschitz

continuous gradient with constant L, and problem (2.2) is solvable in the sense of Assumption 2.2 (a).

(Assumption 2.3 relaxed.) With the D–NC for the 2-node connected network, arbitrary weight matrix W

obeying Assumption 2.1 (a), and the step-size ↵ = 1/(2L), we show for L = 1, R � 0, that, for any k � 5
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and arbitrarily large M > 0:

E(k;R;↵ = 1/(2L)) = sup

{fi}Ni=1

2F(L=1)

sup

x(0):kx(0)�x?kR
max

i=1,2
(f(xi(k))� f?

) �M. (2.36)

Note that the above means E(k;R;↵ = 1/(2L)) = +1, 8k � 10, 8R � 0. That is, no matter how large

the (outer) iteration number k is, the worst case optimality gap is still arbitrarily large.

We conduct the proof by making a “hard” instance for {fi}Ni=1

: for a fixed k,M , we set xi(0) = yi(0) =

0, i = 1, 2, fi : R! R, to fi = f✓(k,M)

i , where ✓ = ✓(k,M) = 8

p
M k2 and:

f✓
i (x) =

1

2

�

x+ (�1)i✓
�

2

, i = 1, 2, ✓ > 0. (2.37)

Similarly to D–NC, with D–NG we show in Appendix A that (2.36) also holds for the 2-node connected

network, the symmetric W with W
12

= W
21

= 1 � W
11

= 1 � W
22

=

1

2

�

1� 10

�6

�

(this W obeys

Assumption 2.1), ↵k = c/(k + 1), and c =

1

4

⇥ 10

�6. The candidate functions are in (2.37), where, for

fixed k � 5, M > 0, ✓(k,M) = 8⇥ 10

6 k
p
M.

We convey here the intuition why (2.36) holds for D–NG and D–NC, while the proof is in Section 2.8.

Note that the solution to (2.1) with the fi’s in (2.37) is x? = 0, while x?i := argminx2Rfi(x) = (�1)i+1✓,

i = 1, 2. Making x?
1

and x?
2

to be far apart (by taking a large ✓), problem (2.1) for D–NG and D–NC

becomes “increasingly difficult.” This is because the inputs to the disagreement dynamics (2.22) (I �

J)rF (y(k � 1)) = (I � J)y(k � 1) � (�✓, ✓)> are arbitrarily large, even when y(k � 1) is close the

solution y(k � 1) ⇡ (0, 0)>.

Finally, we consider what occurs if we drop Assumption 2.3 with Theorems 2.7 and 2.10. We show with

D–NG and the above “hard” examples that kex(k)k �
p
2 c ✓
2 k , 8k � 5. Hence, kex(k)k is arbitrarily large

by choosing ✓ large enough. (see Appendix A.) Similarly, with D–NC: kex(k)k � ↵ ✓
p
2

4 k2 , 8k � 10. (see

Appendix A.)

2.8 Technical Proofs

Subsection 2.8.1 proves Theorem 2.7; Subsection 2.8.2 proves the lower bound in (2.34) on the optimality

gap of [2]; and Subsection 2.8.3 prove (2.36) for the D–NC method. The remaining proofs are in Ap-

pendix A.
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2.8.1 Proof of Theorem 2.7

For notational simplicity, we let d = 1, but the proof extends to d > 1. We outline the main steps in the

proof. First, we unwind the recursion (2.22) and calculate the underlying time varying system matrices.

Second, we upper bound the norms of the time varying system matrices. Finally, we use these bounds and a

summation argument to complete the proof of the Theorem.

Unwinding (2.22) and calculating the system matrices

Define the 2N ⇥ 2N system matrices:

�(k, t) := ⇧k�t+1

s=2

2

4

(1 + �k�s)
fW ��k�s

fW

I 0

3

5 , k > t, (2.38)

and �(k, k) = I. Unwinding (2.22), the solution to (2.22) is:

2

4

ex(k)

ex(k � 1)

3

5

=

k�1

X

t=0

�(k, t+ 1)↵t

2

4

�(I � J)rF (y(t))

0

3

5 , k = 1, 2, ... (2.39)

We now show the interesting structure of the matrix �(k, t) in (2.38) by decomposing it into the product of

an orthonormal matrix U , a block-diagonal matrix, and U>. While U is independent of k and t, the block

diagonal matrix depends on k and t, and has 2 ⇥ 2 diagonal blocks. Consider the matrix in (2.22) with

k � 2 = t, for a generic t = �1, 0, 1, ... Using fW = Qe

⇤Q>:

2

4

(1 + �t)fW ��tfW

I 0

3

5

= (Q�Q)P
�

�N
i=1

⌃i(t)
�

P>
(Q�Q)

>, (2.40)

where P is the 2N ⇥ 2N permutation matrix (ei here is the i–th column of the 2N ⇥ 2N identity matrix)

P = [e
1

, eN+1

, e
2

, eN+2

, ..., eN , e
2N ]

> , and ⌃i(t) is a 2⇥ 2 matrix:

⌃i(t) =

2

4

(1 + �t)�i(fW ) ��t�i(fW )

1 0

3

5 . (2.41)
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Using (2.40), and the fact that (Q�Q)P is orthonormal: ((Q�Q)P )·((Q�Q)P )

>
= (Q�Q)PP>

(Q�

Q)

>
= (QQ>

)� (QQ>
) = I , we can express �(k, t) in (2.38) as:

�(k, t) := (Q�Q)P
⇣

�N
i=1

⇧

k�t+1

s=2

⌃i(k � s)
⌘

P>
(Q�Q)

>, for k > t; �(k, k) = I. (2.42)

Bounding the norm of �(k, t)

As (Q�Q)P is orthonormal,�(k, t) has the same singular values as�N
i=1

⇧

k�t+1

s=2

⌃i(k�s), and so these two

matrices also share the same spectral norm (maximal singular value.) Further, the matrix�N
i=1

⇧

k�t+1

s=2

⌃i(k�

s) is block diagonal (with 2⇥ 2 blocks ⇧k�t+1

s=2

⌃i(k � s)), and so:

k�(k, t)k = max

i=1,...,N

�

�

�

⇧

k�t+1

s=2

⌃i(k � s)
�

�

�

.

We proceed by calculating
�

�

�

⇧

k�t+1

s=2

⌃i(k � s)
�

�

�

. We distinguish two cases: i = 1, and i > 1.

Case i = 1. As �
1

(

fW ) = 0, for all t, ⌃
1

(t) = ⌃

1

is a constant matrix, with [⌃

1

]

21

= 1, and the

entries (1, 1), (1, 2) and (2, 2) of ⌃
1

are zero. Note that k⌃
1

k = 1, and (⌃

1

)

s
= 0, s � 2. Thus, as long as

k > t+ 1, the product ⇧k�t+1

s=2

⌃i(k � s) = 0, and so:

�

�

�

⇧

k�t+1

s=2

⌃

1

(k � s)
�

�

�

=

8

<

:

1 if k = t+ 1

0 if k > t+ 1.
(2.43)

Case i > 1. To simplify notation, let �i := �i(fW ), and recall �i 2 (0, 1);⌃i(t) is: ⌃i(t) = b

⌃i� 3

t+3

�i,

where: 1) [b⌃i]11 = 2�
2

, [b⌃i]12 = ��i, [b⌃i]21 = 1, and [

b

⌃i]22 = 0; and 2) [�i]11 = �[�i]12 = �i, and

[�i]21 = [�i]22 = 0. ; b⌃i is diagonalizable, with b

⌃i =
cQi

bDi
cQi

�1

, and:

cQi =

2

4

�i + j
p

�i(1� �i) �i � j
p

�i(1� �i)

1 1

3

5 , bDi =

2

4

�i + j
p

�i(1� �i) 0

0 �i � j
p

�i(1� �i)

3

5 .

(Note that the matrices bQi and bDi are complex.) Denote by Di(t) = bDi � 3

t+3

cQi
�1

�i
cQi. Then, ⌃i(t) =

bQi

⇣

bDi � 3

t+3

bQ�1

i �i
bQi

⌘

bQ�1

i =

cQiDi(t)cQi
�1

. By the sub-multiplicative property of norms, and using
�

�

�

cQi

�

�

�


p
2

�

�

�

cQi

�

�

�

1
= 2

p
2,
�

�

�

cQi
�1

�

�

�


p
2

�

�

�

cQi
�1

�

�

�

1
=

2

p
2p

�i(1��i)
:

k⇧k�t+1

s=2

⌃i(k � s)k  8

p

�i(1� �i)
⇧

k�t+1

s=2

kDi(k � s)k. (2.44)
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It remains to upper bound kDi(t)k, for all t = �1, 0, 1, ... We will show that

kDi(t)k 
p

�i, 8t = �1, 0, 1, ... (2.45)

Denote by at =
3

t+3

, t = 0, 1, ..., and a�1

= 1. After some algebra, the entries of Di(t) are: [Di(t)]11 =

([Di(t)]22)
H

=

1

2

(2� at)(�i + j
p

�i(1� �i)), [Di(t)]12 = ([Di(t)]21)
H

= at(�i + j
p

�i(1� �i)), which

gives: [Di(t)
HDi(t)]11 = [Di(t)

HDi(t)]22 =
a2t+(2�at)2

4

�i, and [Di(t)
HDi(t)]12 =

⇣

[Di(t)
HDi(t)]21

⌘H
=

at(2�at)
2

⇣

2�2i � �i � 2j�i
p

�i(1� �i)
⌘

. Next, very interestingly:

kDi
H
(t)Di(t)k1 =

�

�

⇥

Di
H
(t)Di(t)

⇤

11

�

�

+

�

�

⇥

Di
H
(t)Di(t)

⇤

12

�

�

=

1

4

(a2t +(2�at)2)�i+
1

2

at(2�at)�i,= �i.

for any at 2 [0, 2], which is the case here because at = 3/(t+3), t = 0, 1, ..., and a�1

= 0. Thus, as kAk 

kAk
1

for a Hermitean matrix A: kDi(t)k =
q

kDi
H
(t)Di(t)k 

q

kDi
H
(t)Di(t)k1 =

p
�i. Applying the

last equation and (2.45) to (2.44), we get, for i 6= 1: k⇧k�t+1

s=2

⌃i(k�s)k  8p
�i(1��i)

�p
�i
�k�t

, k � t+1.

Combine the latter with (2.43), and use k�(k, t)k = maxi=1,...,N k⇧k�t+1

s=2

⌃i(k � s)k, Assumption 2.1 (b)

and �N (

fW ) = µ(W ), to obtain:

k�(k, t)k 
8

⇣

p

µ(W )

⌘k�t

mini2{2,N}

q

�i(fW )(1� �i(fW ))

 8

p

(1� µ(W ))

⇣

p

µ(W )

⌘k�t
, k � t. (2.46)

Summation

We apply (2.46) to (2.39). Using the sub-multiplicative and sub-additive properties of norms, expression

↵t = c/(t+1), and the inequalities kex(k)k 
�

�

(ex(k)>, ex(k � 1)

>
)

>�
�,
�

�

(�(I � J)rF (y(t))>, 0>)>
�

� 
p
N G:

kex(k)k  8

p
N cG

p

(1� µ(W ))

k�1

X

t=0

⇣

p

µ(W )

⌘k�(t+1)

1

(t+ 1)

. (2.47)

We now denote by r :=

p

µ(W ) 2 (0, 1). To complete the proof of the Lemma, we upper bound the sum
Pk�1

t=0

rk�(t+1)

1

(t+1)

by splitting it into two sums. With the first sum, t runs from zero to dk/2e, while with

the second sum, t runs from dk/2e+ 1 to k :

k�1

X

t=0

rk�(t+1)

t+ 1

=

✓

rk�1

+ rk�2

1

2

+ ...+ rdk/2e
1

dk/2e

◆

+

✓

rk�(dk/2e+1)

1

dk/2e+ 1

+ ...+
1

k

◆
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 rk/2
✓

1 +

1

2

+ ...+
1

k/2
+

1

(k + 1)/2

◆

+

1

(k/2)

⇣

1 + r + ...+ rk
⌘

 rk/2 (log(1 + k/2) + 2) +

2

k

1

1� r
(2.48)

= 2

n

rk/2 log(1 + k/2)(k/2)
o

1

k
+

n

4rk/2(k/2)
o

1

k
+

2

k

1

1� r
(2.49)

 2 sup

z�1/2
{rz log(1 + z)z} 1

k
+ 4 sup

z�1/2
{rzz} 1

k
+

2

k

1

1� r
(2.50)


✓

2B(r) + 4

e(� log r)
+

2

1� r

◆

1

k

✓

2B(r) + 7

1� r2

◆

1

k
. (2.51)

Inequality (2.48) uses the inequality 1+

1

2

+...+ 1

t  log t+1, t = 1, 2, ..., and 1+r+...+rk  1

1�r ; (2.49)

multiplies and divides the first summand on the right hand side of (2.48) by k/2; (2.50) uses rk/2 log(1 +

k/2)(k/2)  supz�1/2 r
z
log(1 + z)z, for all k = 1, 2, ..., and a similar bound for the second summand

in (2.49); the left inequality in (2.51) uses B(r) := supz�1/2 r
z
log(1 + z)z and supz�1/2 r

z z  1

e (� log r)

(note that rz z is convex in z; we take the derivative of rz z with respect to z and set it to zero); and the

right inequality in (2.51) uses �1/ log r  1/(1 � r), 8r 2 [0, 1); 1/(1 � r)  2/(1 � r2), 8r 2 [0, 1),

and e = 2.71... Applying the last to (2.47), and using the C
cons

in (2.21), Theorem 2.7 for kex(k)k follows.

Then, as ey(k) = ex(k) + k�1

k+2

(ex(k)� ex(k� 1)), we have that key(k)k  2kex(k)k+ kex(k� 1)k. Further, by

Theorem 2.7: kex(k�1)k  c
p
NGC

cons

1

k�1

k
k  2c

p
NGC

cons

1

k , k � 2, and kex(0)k = 0 (by assumption).

Thus, kex(k � 1)k  2c
p
NGC

cons

1

k , 8k � 1. Thus, key(k)k  2kex(k)k+ kex(k � 1)k  4c
p
NGC

cons

1

k ,

8k � 1.

2.8.2 Proof of the worst-case lower bound for standard distributed gradient method

Consider the fi’s in (2.35), the initialization xi(0) = (1, 0)>, i = 1, 2, and W
12

= W
21

= 1 �W
11

=

1 �W
22

= w = 1/8, as we set in Subsection 2.7.1. We divide the proof in four steps. First, we prove

certain properties of (2.1) and the fi’s in (2.35); second, we solve for the state x(k) = (x
1

(k)>, x
2

(k)>)>

with the algorithm in [2]; third, we upper bound kx(k)k; finally, we use the latter bound to derive the

⌦(1/k2/3) worst-case optimality gap.

Step 1: Properties of the f✓
i ’s

Consider the f✓
i ’s in (2.35) for a fixed ✓ 2 [0, 1]. The solution to (2.1), with f(x) = f✓

1

(x) + f✓
2

(x), is

x? = (0, 0)>, and the corresponding optimal value is f?
= ✓ + 1. Further, the f✓

i ’s belong to the class

F(L =

p
2, G = 10). (Proof is in the Supplementary material.)
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Step 2: Solving for x(k) with the algorithm in [2]

Now, consider the algorithm in [2], and consider xi(k)–the solution estimate at node i and time k. Denote

by xl(k) = (x(l)
1

(k), x(l)
2

(k))>–the vector with the l-th coordinate of the estimate of both nodes, l = 1, 2;

and dl(k) =
⇣

@f
1

(x
1

(k))
@x(l) , @f

2

(x
2

(k))
@x(l)

⌘>
, l = 1, 2. Then, the update rule of [2] is, for the f✓

1

, f✓
2

in (2.35):

xl(k) = Wxl(k � 1)� ↵k�1

dl(k � 1), k = 1, 2, ..., l = 1, 2. (2.52)

Recall the “hard” initialization xI(0) = (1, 1)>, xII(0) = (0, 0)>. Under this initialization:

xi(k) 2 Ri :=

n

x 2 R2

: ✓(x(1) + (�1)i)2 + (x(2) + (�1)i)2  �2

o

, (2.53)

for all k, for both nodes i = 1, 2 (proof in the Supplementary material.) Note that Ri is the region where

the f✓
i in (2.35) is quadratic. Thus, evaluatingrf✓

i ’s in the quadratic region:

xl(k) =
⇣

W � ↵k�1

lI
⌘

xI(k � 1)� ↵k�1

l (�1, 1)> , (2.54)

l = 1, 2, where I = ✓ and II = 1. We now evaluate
P

2

i=1

(f(xi(k))� f?
) , f(x) = f✓

1

(x) + f✓
2

(x).

Because xi(k) 2 Ri, i = 1, 2, verify, using (2.35), and f?
= 1 + ✓, that:

2

X

i=1

(f(xi(k))� f?
) = ✓kxI(k)k2 + kxII(k)k2. (2.55)

By unwinding (2.54), and using xI(0) = (1, 1)>, xII(0) = (0, 0)>:

xI(k) = (W � ↵k�1

✓I) (W � ↵k�2

✓I) ... (W � ↵
0

✓I) (1, 1)>

+ ✓

 

k�2

X

t=0

(W � ↵k�1

✓I)(W � ↵k�2

✓I)...(W � ↵t+1

✓I)↵t + ↵k�1

I

!

(1,�1)>

xII(k) =

 

k�2

X

t=0

(W � ↵k�1

I)(W � ↵k�2

I)...(W � ↵t+1

I)↵t + ↵k�1

I

!

(1,�1)>.

Consider the eigenvalue decomposition W = Q⇤Q>, where Q = [q
1

, q
2

], q
1

=

1p
2

(�1, 1)>, q
2

=

1p
2

(1, 1)>, and ⇤ is diagonal with the eigenvalues ⇤
11

= �
1

= 1 � 2w = 3/4, ⇤
22

= �
2

= 1. The

matrix W � ↵k�1

✓I decomposes as W � ↵k�1

✓I = Q(⇤� ↵k�1

✓I)Q>; likewise, W � ↵k�1

I = Q(⇤�

↵k�1

I)Q>. Then, (W � ↵k�1

✓I)(W � ↵k�2

✓I)...(W � ↵t+1

✓I) = Q(⇤� ↵k�1

✓I)...(⇤� ↵t+1

✓I)Q>,

and (W � ↵k�1

I)...(W � ↵t+1

I) = Q(⇤ � ↵k�1

I)...(⇤ � ↵t+1

I)Q>. Using these decompositions, and
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the orthogonality: q>
1

(1, 1)> = 0, and q>
2

(�1, 1)> = 0:

xI(k) = (1� ↵k�1

✓) (1� ↵k�2

✓) ... (1� ↵
0

✓) (1, 1)> (2.56)

+ ✓(1,�1)>
 

k�2

X

t=0

(�
1

� ↵k�1

✓)(�
1

� ↵k�2

✓)...(�
1

� ↵t+1

✓)↵t + ↵k�1

!

xII(k) = (1,�1)>
 

k�2

X

t=0

(�
1

� ↵k�1

)(�
1

� ↵k�2

)...(�
1

� ↵t+1

)↵t + ↵k�1

!

. (2.57)

Step 3: Upper bounding kx(k)k

Note that �
1

� ↵k�1

✓ = 3/4 � c✓
k⌧ � 1/4, for all k, ⌧, c. Also, �

1

� ↵k�1

✓  �
1

= 3/4, for all

k, ⌧, c. Similarly, we can show 1 � ↵k�1

✓ 2 [1/2, 1]. (Note that the terms (1 � ↵k�1

✓)...(1 � ↵
0

✓),

(�
1

� ↵k�1

✓)...(�
1

� ↵t+1

✓), and (�
1

� ↵k�1

)...(�
1

� ↵t+1

) are then nonnegative, 8t.) Thus: kxI(k)k �

(1� ↵k�1

✓) (1� ↵k�2

✓) ... (1� ↵
0

✓) . Set ✓ = ✓k = 1/(sk(⌧))  1, where sk(⌧) :=

Pk�1

t=0

(t + 1)

�⌧
;

use (1 � a
1

)(1 � a
2

)...(1 � an) � 1 � (a
1

+ a
2

+ ... + an), ai 2 [0, 1), 8i; and ↵k =

c
(k+1)

⌧ . We

obtain: kxI(k)k � 1 � c ✓k sk(⌧), and so: ✓kkxI(k)k2 � (1�c
max

)

2

sk(⌧)
, where we denote c

min

:= c
0

and

c
max

:= 1/(2L) = 1/(2
p
2). Further, from (2.57): kxII(k)k2 � ↵2

k�1

� c2
min

k2⌧ , and we obtain:

✓k kxI(k)k2 + kxII(k)k2 �
(1� c

max

)

2

sk(⌧)
+

c2
min

k2⌧
. (2.58)

Step 4: Upper bounding the optimality gap from (2.58)

From (2.58), and using (2.55):

max

i=1,2
(f(xi(k))� f?

) � 1

2

2

X

i=1

(f(xi(k))� f?
) � (1� c

max

)

2

2sk(⌧)
+

c2
min

2 k2⌧
=: ek(⌧), (2.59)

8k � 1, 8⌧ � 0. We further upper bound the right hand side in (2.59) by taking the infimum of ek(⌧) over

⌧ 2 [0,1); we split the interval [0,1) into [0, 3/4]; [3/4, 1], and [1,1), so that

inf

[0,1)

ek(⌧) � min

⇢

inf

[0,3/4]
ek(⌧), inf

[3/4,1]
ek(⌧), inf

[1,1)

ek(⌧)

�

. (2.60)

It is easy to prove that: 1) inf
[0,3/4) ek(⌧) = ⌦(1/k

2/3
); 2) using sk(⌧)  3(log k)(k+1)

1�⌧ , 8k � 3, 8⌧ 2

[0, 1], that inf
[3/4,1] ek(⌧) = ⌦

⇣

1

(log k)k1/4

⌘

; and 3) inf
[1,1)

ek(⌧) = ⌦

⇣

1

log k

⌘

. (see the Supplementary

material.) Combining the latter bounds with (2.60) completes the proof of (2.34).
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2.8.3 Relaxing bounded gradients: Proof of (2.36) for D–NC

We prove (2.36) for D–NC while the proof of D–NG is similar and is in the Supplementary material. Fix

arbitrary ✓ > 0 and take the fi’s in (2.37). From (2.13)–(2.14), evaluating therfi’s:

x(k)=(1� ↵)W ⌧
x

(k)y(k � 1) + ↵ ✓W ⌧
x

(k)
(1,�1)>, y(k)=W ⌧

y

(k)
(x(k) + �k�1(x(k)� x(k � 1))) , (2.61)

for k = 1, 2, ... We take the initialization at the solution x(0) = y(0) = (0, 0)>. Consider the eigenvalue

decomposition W = Q⇤Q>, with Q = [q
1

, q
2

], q
1

=

1p
2

(1,�1)>, q
2

=

1p
2

(1, 1)>, and ⇤ is diagonal with

⇤

11

= �
1

, ⇤
22

= �
2

= 1. Define z(k) = Q>x(k) and w(k) = Q>y(k). Multiplying (2.61) from the left

by Q>, and using Q>
(1,�1)> = (

p
2, 0)>:

z(k) = (1� ↵)⇤⌧x(k)w(k � 1) + ↵ ✓⇤⌧x(k)
(

p
2, 0)>, (2.62)

w(k) = ⇤

⌧y(k)
[z(k) + �k�1

(z(k)� z(k � 1))] ,

k = 1, 2, ..., and z(0) = w(0) = (0, 0)>. Next, note that

max

i=1,2
(f(xi(k))� f?

) � 1

2

2

X

i=1

(f(xi(k))� f?
) =

kx(k)k2

2

=

kz(k)k2

2

� (z(1)(k))2

2

. (2.63)

Further, from (2.62) for the first coordinate z(1)(k), w(1)

(k), recalling that µ := �
1

:

kz(1)(k)k  µ⌧
x

(k)kw(1)
(k � 1)k+

p
2↵ ✓ µ⌧

x

(k), kw(1)
(k)k  µ⌧

y

(k)
⇣

2kz(1)(k)k+ kz(1)(k � 1)k
⌘

, (2.64)

k = 1, 2, ... Note that (2.64) is analogous to (2.31)–(2.32) with the identification ex(k) ⌘ z(1)(k), ey(k) ⌘

w(1)

(k),
p
NG ⌘

p
2✓; hence, analogously to the proof of Theorem 2.10, from (2.64): kw(1)

(k � 1)k 
2

p
2↵ ✓

(k�1)

2

, k = 2, 3...Using the latter, (2.62), and 1

k2 � µ⌧x(k) � 1

e k2 (see (2.11)): kz(1)(k)k � ↵ ✓
p
2µ⌧x(k)�

µ⌧x(k)kw(1)

(k � 1)k � ↵✓
p
2

e k2

⇣

1� 2 e
(k�1)

2

⌘

� ↵ ✓
p
2

4 k2 > 0, 8k � 10. Thus, from (2.63) and the latter

inequality, maxi=1,2(f(xi(k)) � f?
) � ↵2✓2

16 k4 , which is, for ↵ = 1/(2L) = 1/2, greater or equal M for

✓ = ✓(k,M) = 8

p
M k2.

2.9 Simulations

We compare the proposed D–NG and D–NC algorithms with [2, 12, 29] on the logistic loss. Simulations

confirm the increased convergence rates of D–NG and D–NC with respect to [2, 12] and show a comparable

performance with respect to [29]. More precisely, D–NG achieves an accuracy ✏ faster than [2, 12] for
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all ✏, while D–NC is faster than [2, 12] at least for ✏  10

�2. With respect to [29], D–NG is faster for lower

accuracies (✏ in the range 10�1 to 10

�4�10�5), while [29] becomes faster for high accuracies (10�4�10�5

and finer); D–NC performs slower than [29].

Simulation setup

We consider distributed learning via the logistic loss; see, e.g., [78] for further details. Nodes minimize the

logistic loss: f(x) =
PN

i=1

fi(x) =
PN

i=1

log

⇣

1 + e�bi(a>i x
1

+x
0

)

⌘

, where x = (x>
1

, x>
2

)

>, ai 2 R2 is the

node i’s feature vector, and bi 2 {�1,+1} is its class label. The functions fi : Rd 7! R, d = 3, satisfy

Assumptions 2.2 and 2.3. The Hessian r2f(x) =
PN

i=1

e�c>i x

(1+e�c>
i

x
)

2

cic>i , where ci = (bia>i , bi)
> 2 R3. A

Lipschitz constant L should satisfy kr2f(x)k  NL, 8x 2 Rd. Note thatr2f(x) � 1

4

PN
i=1

cic>i , because
e�c>i x

(1+e�c>
i

x
)

2

 1/4, 8x. We thus choose L =

1

4N

�

�

�

PN
i=1

cic>i

�

�

�

⇡ 0.3053. We generate ai independently

over i; each entry is drawn from the standard normal distribution. We generate the “true” vector x? =

(x?
1

>, x?
0

)

> by drawing its entries independently from the standard normal distribution. The labels are

bi = sign

⇣

x?
1

>ai + x?
0

+ ✏i
⌘

, where the ✏i’s are drawn independently from a normal distribution with

zero mean and variance 3. The network is a geometric network: nodes are placed uniformly randomly

on a unit square and the nodes whose distance is less than a radius are connected by an edge. There are

N = 100 nodes, and the relative degree
⇣

=

number of links

N(N�1)/2

⌘

⇡ 10%. We initialize all nodes by xi(0) = 0

(and yi(0) = 0 with D–NG, D–NC, and [29]). With all algorithms except D–NG, we use the Metropolis

weights W [65]; with D–NG, we use W 0
=

1+
2

I +

1�
2

W , with  = 0.1. The step-size ↵k is: ↵k =

1/(k+1), with D–NG; ↵ = 1/(2L) and 1/L, with D–NC6; 1/L, with [29] (both the 1st and 2nd algorithm

variants – see Subsection 2.7.1); and 1/(k+1)

1/2, with [2] and [12]. 7 We simulate the normalized (average)

error 1

N

PN
i=1

f(xi)�f?

f(xi(0))�f? versus the total number of communications at all nodes (= NK.)

Results

Figure 2.2 (left) compares D–NG, D–NC (with step-sizes ↵ = 1/(2L) and 1/L), [2, 12], [29] (both 1st and

2nd variant with ↵ = 1/L.) We can see that D–NG converges faster than other methods for accuracies ✏ in

the range 10

�1 to 3 · 10�5. For example, for ✏ = 10

�2, D–NG requires about 104 transmissions; [29] (2nd

variant)⇡ 3.16 ·104; D–NC (↵ = 1/L)⇡ 4.65 ·104, and D–NC with ↵ = 1/(2L)⇡ 1.1 ·105; and [29] (1st

variant), [2], and [12] – at least ⇡ 1.3 · 105. For high accuracies, 2 · 10�5 and finer, [29] (2nd variant)

becomes faster than D–NG. Finally, [29] (2nd) converges faster than D–NC, while [29] (1st) is slower than

6Our theoretical analysis allows for ↵  1/(2L), but we also simulate D–NG with ↵ = 1/L.
7With [2, 12], ↵k = 1/(k + 1)p and p = 1/2, gave the best simulation performance among the choices p 2 {1/3, 1/2, 1}.
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D–NC.

Further comparisons of D–NG and D–NC: Huber loss

We provide an additional experiment to further compare the D–NG and D–NC methods. We show that the

relative performance of D–NC with respect to D–NG improves when the instance of (2.1) becomes easier

(in the sense explained below.) We consider a N = 20-node geometric network with number of links

N(N�1)/2 ⇡ 32%

and Huber losses fi : R ! R, fi(x) =

1

2

kx � aik2 if kx � aik  1, and fi(x) = kx � aik � 1/2, else,

with ai 2 R. We divide the set of nodes in two groups. For the first group, i = 1, ..., 6, we generate the

ai’s as ai = ✓ + ⌫i, where ✓ > 0 is the “signal” and ⌫i is the uniform noise on [�0.1✓, 0.1✓]. For the

second group, i = 7, ..., 20, we set ai = �✓ + ⌫i, with the ⌫i’s from the same uniform distribution. Note

that any x?
1

2 argminx2R
P

6

i=1

fi(x) is in [0.9✓, 1.1✓], while any x?
2

2 argminx2R
P

20

i=7

fi(x) lies in

[�1.1✓, �0.9✓]. Intuitively, by making ✓ > 0 large, we increase the problem difficulty. For a small ✓, we

are in the “easy problem” regime, because the solutions x?
1

and x?
2

of the two nodes’ groups are close; for

a large ✓, we are in the “difficult problem” regime. Figure 2.2 (right) plots the normalized average error

versus NK for ✓ 2 {0.01; 10; 1000} for D–NG with ↵k = 1/(k + 1), D–NC with ↵ = 1/L, while both

algorithms are initialized by xi(0) = yi(0) = 0. We can see that, with D–NC, the decrease of ✓ makes the

convergence faster, as expected. (With D–NG, it is not a clear “monotonic” behavior.) Also, as ✓ decreases

(“easier problem”), the performance of D–NC relative do D–NG improves. For ✓ = 0.01, D–NG is initially

better, but the curves of D–NG and D–NC intersect at the value about 4 · 10�3, while for ✓ = 1000, D–NG

is better for all accuracies as fine as (at least) 10�7.
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Figure 2.2: Normalized (average) relative error 1

N

PN
i=1

f(xi)�f?

f(xi(0))�f? versus the number of communications
(all nodes) NK; Left: Logistic loss; Right: Huber loss.
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2.10 Conclusion

We proposed fast distributed Nesterov-like gradient algorithms to solve optimization problem (1.1). Exist-

ing literature has presented distributed gradient based algorithms to solve this problem and has studied their

convergence rates, for a class of convex, non-differentiable fi’s, with bounded gradients. In this chapter, we

asked whether faster convergence rates than the rates established in the literature can be achieved on a more

structured class of fi’s – convex, with Lipschitz continuous gradient (with constant L) and bounded gradient.

Building from the centralized Nesterov gradient method, we answer affirmatively this question by propos-

ing two distributed gradient algorithms. Our algorithm D–NG achieves the rates O
⇣

1

(1�µ(W ))

3+⇠
logK
K

⌘

and O
⇣

1

(1�µ(W ))

3+⇠
log k
k

⌘

, when the global knowledge of the gradient Lipschitz constant L and the net-

work spectral gap 1�µ(W ) is not available before the algorithm run. The rates, for the optimized step size,

improve to O
⇣

1

(1�µ(W ))

1+⇠
logK
K

⌘

and O
⇣

1

(1�µ(W ))

1+⇠
log k
k

⌘

, when L and µ(W ) are available before the

run. Our algorithm D–NC operates only if L and µ(W ) are available and achieves rates O
⇣

1

(1�µ(W ))

2

1

K2�⇠

⌘

and O
�

1

k2

�

. We also showed that our methods achieve strictly faster rates than the method in [2]. Simula-

tions illustrate the performance of the proposed methods.
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Chapter 3

Distributed Nesterov-like Gradient

Methods: Random Networks

3.1 Introduction

In Chapter 2, we presented our D–NG and D–NC distributed methods for static networks. In many ap-

plications, it is relevant to account for randomness in the underlying network. Randomness arises when

inter-node links fail as with random packet dropouts in wireless sensor networks, or when communication

protocols are random like with the gossip protocol [10]. In this Chapter, we propose modified D–NG and

D–NC algorithms, referred to as mD–NG and mD–NC, respectively, and establish their convergence rate

guarantees on random networks.

We model the network by a sequence of random independent, identically distributed (i.i.d.) weight ma-

trices W (k) drawn from a set of symmetric, stochastic matrices with positive diagonals, and we assume that

the network is connected on average1. We establish the convergence rates of the expected optimality gap in

the cost function (at any node i)2 of mD-NG and mD-NC, in terms of the number of per node gradient evalu-

ations k and the number of per-node communications K, when the functions fi are convex and differentiable,

with Lipschitz continuous and bounded gradients. We show that the modified methods achieve in expecta-

tion the same rates that the methods in Chapter 2 achieve on static networks, namely: mD–NG converges

at rates O(log k/k) and O(logK/K), while mD–NC has rates O(1/k2) and O(1/K2�⇠
), where ⇠ is an

arbitrarily small positive number. We explicitly give the convergence rate constants in terms of the number

1Here, connected on average means that the graph that supports the non-zero entries of the expected weight matrix E [W (k)] is
connected.

2Note that we assume deterministic cost functions fi’s; the randomness is only due to the underlying random networks.
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of nodes N and the network statistics, more precisely, in terms of the quantity µ :=

�

kE[W (k)2]� Jk
�

1/2

(See ahead paragraph with heading Notation.)

It is interesting to compare the original algorithms D–NG and D–NC in Chapter 2 with their modified

variants, mD–NG and mD–NC, respectively. Clearly, algorithms mD–NG and mD–NC apply for static

networks as well. A simulation example in Section 3.8 shows that D–NG (from Chapter 2) may diverge

in the presence of link failures, while mD–NG may converge at a slightly lower rate than D–NG on static

deterministic networks. Also, mD–NG requires an additional (d-dimensional) vector communication per

iteration k. Hence, the modified variant mD–NG compromises slightly the speed of convergence (in terms

of the overall number of communications) for robustness with respect to (wrt) D-NG.

As for mD–NC and D–NC, mD–NC utilizes one inner consensus algorithm with 2d-dimensional vari-

ables per outer iteration k, while D–NC has two consensus algorithms with d-dimensional variables. Both

D–NC variants converge in our simulations (in the presence of link failures), showing very similar perfor-

mance.

Technically, the analysis of mD–NG and mD–NC methods is very different from D–NG and D–NC

in terms of the disagreement estimates. Namely, the time-varying systems that underly the dynamics of

disagreements here require a different analysis from the time varying systems in Chapter 2. Chapter 3

establishes novel bounds on certain products of time-varying matrices to analyze these new dynamics. In

terms of the optimality gap analysis, Chapter 3 uses similar tools as Chapter 2.

Brief comment on the literature

We comment on the literature relevant to the analysis of convergence rates of distributed gradient algorithms

under random networks. References [2, 20, 23] prove convergence of their algorithms under deterministi-

cally time varying or random networks. Typically, these references assume fi’s that are convex, (possibly)

non-differentiable, and with bounded gradients over the constraint set. For bounded gradients over the

constraint set and random networks, reference [12] establishes O
⇣

log k/
p
k
⌘

convergence rate (with high

probability) of a version of the distributed dual averaging method. With respect to these methods, we assume

a more restricted class F of cost functions–fi’s that are convex and have Lipschitz continuous and bounded

gradients, but, in contradistinction, we establish strictly faster convergence rates–at least O(log k/k) that

are not achievable by standard distributed gradient methods [2] on the same class F . (See Chapter 2 for

details.) Reference [29] analyzes its accelerated distributed proximal gradient method for deterministically

time varying networks; in contrast, we deal here with randomly varying networks. (For a detailed compari-

son with [29], see Chapter 2.)
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Chapter organization. The next paragraph introduces notation. Section 3.2 introduces the random

network and optimization models that we assume and presents the mD–NG algorithm and its convergence

rate. Section 3.4 proves the convergence rate of mD–NG. Section 3.5 presents the mD–NC algorithm and

states its convergence rate, while Section 3.6 proves the convergence rate result. Section 3.7 discusses

extensions and corollaries of our results. Section 3.8 illustrates the mD–NG and mD–NC methods on a

Huber loss example. We conclude in Section 3.9. Auxiliary proofs are in Appendix B.

Notation. We denote by Rd the d-dimensional real coordinate space. We index by a subscript i a

(possibly) vector quantity assigned to node i; e.g., xi(k) is node i’s estimate at iteration k. Further, we

denote by: Alm or [A]lm the entry in the l-th row and m-th column of matrix A; A> the transpose of matrix

A; [a]l:m the selection of the l-th, (l + 1)-th, ..., m-th entries of a vector a; I , 0, 1, and ei, respectively,

the identity matrix, the zero matrix, the column vector with unit entries, and the i-th column of I; J the

N ⇥ N ideal consensus matrix J := (1/N)11>; ⌦ the Kronecker product of matrices; k · kl the vector

(respectively, matrix) l-norm of its argument; k · k = k · k
2

the Euclidean (respectively, spectral) norm of

its vector (respectively, matrix) argument (k · k also denotes the modulus of a scalar); �i(·) the i-th smallest

in modulus eigenvalue; A � 0 a positive definite Hermitian matrix A; bac the integer part of a real scalar

a; r�(x) and r2�(x) the gradient and Hessian at x of a twice differentiable function � : Rd ! R, d � 1;

P(·) and E[·] the probability and expectation, respectively; and IA the indicator of event A. For two positive

sequences ⌘n and �n, we have: ⌘n = O(�n) if lim supn!1
⌘n
�n

<1; ⌘n = ⌦(�n) if lim infn!1
⌘n
�n

> 0;

and ⌘n = ⇥(�n) if ⌘n = O(�n); and ⌘n = ⌦(�n).

The material in this Chapter has been submitted for publication in [47].

3.2 Algorithm mD–NG

Subsection 7.2.1 introduces the network and optimization models, Subsection 3.2.2 presents the mD–NG

algorithm, and Subsection 3.5.2 states our result on its convergence rate.

3.2.1 Problem model

Random network model

The network is random, either due to random link failures or due to the random communication protocol

used (e.g., gossip, [10, 79].) Formally, the network is defined by a sequence {W (k)}1k=1

of N ⇥N random

weight matrices that obey the following.
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Assumption 3.1 (Random network) The random network satisfies:

(a) The sequence {W (k)}1k=1

is i.i.d.

(b) With probability one, the random matrices W (k) are symmetric, stochastic, and have strictly positive

diagonal entries.

(c) There exists a positive scalar w such that, for all i, j = 1, ..., N , with probability one: Wij(k) /2 (0, w).

(In Assumption 3.1, the underline notation in w indicates that w is the lowest value that the entries of

W (k) can take whenever they are positive.) The off-diagonal entries Wij(k), i 6= j, may take the value

zero. Assumption 3.1 (c) ensures that a node gives a non-negligible weight to itself (By Assumptions 3.1 (b)

and (c), Wii(k) � w, with probability one, 8i); also, whenever Wij(k) > 0, i.e., nodes i and j communicate,

they assign to each other a non-negligible weight (at least w).

We denote by W := E [W (k)]. Further, define the supergraph G = (N , E), where N is the set of N

nodes and E =

�

{i, j} : i < j, W ij > 0

 

. In words, G collects all the pairs {i, j} for which Wij(k) is

nonzero with a positive probability – all realizable communication links.

An example of the model of the W (k)’s subsumed by Assumption 3.1 is the link failure model. Here,

each link {i, j} 2 E at time k is a Bernoulli random variable; when it takes the value one, the link {i, j} is

interpreted as being online (communication occurs), and, when it equals zero, the link fails (communication

does not occur). The links (the corresponding Bernoulli variables) are independent over time, but may be

correlated in space. A possible weight assignment is to set: 1) for i 6= j, {i, j} 2 E: Wij(k) = wij = 1/N ,

when {i, j} is online, and Wij(k) = 0, else; 2) for i 6= j, {i, j} /2 E: Wij(k) ⌘ 0; and 3) Wii(k) =

1�
P

j 6=iWij(k). An alternative assignment, when the link occurrence probabilities and their correlations

are known, is to set the (possibly mutually different) weights wij , {i, j} 2 E, as the minimizers of µ (See

Section 3.8 and Chapter 5.)

We further make the following Assumption.

Assumption 3.2 (Network connectedness) The supergraph G is connected.

Denote by fW (k) = W (k)� J , where we recall J := (1/N)11>, by

e

�(k, t) = fW (k)...fW (t+ 2), t = 0, 1, ..., k � 2, (3.1)

and by e

�(k, k � 1) = I .
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Recall µ :=

�

kE
⇥

W 2

(k)
⇤

� Jk
�

1/2. One can show that µ equals the square root of the second largest

eigenvalue of E
⇥

W 2

(k)
⇤

and that, under Assumptions 3.1 and 3.2, µ < 1. Lemma 3.3 below demonstrates

that µ characterizes the geometric decay (in k � t) of the first and second moments of e�(k, t). The proof of

Lemma 3.3 is in the Appendix.

Lemma 3.3 Let Assumptions 3.1 and 3.2 hold. Then:

E
h

�

�

�

e

�(k, t)
�

�

�

i

 N µk�t�1 (3.2)

E
h

�

�

�

e

�(k, t)>e�(k, t)
�

�

�

i

 N2 µ2(k�t�1) (3.3)

E
h

�

�

�

e

�(k, s)>e�(k, t)
�

�

�

i

 N3 µ(k�t�1)+(k�s�1), (3.4)

for all t, s = 0, ..., k � 1, for all k = 1, 2, ...

The bounds in (3.2)-(3.4) may be loose, and could be easily improved for certain values of the arguments s

and t, but as stated they are enough to prove the results below, while simplifying the presentation.

For static networks, W (k) ⌘ W , where W is a doubly stochastic, deterministic, symmetric weight

matrix W . In this case, the quantity µ := kW � Jk equals the spectral gap, i.e., the modulus of the

second largest (in modulus) eigenvalue of W . Further, for static networks, the constants N,N2, and N3

in (3.2)–(3.4) can be reduced to unity.

Finally, we remark that the requirement of the entries of W (k) being nonnegative with probability one

can be relaxed, as long as µ is less than one. We refer to Chapter 5 for details.

Optimization model

We now introduce the optimization model. The nodes solve the unconstrained problem:

minimize
N
X

i=1

fi(x) =: f(x). (3.5)

The function fi : Rd ! R is known only to node i. We impose the following three Assumptions.

Assumption 3.4 (Solvability) There exists a solution x? 2 Rd such that f(x?) = f?
:= infx2Rd f(x).

Assumption 3.5 (Lipschitz continuous gradient) For all i, fi is convex and has Lipschitz continuous gradient
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with constant L 2 [0,1):

krfi(x)�rfi(y)k  Lkx� yk, 8x, y 2 Rd.

Assumption 3.6 (Bounded gradients) There exists a constant G 2 [0,1) such that, 8i, krfi(x)k  G,

8x 2 Rd.

We comment on the optimization model in Assumptions 3.4–3.6. Assumptions 3.4 and 3.5 are standard

in the analysis of gradient methods; in particular, Assumption 3.5 is precisely the Assumption required

by the centralized Nesterov gradient method [11]. Assumption 3.6 is in addition to what is common in

the centralized Nesterov gradient method. Chapter 2 demonstrates that (even on) static networks and a

constant W (k) ⌘W , the convergence rate of D–NG becomes arbitrarily slow if Assumption 3.6 is violated

(see Chapter 2 for a precise statement.) We remark that this requirement is not specific to our accelerated

methods but is also a feature of, e.g., the standard distributed gradient method in [2] (see Chapter 2.)

3.2.2 Algorithm mD–NG for random networks

We modify the D–NG algorithm in Chapter 2 to handle random networks. Each node i maintains its solution

estimate xi(k) and an auxiliary variable yi(k) over iterations k = 0, 1, ... Node i uses arbitrary initialization

xi(0) = yi(0) 2 Rd and performs the following updates for k = 1, 2, ...

xi(k) =

X

j2Oi(k)

Wij(k) yj(k � 1)� ↵k�1

rfi(yi(k � 1)) (3.6)

yi(k) = (1 + �k�1

)xi(k)� �k�1

X

j2Oi(k)

Wij(k)xj(k � 1). (3.7)

In (3.6)–(3.7), Oi(k) = {j 2 {1, ..., N} : Wij(k) > 0} is the (random) neighborhood of node i (including

node i) at time k. For k = 0, 1, 2, ..., the step-size ↵k is:

↵k = c/(k + 1), c  1/(2L). (3.8)

We adopt the sequence �k from the centralized Nesterov gradient method [11]:

�k =

k

k + 3

. (3.9)

The mD–NG algorithm works as follows. At iteration k, node i receives the variables xj(k � 1) and
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yj(k � 1) from its current neighbors j 2 Oi(k)� {i}, and updates xi(k) and yi(k) via (3.6) and (3.7). We

assume that all nodes know the constant L (or its upper bound) beforehand to set ↵k in (3.8). We show in

Section 3.7 how this requirement can be relaxed.

The mD–NG algorithm given by (3.6) and (3.7) differs from the original D–NG in Chapter 2 in step (3.7).

With D–NG, nodes communicate only the variables yj(k � 1)’s; with mD–NG, they also communicate the

xj(k � 1)’s. As we will show, the latter modification allows for the robustness to link failures. (See also

Theorems 3.7 and 3.8 and the simulations in Section 3.8.) Further, the mD–NG does not require that the

weight matrix be positive definite, as required by D–NG in Chapter 2.

Vector form. We rewrite mD–NG in vector form. Introduce x(k) := (x
1

(k)>, ..., xN (k)>)>, y(k) :=

(y
1

(k)>, ..., yN (k)>)>, and F : RNd ! R, F (x
1

, ..., xN ) := f
1

(x
1

) + ... + fN (xN ). Then, mD–NG

algorithm in vector form is:

x(k) = (W (k)⌦ I) y(k � 1)� ↵k�1

rF (y(k � 1)) (3.10)

y(k) = (1 + �k�1

)x(k)� �k�1

(W (k)⌦ I) x(k � 1), (3.11)

k = 1, 2, ..., with x(0) = y(0) 2 RNd, where W (k) ⌦ I is the Kronecker product of W (k) and the d ⇥ d

identity matrix.

Initialization. For simplicity of notation, and without loss of generality (wlog), we assume throughout,

with all proposed methods, that nodes initialize their estimates to the same values, i.e., xi(0) = yi(0) =

xj(0) = yj(0), for all i, j; for example, xi(0) = yi(0) = xj(0) = yj(0) = 0.

3.2.3 Convergence rate of mD–NG

In this Subsection, we state our convergence rate result for mD–NG distributed method and random net-

works. Proofs are in Section 3.4.

We estimate the expected (normalized) optimality gap in the cost3 at each node i: 1

NE [f(xi)� f?
] =

1

N (E [f(xi)]� f?
), where xi is node i’s solution estimate at a certain stage of the algorithm. We are

interested in how the node i’s optimality gap depends (decreases) with: 1) the number of per-node gradient

evaluations k (iterations); and 2) the total number of 2 d-dimensional vector communications per node K.

With mD–NG, we have that k = K – at each iteration k, there is one and only one per-node 2 d-dimensional

communication and one per-node gradient evaluation. With mD–NC, as we will see, there are several per-

node 2 d-dimensional communications at each k.
3We normalize the optimality gap by N , as is frequently done in the literature, e.g., [12, 27].
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With both methods, we also establish the mean square convergence rate on the disagreements of different

node estimates, in terms of k and K, showing that the mean square disagreement converges to zero.

Denote by x(k) := 1

N

PN
i=1

xi(k) and y(k) := 1

N

PN
i=1

yi(k) the network-wide global averages of the

nodes’ estimates. Introduce the disagreements: exi(k) = xi(k)� x(k) and ex(k) =
�

ex
1

(k)>, ..., exN (k)>
�>

,

and the analogous quantities eyi(k) and ey(k). Denote by ez(k) :=
�

ey(k)>, ex(k)>
�>

. We have the following

Theorem on E [kez(k)k] and E
⇥

kez(k)k2
⇤

. Note that kex(k)k  kez(k)k, and so E [kex(k)k]  E [kez(k)k] and

E
⇥

kex(k)k2
⇤

 E
⇥

kez(k)k2
⇤

. ( The same inequalities hold for ey(k) as well.) Recall also µ in Lemma 3.3.

Theorem 3.7 states that the mean square disagreement of different nodes’ estimates converges to zero at

rate 1/k2.

Theorem 3.7 Consider the mD–NG algorithm given in (3.6)–(3.9) under Assumptions 3.1–3.6. Then, for

all k = 1, 2, ...

E [kez(k)k]  50 cN3/2G

(1� µ)2
1

k
(3.12)

E
⇥

kez(k)k2
⇤

 50

2 c2N4G2

(1� µ)4 k2
. (3.13)

Theorem 3.8 establishes the O(log k/k) (and O(logK/K)) convergence rate of mD–NG.

Theorem 3.8 Consider the mD–NG algorithm in (3.6)–(3.9) under Assumptions 3.1–3.6. Let kx(0)�x?k 

R, R � 0. Then, at any node i, the expected normalized optimality gap 1

NE [f(xi(k))� f?
] is O(log k/k);

more precisely:

E [f(xi(k))� f?
]

N
 2R2

c

1

k
+

50

2 c2N3 LG2

(1� µ)4
1

k

k�1

X

t=1

(t+ 2)

2

(t+ 1)t2
+

50N2 cG2

(1� µ)2
1

k
. (3.14)

Remark. For the optimized step-size, c = ⇥
⇣

(1�µ)4/3

N

⌘

, we obtain that

E [f(xi(k))� f?
]

N
= O

✓

N

(1� µ)4/3
log k

k

◆

, 8i.

Remark. For static networks, when W (k) ⌘ W and µ := kW � Jk, the factors N and N3 in (3.14)

reduce to unity. Theorem 3.8 is similar to Theorem 5 (a) in Chapter 2. Comparing the two Theorems (for

static networks), we can see that the rate constant in Theorem 3.8 above depends on µ as O
⇣

1

(1�µ)4

⌘

; with

Theorem 2.8 (a) in Chapter 2, this dependence is O(

1

(1�µ)3+⇠ ), for arbitrarily small positive quantity ⇠.

Hence, with respect to D–NG, mD–NG method has an increased (worse) theoretical constant, but exhibits
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robustness to link failures. (See Section 3.8.)

3.3 Intermediate results

This section establishes intermediate results on certain scalar sums and the products of time-varying 2 ⇥ 2

matrices that arise in the analysis of the mD–NG and mD–NC methods.

Scalar sums

We have the following Lemma.

Lemma 3.9 Consider a nonnegative scalar r < 1. Then, for all k = 1, 2, ...:

k
X

t=1

rt t  r

(1� r)2
 1

(1� r)2
(3.15)

k�1

X

t=0

rk�t�1

1

t+ 1

 1

(1� r)2 k
. (3.16)

Proof:

We first show (3.15). Denote by d
drh(r) the first derivative of a function h(r), h : R! R. We have:

k
X

t=1

rt t = r
k
X

t=1

rt�1t = r
d

dr

 

k
X

t=1

rt
!

= r
d

dr

✓

r � rk+1

1� r

◆

=

r
�

1� (k + 1)rk(1� r)� rk+1

�

(1� r)2

 r

(1� r)2
, 8k = 1, 2, ...

Thus, the bound in (3.15).

To obtain the second inequality (3.16), we use k/(t + 1)  k � t, 8t = 0, 1, ..., k � 1. Using the latter

and (3.15):

k�1

X

t=0

rk�t�1

1

t+ 1

=

1

k

k�1

X

t=0

rk�t�1

k

t+ 1

 1

k r

k�1

X

t=0

rk�t
(k � t)  1

k

1

(1� r)2
. 2
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Products of matrices B(k)

Consider the matrix B(k), defined, for k = 1, 2, ..., by:

B(k) :=

2

4

(1 + �k�1

) ��k�1

1 0

3

5 , (3.17)

where �k�1

is in (3.9). As we will see, the proofs of Theorems 3.7 and 3.14 rely much on the analysis of

products B(k, t), defined by:

B(k, t) := B(k)B(k � 1)...B(k � t), t = 0, 1, ..., k � 2, (3.18)

and B(k,�1) := I .

We first give a Lemma that explicitly calculates the product B(k, t), t = 1, 2, ..., k � 2, for k � 3.

Lemma 3.10 Let k � 3, consider B(k, t) in (3.18), define at := 3/(t+ 3), t = 0, 1, ..., and let:

B1 :=

2

4

2 �1

1 0

3

5 , B2 :=

2

4

1 �1

1 �1

3

5 , B3 :=

2

4

1 �1

0 0

3

5 . (3.19)

Then, for t = 1, 2, ..., k � 2:

B(k, t) = Bt+1

1

� �
2

(k, t)B
2

� �
3

(k, t)B
3

,

where

�2(k, t) = ak�t�1 t+ ak�t�k�t�1 (t� 1) + ak�t+1�k�t�k�t�1(t� 2) + ...+ ak�2�k�3...�k�t�1 (3.20)

�3(k, t) = ak�t�1 + ak�t�k�t�1 + ak�t+1�k�t�k�t�1 + ...+ ak�2�k�3...�k�t�1. (3.21)

Proof : The proof is by mathematical induction on t = 1, 2, ..., k � 2. First, we verify that the claim
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holds for t = 1. We have:

B(k, 1) := B(k)B(k � 1) = (B
1

� ak�1

B
3

)(B
1

� ak�2

B
3

)

= B2

1

� ak�1

B
3

B
1

� ak�2

B
1

B
3

+ ak�1

ak�2

B2

3

= B2

1

� ak�2

B
2

� (ak�1

+ ak�2

� ak�1

ak�2

)B
3

= B2

1

� ak�2

B
2

� (ak�2

+ ak�1

�k�2

)B
3

= B2

1

� �
2

(k, 1)B
2

� �
3

(k, 1)B
3

,

where the second equality uses B
3

B
1

= B
3

, B
1

B
3

= B
2

+B
3

, and B2

3

= B
3

, and the fourth equality uses

1 � ak�2

= �k�2

. Thus, the claim for t = 1 holds. Now, suppose the claim holds true for some fixed t,

t 2 {1, ..., k� 3}. We must show that it holds true for t+ 1 as well. Using the inductive hypothesis and the

definition of B(k, t+ 1):

B(k, t+ 1) = B(k, t)B(k � t� 1)

= (Bt+1

1

� �
2

(k, t)B
2

� �
3

(k, t)B
3

) (B
1

� ak�t�2

B
3

)

= Bt+2

1

� �
2

(k, t)B
2

� �
3

(k, t)B
3

(3.22)

�ak�t�2

((t+ 1)B
2

+B
3

) + �
2

(k, t)ak�t�2

B
2

+ �
3

(k, t)ak�t�2

B
3

= Bt+2

1

� (�
2

(k, t)�k�t�2

+ (t+ 1)ak�t�2

)B
2

� (�
3

(k, t)�k�t�2

+ ak�t�2

)B
3

.

Equality (3.22) uses B
2

B
1

= B
2

, B2

3

= B
3

, B
2

B
3

= B
2

, and the fact that Bt+1

1

B
3

= (t+1)B
2

+B
3

. (This

is trivial to show by mathematical induction on t.) Next, recognize from (3.20)–(3.21) that �
2

(k, t + 1) =

�
2

(k, t)�k�t�2

+ (t+ 1)ak�t�2

, and �
3

(k, t+ 1) = �
3

(k, t)�k�t�2

+ ak�t�2

. Thus, the result. 2

Next, we establish the bounds on the sums �
2

(k, t) and �
3

(k, t).

Lemma 3.11 Consider �
2

(k, t) and �
3

(k, t) in (3.20) for t = 1, ..., k � 2, k � 3. Then:

t2

k + 2

 �
2

(k, t)  t+ 1, 0  �
3

(k, t)  1. (3.23)

Proof:

We prove each of the four inequalities above.
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Proof of the right inequality on �
2

(k, t)

We conduct induction on t = 1, ..., k � 2. For t = 1, we have that �
2

(k, 1) = ak�2

= 3/(k + 1)  1 + 1,

8k, and so the claim holds for t = 1. Suppose that the claim is true for some fixed t � 1. Further, note that

�
2

(k, t) can be written recursively as:

�
2

(k, t+ 1) = ak�t�2

(t+ 1) + �k�t�2

�
2

(k, t), t = 1, ..., k � 3. (3.24)

Using (3.24) and the induction hypothesis: �
2

(k, t + 1)  (t + 1)ak�t�2

+ �k�t�2

(t + 1) = (ak�t�2

+

�k�t�2

)(t+ 1) = t+ 1  t+ 2. Thus, the right inequality on �
2

(k, t).

Proof of the left inequality on �
2

(k, t)

We perform the proof by mathematical induction on t. First, we verify the claim for t = 1:

�
2

(k, 1) = ak�2

=

3

k + 1

� 1

2

k + 2

,

and so the claim for t = 1 holds. Now, suppose that the claim is true for some t 2 {1, 2, ..., k � 3}, i.e.:

�
2

(k, t) � t2

k + 2

. (3.25)

We must show that �
2

(k, t+ 1) � (t+1)

2

k+2

. Using (3.24):

�
2

(k, t+ 1) � ak�t�2

(t+ 1) + �k�t�2

t2

k + 2

=

(t+ 1)

2

k + 2

+

t(k � t) + (2k + 5t+ 5)

(k + 2)(k � t+ 1)

� (t+ 1)

2

k + 2

,

where the last equality follows after some algebraic manipulations. By induction, the last inequality com-

pletes the proof of the lower bound on �
2

(k, t).

Proof of the lower bound on �
3

(k, t). is trivial.

Proof of the upper bound on �
3

(k, t)

We again proceed by induction. For t = 1, we have:

�
3

(k, 1) = ak�2

+ ak�1

�k�2

 ak�2

+ �k�2

= 1.
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Suppose now that the claim holds true for some t 2 {1, ..., k � 3}, i.e.:

�
3

(k, t)  1.

Note from (3.20) that:

�
3

(k, t+ 1) = �k�t�2

�
3

(k, t) + ak�t�2

.

Thus, using the induction hypothesis:

�
3

(k, t+ 1)  �k�t�2

+ ak�t�2

 1,

and the proof of the upper bound on �
3

(k, t) is completed. 2

We are now ready to upper bound kB(k, k � t� 2)k, the result of direct use in proving Theorem 3.7.

Lemma 3.12 Consider the product B(k, t) defined in (3.18). Then, for all t = 0, ..., k�1, for all k = 1, 2, ...

kB(k, k � t� 2)k  8

(k � t� 1)(t+ 1)

k
+ 5. (3.26)

Proof:

Fix some t 2 {1, ..., k � 2}, k � 3, and consider the explicit expression for B(k, t) in Lemma 3.10. It

is easy to show that Bt
1

= tB
2

+ I . Thus,

B(k, t) = (t+ 1� �
2

(k, t)) B
2

+ I � �
3

(k, t)B
3

. (3.27)

By Lemma 3.11, the term:

0  t+ 1� �
2

(k, t)  t+ 1� t2/(k + 2).

Next, use the latter equation; �
3

(k, t)  1 (by Lemma 3.11); and kB
2

k = 2, kB
3

k =
p
2 < 2. Applying

these findings to (3.27), we obtain:

kB(k, t)k  2

✓

t+ 1� t2

k + 2

◆

+ 3 = 2

✓

t� t2

k + 2

◆

+ 5, (3.28)

for all t = 1, 2, ..., k � 2, k � 3. Next, we set the second argument of B(k, ·) to k � t� 2, t = 0, ..., k � 3,
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k � 3. From (3.28), we obtain:

kB(k, k � t� 2)k  2

✓

k � t� 2� (k � t� 2)

2

k + 2

◆

+ 5

= 2(k � t� 2)

t+ 4

k + 2

+ 5  8(k � t� 1)

t+ 1

k
+ 5,

for all t = 0, ..., k�3, for all k � 3. (Here, we used (t+4)/(k+2)  4(t+1)/k.) Thus, we have obtained

the desired inequality (3.26) for t = 0, ..., k � 3, for k � 3. To complete the proof, we show that (3.26)

holds also for: 1) t = k�2, k � 2; 2) t = k�1, k � 1. Consider first case 1 and B(k, k�2) = B(k�1) =

B
1

� ak�1

B
3

, k � 2. We have kB(k, k � 2)k  kB
1

k + kB
3

k < 5, and so (3.26) holds for t = k � 2,

k � 2. Next, consider case 2 and B(k, k � 1) = I , k � 1. We have that kB(k, k � 1)k = 1 < 5, and

so (3.26) also holds for t = k � 1, k � 1. This completes the proof of the Lemma. 2

3.4 Proofs of Theorems 3.7 and 3.8

Subsection 3.4.1 proves Theorem 3.7, while Subsection 3.4.2 proves Theorem 3.8.

3.4.1 Proof of Theorem 3.7

We proceed by proving Theorem 3.7. Throughout this proof and the rest of the chapter, we establish certain

equalities and inequalities on random quantities of interest. All of these equalities and inequalities further

ahead hold either: 1) surely, for any random realization, or: 2) in expectation (From the notation, it is clear

which of the two cases is in force.) For notational simplicity, we perform the proof of Theorem 3.7 for the

case d = 1, but the proof extends for a generic d > 1. The proof has three steps. In Step 1, we derive

the dynamic equation for the disagreement ez(k) =

�

ey(k)>, ex(k)>
�>. In Step 2, we unwind the dynamic

equation, expressing ez(k) in terms of the products e�(k, t) in (3.1) and B(k, t) in (3.18). Finally, in Step 3,

we apply the already established bounds on the norms of the latter products.

Step 1. Disagreement dynamics

Denote by ez(k) :=

�

ey(k)>, ex(k)>
�>. Multiplying (3.6)–(3.7) from the left by (I � J), and using (I �

J)W (k) = fW (k)� J , obtain:

ez(k) =
⇣

B(k)⌦fW (k)
⌘

ez(k � 1) + u(k � 1), k = 1, 2, ..., (3.29)
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and ez(0) = 0, where

u(k � 1) = �

2

4

↵k�1(1 + �k�1)(I � J)rF (y(k � 1))

↵k�1(I � J)rF (y(k � 1))

3

5 . (3.30)

Step 2. Unwinding recursion (3.29)

Recall e�(k, t) in (3.1), and B(k, t) in (3.18). Then, unwinding (3.29), and using the Kronecker product

property (A⌦B)(C ⌦D) = (AB)⌦ (CD), we obtain:

ez(k) =
k�1

X

t=0

⇣

B(k, k � t� 2)⌦ e

�(k, t)
⌘

u(t), (3.31)

for all k = 1, 2, ... Note that the quantities u(t) and e

�(k, t) in (3.31) are random, while the B(k, k� t� 2)’s

are deterministic.

Step 3. Finalizing the proof

Consider u(t) in (3.30). By Assumption 3.6, we have krF (y(t))k 
p
NG. Using the latter, the step-

size ↵t = c/(t + 1), and kI � Jk = 1, we obtain that ku(t)k 
p
3 c

p
N G

t+1

, for any random realization

of u(t). Use the latter bound, Lemma 3.12, and the sub-multiplicative and sub-additive properties of norms;

from (3.31) we obtain:

kez(k)k 
⇣

8

p
3 c
p
N G

⌘

1

k

k�1

X

t=0

ke�(k, t)k (k � t� 1) +

⇣

5

p
3 c
p
N G

⌘

k�1

X

t=0

ke�(k, t)k 1

t+ 1

.

Taking expectation, and using Lemma 3.3:

E [kez(k)k] 
⇣

8

p
3 cN3/2G

⌘

1

k

k�1

X

t=0

µk�t�1

(k � t� 1) +

⇣

5

p
3 cN3/2G

⌘

k�1

X

t=0

µk�t�1

1

t+ 1

.

Finally, applying Lemma 3.9 to the last equation with r = µ, the result in (3.12) follows.
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We now prove (3.13). Consider kez(k)k2. From (3.31), we obtain:

kez(k)k2 =

k�1

X

t=0

k�1

X

s=0

u(t)>
⇣

B(k, k � t� 2)

> ⌦ e

�(k, t)>
⌘ ⇣

B(k, k � t� 2)⌦ e

�(k, s)
⌘

u(s)

=

k�1

X

t=0

k�1

X

s=0

u(t)>
⇣

B(k, k � t� 2)

> B(k, k � s� 2)

⌘

⌦
⇣

e

�(k, t)> e

�(k, s)
⌘

u(s),

where the last equality uses the property (A⌦B)(C⌦D) = (AC)⌦ (BD). Further, using the sub-additive

and sub-multiplicative properties of norms, we obtain:

kez(k)k2 
k�1
X

t=0

k�1
X

s=0

kB(k, k � t� 2)k kB(k, k � s� 2)k
�

�

�

e

�(k, t)> e

�(k, s)
�

�

�

ku(t)k ku(s)k (3.32)


k�1
X

t=0

k�1
X

s=0

✓

8(k � t� 1)(t+ 1)

k
+ 5

◆ ✓

8(k � s� 1)(s+ 1)

k
+ 5

◆

�

�

�

e

�(k, t)> e

�(k, s)
�

�

�

3 c2 NG2

(t+ 1)(s+ 1)

,

where the last inequality uses Lemma 3.12 and ku(t)k 
⇣p

3c
p
NG

⌘

/(t + 1). Taking expectation and

applying Lemma 3.3, we obtain:

E
⇥

kez(k)k2
⇤


�

3 c2N4G2

�

k�1

X

t=0

k�1

X

s=0

✓

8(k � t� 1)(t+ 1)

k
+ 5

◆ ✓

8(k � s� 1)(s+ 1)

k
+ 5

◆

⇥ µk�t�1+k�s�1

1

(t+ 1)(s+ 1)

=

�

3 c2N4G2

�

 

k�1

X

t=0

✓

8(k � t� 1)(t+ 1)

k
+ 5

◆

µk�t�1

t+ 1

!

2

 50

2 c2N4G2

(1� µ)4 k2
,

where the last inequality applies Lemma 3.9. Thus, the bound in (3.13). The proof of Theorem 3.7 is

complete.

3.4.2 Proof of Theorem 3.8

The proof is similar to the proof of Theorem 5 (a) in Chapter 2. Henceforth, we give only a proof outline

and refer to Chapter 2 for details. The proof is based on the evolution of the global averages x(k) =
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1

N

PN
i=1

xi(k), and y(k) = 1

N

PN
i=1

yi(k). Denote by:

bfk�1

:=

N
X

i=1

⇣

fi(yi(k � 1)) +rfi(yi(k � 1))

>
(y(k � 1)� yi(k � 1))

⌘

(3.33)

bgk�1

:=

N
X

i=1

rfi (yi(k � 1))

Lk�1

:=

N

↵k�1

=

Nk

c
� 2N Lk

�k�1

:= L key(k � 1)k2.

Then, it is easy to show that x(k), y(k) evolve as:

x(k) = y(k � 1)� bgk�1

Lk�1

(3.34)

y(k) = (1 + �k�1

)x(k)� �k�1

x(k � 1), (3.35)

k = 1, 2, ..., with x(0) = y(0). As shown in Chapter 2,
⇣

bfk�1

, bgk�1

⌘

is a (Lk�1

, �k�1

) inexact oracle, i.e.,

it holds:

f(x)+bg>k�1

(x�y(k�1))  f(x)  bfk�1

+bg>k�1

(x� y(k � 1))+

Lk�1

2

kx�y(k�1)k2+�k�1

, (3.36)

for all points x 2 Rd. 4

Thus, we can apply Lemma 2.5 in Chapter 2, which, using the expression for �k�1

in (3.33), gives:

(k + 1)

2

(f(x(k))� f?
) +

2Nk

c
kv(k)� x?k2 (3.37)

 (k2 � 1) (f(x(k � 1))� f?
) +

2Nk

c
kv(k � 1)� x?k2 + (k + 1)

2Lkey(k � 1)k2,

where v(k) = (y(k)� (1� ✓k)x(k)) /✓k. Further, dividing (3.37) by k and unwinding the resulting in-

equality, it can be shown that:

1

N
(f(x(k))� f?

)  2

k c
kx(0)� x?k2 + L

N k

k
X

t=1

(t+ 1)

2

t
key(t� 1)k2, (3.38)

4Note from (3.33) that bfk�1

, bgk�1

, and b�k�1

are functions of (solely) the argument y(k � 1). Inequalities (3.36) hold for any
random realization of y(k � 1), and for any point x 2 Rd.
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Next, using Assumption 3.6, obtain, 8i:

1

N
(f(xi(k))� f?

)  1

N
(f(x(k))� f?

) +

Gp
N
kex(k)k. (3.39)

The proof is completed after combining (3.38) and (3.39), taking expectation, and using the bounds on

E [kex(k)k]  E [kez(k)k] and E
⇥

key(k)k2
⇤

 E
⇥

kez(k)k2
⇤

in Theorem 3.7.

3.5 Algorithm mD–NC

We now present our mD–NC algorithm. Subsection 3.5.1 defines certain additional random matrices needed

for representation of mD–NC and presents mD–NC. Subsection 3.5.2 states our result on the convergence

rate of mD–NC.

3.5.1 Model and algorithm

This subsection presents our mD–NC algorithm. We continue to consider a sequence of i.i.d. random

matrices that obey Assumptions 3.1 and 3.2. For convenience, we introduce here a two-index notation to

index these matrices. As we will see, the algorithm D–NC operates in two time scales, i.e., it has the inner

iterations, index by s, and the outer iterations, indexed by k. There are s = 1, 2, ..., ⌧k inner iterations at the

outer iteration k = 1, 2, ..., where ⌧k equals:

⌧k =

⇠

3 log k + logN

� logµ

⇡

. (3.40)

It can be shown that, for static networks, the term logN can be dropped. At each inner iteration, nodes

utilize one communication round – each node broadcasts a 2d⇥ 1 vector to all its neighbors. We denote by

W (k, s) the random weight matrix that corresponds to the communication round at the s-th inner iteration

and k-th outer iteration. The matrices W (k, s) are ordered in a one-dimensional sequence as W (k = 1, s =

1),W (k = 1, s = 2), ...,W (k = 1, s = ⌧
1

), ...W (k = 2, s = 1), ... This sequence obeys Assumptions 3.1

and 3.2.

It will be useful to define the products of the weight matrices W (k, s) over an outer iteration k:

W(k) := ⇧⌧k�1

s=0

W (k, ⌧k � s). (3.41)

Clearly, the sequence {W(k)}1k=1

is a sequence of independent (but not identically distributed) matrices.
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For future reference, also define fW(k) := W(k)� J, and:

e

 (k, t) := W(k)W(k � 1)...W(t+ 1), (3.42)

for t = 0, 1, ..., k � 1.

The Lemma below follows from Assumptions 3.1 and 3.2, independence of the matrices W(k), the

value of ⌧k in (3.40), and Lemma 3.3. The Lemma is proved in the Appendix.

Lemma 3.13 Let Assumptions 3.1 and 3.2 hold. Then, for all k = 1, 2, ..., for all s, t 2 {0, 1, ..., k � 1}:

E


�

�

�

fW(k)
�

�

�

2

�

 1

k6
(3.43)

E
h

ke (k, t)k
i

 1

k3(k � 1)

3...(t+ 1)

3

(3.44)

E
h

ke (k, t)>e (k, t)k
i


✓

1

k3(k � 1)

3...(t+ 1)

3

◆

2

(3.45)

E
h

ke (k, s)>e (k, t)k
i


✓

1

k3(k � 1)

3...(t+ 1)

3

◆ ✓

1

k3(k � 1)

3...(s+ 1)

3

◆

. (3.46)

The mD–NC algorithm

We now present mD–NC. It uses a constant step-size ↵  1/(2L). Each node i maintains over (outer itera-

tions) k the solution estimate xi(k) and an auxiliary variable yi(k). The mD–NC algorithm is summarized

in Algorithm 2. Recall the quantity µ in Lemma 3.3. The inter-node communication occurs only at step 3;

Algorithm 2 The mD–NC algorithm
1: Initialization: Node i sets: xi(0) = yi(0) 2 Rd; and k = 1.
2: Node i calculates:

x(a)
i (k) = yi(k � 1)� ↵rfi(yi(k � 1)).

3: (Consensus) Nodes run average consensus on a 2 d ⇥ 1 variable �i(s, k), initialized by �i(s = 0, k) =

(x(a)
i (k)>, xi(k � 1)

>
)

>:

�i(s, k) =
X

j2O
i

(k)

Wij(k, s)�j(s� 1, k), s = 1, 2, ..., ⌧k, (3.47)

with ⌧k in (3.40), and set xi(k) := [�i(s = ⌧k, k)]1:d and x(b)
i (k � 1) := [�i(s = ⌧k, k)]d+1:2 d. (Here [a]l:m is a

selection of l-th, l + 1-th, ..., m-th entries of vector a.)
4: Node i calculates:

yi(k) = (1 + �k�1)xi(k)� �k�1 x
(b)
i (k � 1).

5: Set k 7! k + 1 and go to step 2.

step 3 of the k-th outer iteration has ⌧k communication rounds. We assume that nodes know beforehand the
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constants L, µ, and N . We show in Section 3.7 how this requirement can be relaxed.

Vector form. We rewrite mD–NC in vector form, using the definition of matrices W(k) in (3.41). Use

the same compact notation as with mD–NG for x(k), y(k), and F : RNd ! RN . Then:

x(k) = (W(k)⌦ I) [y(k � 1)� ↵rF (y(k � 1))] (3.48)

y(k) = (1 + �k�1

)x(k)� �k�1

(W(k)⌦ I) x(k � 1), (3.49)

k = 1, 2, ..., and x(0) = y(0) 2 RNd. Note the formal similarity with mD–NG in (3.10)–(3.11). The

differences are that W (k) is replaced with W(k), and the diminishing step-size ↵k = c/(k + 1) is replaced

with the constant step-size ↵k = ↵.

3.5.2 Convergence rate

Define, as with mD–NG (and in the same notation), the disagreements exi(k), eyi(k), ex(k), and ey(k), as well

as the augmented vector ez(k) :=
�

ey(k)>, ex(k)>
�>

. We have the following Theorem on the disagreement

bounds.

Theorem 3.14 Consider the mD–NC given in Algorithm 2 under Assumptions 3.1–3.6. Then, for all k =

1, 2, ...

E [kez(k)k]  50↵N1/2G

k2
(3.50)

E
⇥

kez(k)k2
⇤

 50

2 ↵2NG2

k4
. (3.51)

Theorem 3.15 Consider mD–NC given in Algorithm 2 under Assumptions 3.1–3.6. Let kx(0)� x?k  R,

R � 0. Then, after

K =

k
X

t=1

⌧t 
3

� logµ
[ (k + 1) log(N(k + 1)) ] = O (k log k) (3.52)

communication rounds, i.e., after k outer iterations, we have, at any node i:

E [f(xi(k))� f?
]

N
 1

k2

✓

2

↵
R2

+ 11↵2LG2

+ ↵G2

◆

, k = 1, 2, ... (3.53)

Remark. Theorem 3.15 implies the O
⇣

N⇠

(1�µ)2K2�⇠

⌘

convergence rate of mD–NC method in the number

of communications K (in terms of E[f(xi(k))�f?
]

N .) This can be proved analogously to the analysis of D–NC

69



in Chapter 2.

3.6 Proofs of Theorems 3.14 and 3.15

We now prove the convergence rate results for mD–NC. Subsection 3.6.1 proves Theorem 3.14 and Subsec-

tion 3.6.2 proves Theorem 3.15.

3.6.1 Proof of Theorem 3.14

For notational simplicity, we perform the proof for d = 1, but the proof extends to a generic d > 1.

Similarly to the proof of Theorem 3.7, we proceed in three steps. In Step 1, we derive the dynamics for the

disagreement ez(k) =
�

ey(k)>, ex(k)>
�

. In Step 2, we unwind the disagreement equation and express ez(k) in

terms of the e

 (k, t)’s in (3.42) and B(k, t) in (3.18). Finally, Step 3 finalizes the proof using the previously

established bounds on the norms of e (k, t) and B(k, t).

Step 1. Disagreement dynamics

We write the dynamic equation for ez(k). Recall B(k) in (3.17). Multiplying (3.48)–(3.49) from the left by

(I � J), and using (I � J)W(k) = fW(k)(I � J), obtain:

ez(k) =
⇣

B(k)⌦ fW(k)
⌘

�

ez(k � 1) + u0(k � 1)

�

, k = 1, 2, ..., (3.54)

and ez(0) = 0, where

u0
(k � 1) = �

2

4

↵k�1rF (y(k � 1))

0

3

5 . (3.55)

Step 2: Unwinding the recursion (3.54)

Recall the products B(k, t) in (3.18). Then, unwinding (3.54), and using (A⌦B)(C⌦D) = (AC)⌦(BD):

ez(k) =
k�1

X

t=0

⇣

B(k, k � t� 2)B(t+ 1)⌦ e

 (k, t)
⌘

u0(t), (3.56)

for all k = 1, 2, ... The quantities u0(t) and e

 (k, t) in (3.56) are random, while the B(k, k � t � 2)’s are

deterministic.
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Step 3: Finalizing the proof

Consider u0(t) in (3.55). By Assumption 3.6, we have krF (y(t))k 
p
NG. Using the latter, we obtain

that ku0(t)k  ↵
p
N G, for any random realization of u0(t). We use the latter bound, Lemma 3.12, the

sub-multiplicative and sub-additive properties of norms, and kB(t+ 1)k  3, 8t; from (3.56):

kez(k)k  3

⇣

8↵
p
N G

⌘

k�1

X

t=0

ke (k, t)k (k � t� 1)(t+ 1)

k
+ 3

⇣

5↵
p
N G

⌘

k�1

X

t=0

ke (k, t)k.

Taking expectation, using (k�t�1)(t+1)

k  t+ 1, and using Lemma 3.13:

E [kez(k)k]  3

⇣

8↵
p
N G

⌘

k�1

X

t=0

1

k3(k � 1)

3...(t+ 2)

3

(t+ 1)

2

+ 3

⇣

5↵
p
N G

⌘

k�1

X

t=0

1

k3(k � 1)

3...(t+ 2)

3

(t+ 1)

3

 3

⇣

8↵
p
N G

⌘

1

k2

+ 3

⇣

5↵
p
N G

⌘

1

k2
 50↵

p
N G

k2
.

Thus, the result in (3.50).

We now prove (3.51). Consider kez(k)k2. From (3.56), we obtain:

kez(k)k2 =

k�1

X

t=0

k�1

X

s=0

u0(t)>
⇣

B(t+ 1)

>B(k, k � t� 2)

> ⌦ e

 (k, t)>
⌘

⇥
⇣

B(k, k � t� 2)B(t+ 1)⌦ e

 (k, s)
⌘

u0(s)

=

k�1

X

t=0

k�1

X

s=0

u0(t)> (B(t+ 1)

>B(k, k � t� 2)

>

⇥ B(k, k � s� 2)B(t+ 1)) ⌦
⇣

e

 (k, t)> e

 (k, s)
⌘

u0(s),

where the last inequality uses the Kronecker product property (A ⌦ B)(C ⌦ D) = (AC) ⌦ (BD). Next,

by the sub-additive and sub-multiplicative properties of norms, and kB(t+ 1)k  3, 8t, obtain:

kez(k)k2  9

k�1
X

t=0

k�1
X

s=0

kB(k, k � t� 2)k kB(k, k � s� 2)k
�

�

�

e

 (k, t)> e

 (k, s)
�

�

�

ku0
(t)k ku0

(s)k (3.57)

 9

k�1
X

t=0

k�1
X

s=0

(8(t+ 1) + 5) (8(s+ 1) + 5)

�

�

�

e

 (k, t)> e

 (k, s)
�

�

�

↵2 NG2,
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where the last inequality uses (k�s�1)(s+1)/k  s+1, Lemma 3.12 and ku(t)k 
⇣

↵
p
NG

⌘

/(t+1).

Taking expectation and applying Lemma 3.13, we obtain:

E
⇥

kez(k)k2
⇤

 9

�

↵2NG2

�

k�1

X

t=0

k�1

X

s=0

(8(t+ 1) + 5) (8(s+ 1) + 5)

⇥
✓

1

k3...(t+ 1)

3

◆ ✓

1

k3...(s+ 1)

3

◆

= 9

�

↵2NG2

�

 

k�1

X

t=0

(8(t+ 1) + 5)

1

k3...(t+ 1)

3

!

2

 50

2 ↵2NG2

k4
.

Thus, the bound in (3.51). The proof of Theorem 3.14 is complete.

3.6.2 Proof outline of Theorem 3.15

The proof is similar to the proof of Theorem 8 in [9] (version v2), and hence we give only an outline.

Consider the global averages x(k) and y(k), defined analogously to the case of mD–NG. Then, x(k) and

y(k) evolve according to (3.34)–(3.35), with Lk�1

:= N/↵, and bgk�1

defined as in (3.33). Also, inequali-

ties (3.36) hold with Lk�1

:= N/↵ and bfk�1

and bgk�1

defined as in (3.33). We can thus apply Lemma 2.5

in Chapter 2, which gives:

1

N
(f(x(k))� f?

)  2

↵ k2
kx(0)� x?k2 + L

N k2

k
X

t=1

key(t� 1)k2(t+ 1)

2.

(Compare the last equation with (3.38).) The remainder of the proof proceeds analogously to the case of

Theorem 3.8.

3.7 Discussion and extensions

This section discusses extensions and corollaries of our analysis. We show that: 1) the requirement on the

a priori knowledge of L, µ, and N can be relaxed with both mD–NG and mD–NC; 2) establish rates in the

convergence in probability of mD–NG and mD–NC; 3) show almost sure convergence with mD–NC; and

4) establish a convergence rate in the second moment with both methods.
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Relaxing knowledge of L, µ, and N

The mD–NG method requires only the knowledge of L to set the step-size ↵k = c/(k+1), c  1/(2L). We

demonstrate that the rate O(log k/k) (with a deteriorated constant) still holds if nodes use arbitrary c > 0.

Initialize all nodes to xi(0) = yi(0) = 0, suppose that c > 1/(2L), and let k0 = 2 c L. Applying Lemma

2.5, as in the proof of Theorem 2.8 (b), for all k > k0, surely:

(k+1)

2�1

k+1

(f(x(k))� f?
) (3.58)

 k0
�

f(x(k0 � 1))� f?
�

+

2N

c

�

2 kv(k0 � 1)k2 + 2 kx?k2
�

+

k
X

t=1

(t+ 1)

2

t
Lkey(t� 1)k2.

Further, consulting the proof of Theorem 2.8 (b), surely:

kv(k0 � 1)k2  (2k0 + 1)

2

⇣

3

k0
⌘

2

2 cG. (3.59)

Finally, Theorem 3.7 holds unchanged for c > 1/(2L), and thus
Pk

t=1

(t+1)

2

t LE
⇥

key(t� 1)k2
⇤

= O(log k).

Multiplying (3.58) by k+1

(k+1)

2�1

, taking expectation on the resulting inequality, and applying Theorem 3.7,

we obtain the O(log k/k) rate, as desired.

The mD–NC algorithm uses the constant step-size ↵  1/(2L) and ⌧k in (3.40). We adapt mD–NC to

avoid the use of L, µ, and N , by setting: 1) a diminishing step-size ↵k = 1/kp, p 2 (0, 1]; and 2) ⌧k = k (as

suggested in [29]). We demonstrate that the adapted mD–NC achieves rate O(1/k2�p
). Let k00 = (2L)1/p.

Then, by Lemma 2.5, for all k � k00, surely:

(k+1)

2�1

(k+1)

p (f(x(k))� f?
) (3.60)

 (k0)2�p
�

f(x(k0 � 1))� f?
�

+ 2N
�

2 kv(k0 � 1)k2 + 2 kx?k2
�

+

k
X

t=1

(t+ 1)

2

tp
Lkey(t� 1)k2.

Further, (3.59) holds here as well (surely.) We now modify the argument on the sum in (3.60). By

Lemma 3.13 and the value ⌧k = k, we have: E
h

kfW(k)k2
i

 N2µ2 k. From this equality, 8k � k000 :=
⇣

6(logN+1)

� log µ

⌘

2

: E
h

kfW(k)k2
i

 1

k4 . Next, consider the matrix

e

 (k, s)>e (k, t) =
⇣

fW(k)...fW(s+ 1)

⌘> ⇣
fW(k)...fW(t+ 1)

⌘

,
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for arbitrary k � k000, and arbitrary s, t 2 {0, 1, ..., k � 1}. Clearly,

�

�

�

e

 (k, s)>e (k, t)
�

�

�


�

�

�

fW(k)
�

�

�

2

,

and hence,

E
h

�

�

�

e

 (k, s)>e (k, t)
�

�

�

i

 1

k4
, 8s, t 2 {0, 1, ..., k � 1}, 8k � k000.

Now, from step 3 of the proof of Theorem 3.14, the above implies: E
⇥

key(k)k2
⇤

 E
⇥

kez(k)k2
⇤

 C
k4 , for

all k � k000, where C > 0 is independent of k. Hence, we obtain the desired bound on the sum:

1
X

t=1

(t+ 1)

2

tp
LE

⇥

key(t� 1)k2
⇤

= O(1).

Using the latter, (3.59), multiplying (3.60) by (k+1)

p

(k+1)

2�1

, and taking expectation in (3.60), we obtain the

desired rate O(1/k2�p
).

Convergence in probability and almost sure convergence

Through the Markov inequality, Theorems 3.8 and 3.15 imply, for any ✏ > 0, the following:

mD�NG : P
⇣

k1�⇠
(f(xi(k))� f?

) > ✏
⌘

! 0 as k !1, 8i

mD�NC : P
⇣

k2�⇠
(f(xi(k))� f?

) > ✏
⌘

! 0 as k !1, 8i,

where ⇠ > 0 is arbitrarily small. Furthermore, by the arguments in, e.g., ([80], Subsection IV–A), with

mD–NC, we have that, 8i, f(xi(k))� f? ! 0, almost surely.

Convergence rates in the second moment

Consider a special case of the random network model in Assumptions 3.1 and 3.2. Define the random

graph G(k) to be the graph that supports the nonzero pattern of the random matrix W (k); that is, G(k) =

(N , E), with E = {{i, j} : Wij(k) > 0, i < j}. In other words, G(k) is the graph that supports a random

realization of matrix W (k). We assume that G(k) is connected with positive probability. This Assumption

holds, e.g., with spatio-temporally independent link failures, but it does not hold, e.g., with pairwise gossip.

(With gossip, only one edge occurs at a time, and hence all realizations of G(k) are disconnected.) Under
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the latter Assumption, we establish the following bounds on the second moment of the optimality gaps:

mD�NG : E
h

(f(xi(k))� f?
)

2

i

= O

✓

log

2 k

k2

◆

, 8i, (3.61)

mD�NC : E
h

(f(xi(k))� f?
)

2

i

= O

✓

1

k4

◆

, 8i, (3.62)

where (3.62) holds for mD–NC with a modified value of ⌧k. (See the Appendix for details.) We inter-

pret (3.61), while (3.62) is similar. The result (3.61) shows that, not only the mean of the optimality gap de-

cays as O(log k/k) (by Theorem 3.8), but also the standard deviation about the mean is of order O(log k/k).

The proof of (3.61)–(3.62) is in the Appendix.

3.8 Simulation example

We provide a simulation example that corroborates convergence rates of the proposed mD–NG and mD–NC

in the presence of link failures, as well as their rates faster than the rates of the method in [2]. We also

compare D–NG and mD–NC with the original variants in Chapter 2.

Setup

We consider a N = 10 node network and the Huber loss cost functions, which arise, e.g., in distributed

robust estimation in sensor networks [4]; the function fi : R ! R is fi(x) = kx � ✓ik2 if kx � ✓ik  1,

and fi(x) = kx � ✓ik � 1/2, else, ✓i 2 R. (The fi’s obey Assumptions 3.4 and 3.6.) We generate ✓i’s

as follows. For i = 1, 2, 3, we set ✓i = ✓•(1 + ⌫i), where ✓• = 4, and ⌫i is generated randomly from the

uniform distribution on [�0.1, 0.1]. For j = 4, 5, ..., 10, we set ✓j = (�✓•)(1 + ⌫j), where ⌫j is generated

from the same uniform distribution.

The network model has a connected supergraph G = (N , E) with 26 links. It is generated randomly by

placing nodes at random on a unit 2D square and connecting the pairs of nodes whose distance is less than

a prescribed radius. We consider two scenarios: 1) random network (failing links), and 2) static network.

With the random network, each link {i, j} 2 E fails independently in time and independently from other

links, with probability 0.9. When a link {i, j} 2 E is online, we set the weights Wij(k) = Wji(k) =

1/N = 1/10. ( We set Wii(k) = 1 �
P

j2Oi(k)�{i}Wij(k), 8i.) With the static network, we consider the

same supergraph G, and, 8{i, j} 2 E, we set Wij = Wji = 1/N . With D–NG and mD–NG, we set the

step-size ↵k = 1/(k + 1), while with D–NC and mD–NC, we use ↵ = 1/2. With the algorithm in [2], we

use the step-size ↵k = 1/
p
k. With random networks, for both variants of D–NC, we set ⌧k as in (3.40);
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with static networks, we use ⌧k =

l

3 log k
� log µ

m

. (As indicated in Section 3.5, the logN term is not needed with

static networks.)

With both scenarios, we simulate the mD–NG and mD–NC, the original variants D–NG and D–NC

in Chapter 2, and the method in [2]. We initialize all the methods to xi(0) = yi(0) = 0, 8i. We gen-

erate one sample path (simulation run), and we estimate the average normalized optimality gap errf =

1

N

PN
i=1

f(xi)�f?

f(0)�f? versus the total number K0 of scalar transmissions, cumulatively across all nodes. We

count both the successful and unsuccessful (due to link failures) transmissions. All our plots below are in

log

10

� log

10

scale.

Results: Scenario with link failures

.

Figure 3.1 (top left) shows the performance of mD–NG, mD–NC, D–NC, and the method in [2]. We

can see that all methods exhibit convergence in the presence of (severe) link failures. With respect to

convergence rates, we can see, for example, that the mD–NG shows improvement over [2]. Note the better

(larger) slope of decay with the mD–NG with respect to [2]. Further, Figure 3.1 (top right) shows that the

(original) D–NG method diverges on this example.

Results: Static network scenario

Figure 3.1 (bottom left) shows the performance of the same methods on static network. Note again a faster

rate (better slope) of the mD–NG and D–NG’s with respect to [22]. Further, we can see that the original

D–NG method performs better than mD–NG. Hence, the modified method looses slightly in performance,

but gains robustness to link failures. The D–NC and mD–NC methods perform the same, both on static and

on random networks.

As noted earlier, the original D–NG method in 2 requires the weight matrix W to be positive definite. In

certain scenarios, nodes may not be able to check whether a given W is positive definite or not. We include a

simulation that compares D–NG and mD–NG’s by accounting for this effect. (The network is assumed static

here.) We take the Metropolis weight matrix W (see [65]) which is not positive definite. As the original

D–NG requires a positive definite W , we replace W with W 0
=

1.01
2

I + 0.99
2

W , which is positive definite,

but has a larger (worse) µ. With mD–NG, we use the (non-positive definite) W . The remaining system

parameters are the same as in the previous example. Figure 3.1 (bottom right) plots errf versus the total

number of scalar transmissions K0 for the original D–NG (red, dotted line), and mD–NG (green, solid line).

We can see that the methods perform almost the same, with the original D–NG performing slightly better.
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PN
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f(xi)�f?
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scale.) Top (left and right): Scenario
with link failures; Bottom left: Static network scenario. Bottom right: Static network scenario; comparison
of D–NG and mD–NG when the weight matrix W is not positive definite.
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3.9 Conclusion

In this Chapter, we modified our D–NG and D–NC methods to operate under randomly varying networks,

modeled by a sequence {W (k)} of independent, identically distributed random stochastic matrices. The

fi’s are convex and have Lipschitz continuous and bounded gradients. We establish convergence rates for

the two modified methods, termed mD–NG and mD–NC, in terms of the expected optimality gap at the cost

function at arbitrary node i. The mD–NG algorithm achieves rates O (log k/k) and O (logK/K), where k

is the number of per-node gradient evaluations and K is the number of per-node communications. The mD–

NC algorithm has rates O(1/k2) and O(1/K2�⇠
), with ⇠ > 0 arbitrarily small. Simulation examples on the

networks with link failures and Huber loss functions illustrate our findings.
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Chapter 4

Distributed Nesterov-like Gradient

Methods: Alternative Function Classes

4.1 Introduction

In Chapters 2 and 3, we established convergence rates for D–NG and D–NC methods, as well as their

modified variants, for unconstrained optimization when the costs fi’s are convex, differentiable, and have

Lipschitz continuous and bounded gradients. In this Chapter, we analyze our methods for alternative func-

tion classes, including also constrained optimization where each node has the same constraint set X . We still

consider differentiable convex costs with Lipschitz continuous derivative, but we do not explicitly require

that the gradients be bounded. Hence, we enlarge the class of costs fi’s that are applicable to our methods.

For example, we can include quadratic costs, as well as the costs that arise with source localization prob-

lems (see Section 4.7.) Furthermore, we allow for constraints, thus covering, e.g., model predictive control

problems, e.g., [36].

Chapter outline. We outline the chapter. Section 4.2 briefly introduces the general setup. Section 4.3

analyzes D–NG for unconstrained optimization when the bounded gradients Assumption is replaced with a

certain growth condition. We show that the method achieves rate O(log k/k) and O(logK/K) in the number

of per-node gradient evaluations k and the number of per-node communications K. Section 4.4 presents the

projected D–NG method with constant step-size for constrained problems. The method converges to an

✏-neighborhood of the optimal cost after O(1/✏) per-node communications and O(1/✏) per-node gradient

evaluations. Section 4.5 presents the projected mD–NC method for constrained problems. We show that the

method converges at rates O(1/k2) and O(1/K2�⇠
). Sections 4.3 and 4.4 consider static networks, while
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Section 4.5 allows for random networks as well. Section 4.6 proves a technical result on an inexact projected

Nesterov gradient method in Section 4.5. Section 4.7 provides a simulation example on the acoustic source

localization problem. Finally, Section 4.8 gives a closing discussion.

Technically, Sections 4.3 and 4.4 bring an approach to the analysis of D–NG that is different from

the approach in Chapters 2 and 3. Namely, we introduce certain auxiliary functions  , that we refer to

as the clone functions (see ahead (4.11)). We show that the D–NG method is the (centralized) Nesterov

gradient method on the clone function  . This allows us to indirectly prove in Section 4.3 that the gradients

rfi(yi(k)) along iterations are bounded, without requiring that the gradientsrfi(x) are uniformly bounded

over the whole space Rd. Actually, the clone approach yields tighter upper bounds than the approach in

Chapters 2 and 3 under a constant step-size. (See Section 4.4 for details.)

Notation. Throughout the Chapter, we denote by: Rd the d-dimensional real coordinate space, d � 1;

Aij the entry in the i-th row and j-th column of a matrix A; ai the i-th entry of a vector a; (·)> the transpose;

k · k = k · k
2

the Euclidean (respectively, spectral) norm of its vector (respectively, matrix) argument (We

note that k · k also denotes the modulus of a scalar throughout); �i(·) the i-th smallest eigenvalue; | · | the

cardinality of a set; rJ (y) the gradient evaluated at y of a function J : Rd ! R, d � 1. Finally, for

positive sequences ⌘n and �n, we have: ⌘n = O(�n) if lim supn!1
⌘n
�n

<1.

Parts of the material in Chapter 4 have been published in [49, 50].

4.2 Setup

We briefly outline the general setup, and we later add details for each of our specific studies. We consider

the constrained problem:

minimize
N
X

i=1

fi(x) =: f(x) subject to x 2 X , (4.1)

where fi : Rd ! R is node i’s locally known convex cost function, and X ⇢ Rd is a closed, convex

constrained set known by all nodes. We specify further Assumptions on the fi’s and X in each of the

Sections 4.3, 4.4, and 4.5. We associate with problem (4.1) a network V of N nodes, described by the graph

G = (V, E), where E ⇢ V ⇥ V is the set of edges, and we require the following.

Assumption 4.1 The graph G = (V, E) is connected, undirected, and simple (no self/multiple links).
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We recall the unweighted, symmetric graph Laplacian matrix L by: 1) Lij = �1, if {i, j} 2 E, i 6= j; 2)

Lij = 0, if {i, j} /2 E, i 6= j; and 3) Lii := �
P

j 6=i Lij , 8i. Because the graph is connected, we have that

the algebraic connectivity �
2

(L) > 0. Further, denote by Oi the neighborhood set of node i (including i),

and `i the degree (number of neighbors) of node i.

4.3 D–NG method: Growth assumption

In this Section, we consider D–NG for unconstrained optimization, when the fi’s satisfy a growth condition.

Subsection 4.3.1 details the Assumptions and setup, Subsection 4.3.2 defines clone functions  and gives

their properties, and Subsection 4.3.3 performs convergence rate analysis. Throughout the current section,

we consider static networks.

4.3.1 Assumptions and setup

We consider the unconstrained version of (4.1) with X ⌘ Rd, and we impose the following two Assumptions

on the fi’s.

Assumption 4.2 For all i, fi : Rd ! R is convex, differentiable, and has Lipschitz continuous derivative

with constant L, i.e., for all i:

krfi(x)�rfi(y)k  L kx� yk, 8x, y 2 Rd.

Assumption 4.3 (Growth assumption) There exist two positive scalars b and B, such that, for all i, fi(x) �

b kxk whenever kxk � B.

Assumption 4.2 is standard in the analysis of gradient methods. Assumption 4.3 says that the function

grows at least as bkxk when kxk is sufficiently large. The two Assumptions hold with many costs, e.g.,

quadratics with positive Hessians, and source localization costs (see Section 4.7). Under Assumption 4.3,

each fi is coercive1, and so is f :=

PN
i=1

fi. Thus, there exist x?i , i = 1, ..., N , and x?, such that f?
i :=

infx2Rd fi(x) = fi(x?i ), and f?
:= infx2Rd f(x) = f(x?). Without loss of generality (w.l.o.g.), we choose

the constant B in Assumption 4.3 such that:

f?
i < bB, 8i = 1, ..., N, (4.2)

f? < N bB. (4.3)
1Coercive means that fi(x) ! +1 whenever kxk ! +1.
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Hence, any minimizer x?i of fi, 8i, and any minimizer x? of f , belongs to the closed ball {x 2 Rd
: kxk 

B}.

Introduce the function F : RN ! R, as:

F (x) = F (x
1

, ..., xN ) = f
1

(x
1

) + ...+ fN (xN ). (4.4)

For future reference, we introduce the following sub-level set:

S :=

(

x 2 RN
: F (x) =

N
X

i=1

fi(xi)  N bB

)

, (4.5)

and the following two constants:

D := sup

x2S
kxk <1 (4.6)

G := sup

x2S
krF (x)k <1.

The set S is compact, because the function F is coercive by Assumption 4.3. The two suprema in (4.6) are

attained at some points and are finite, because the set S is compact, and the functions k · k and krF (·)k are

continuous (The latter function is continuous due to continuity of the gradients of the fi’s – see Assump-

tion 4.2.)

We consider the D–NG algorithm in Chapter 2; we briefly recall it here, for convenience. Each node i

updates its solution estimate xi(k) and an auxiliary variable yi(k) over iterations k as follows2:

xi(k) = (1� `iw) yi(k � 1) + w
X

j2Oi�{i}

yj(k � 1)� ↵rfi(yi(k � 1)) (4.7)

yi(k) = xi(k) + �k�1

(xi(k)� xi(k � 1)) , k = 1, 2, ..., (4.8)

with xi(0) = yi(0) 2 Rd. The step-size ↵k and the sequence �k are:

↵k =

c

k + 1

, �k =

k

k + 3

, k = 0, 1, ... (4.9)

2We assign equal weights w
0

to all neighbors; generalization to unequal weights is straightforward.
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We choose c and w as:

c  1

⇢ �N (L) + L
(4.10)

w = c ⇢.

Here, ⇢ is a positive constant; e.g., it can be set to ⇢ = 1. To satisfy (4.10), we require that nodes know

beforehand (upper bounds on) ⇢, �N (L), and L. We can set ⇢ = 1. It can be shown that �N (L) 

2 maxi=1,...,N `i. Ifrfi has a Lipschitz constant Li, known by node i, we can take L as L := maxi=1,...,N Li.

Hence, requirement (4.10) is accomplished beforehand through two distributed maximum computations –

in O(N) per-node scalar communications. (See also Chapter 2 for a similar discussion.)

Here, and throughout the whole Chapter, to avoid notational clutter, we assume equal initialization

x(0) := xi(0) = yi(0) = xj(0) = yj(0), 8i, j, and we let d = 1, but the results extend for a generic d as

well.

4.3.2 Clone functions  k

For a real number k � 0, consider the following (clone) unconstrained optimization problem over x =

(x
1

, x
2

, ..., xN ) 2 RN :

minimize  k(x) :=
PN

i=1

fi(xi) +
k ⇢
2

x>Lx, ⇢ > 0. (4.11)

In (4.11), recall that L is the graph Laplacian matrix. Recall the step-size ↵k�1

= c/k, and let w =

c⇢. Introduce compact notation for the nodes’ estimates x(k) := (x
1

(k), ..., xN (k))>, and y(k) :=

(y
1

(k), ..., yN (k))>. Then, it is easy to verify that algorithm (4.7)–(4.8) can be re-written as:

x(k) = y(k � 1)� ↵k�1

r k(y(k � 1)) (4.12)

y(k) = x(k) + �k�1

(x(k)� x(k � 1)) , k = 1, 2, ... (4.13)

with ↵k and �k in (4.9) and the initialization is x(0) = y(0) = x(0)1. Hence, at iteration k, algorithm (4.7)–

(4.8) performs the (exact) Nesterov gradient step with respect to the clone function  k.

We impose that the step-size satisfies:

↵k�1

= c/k  1/L
 k

,
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where L
 k

is a Lipschitz constant of the gradient of  k, which we can take as:

L
 k

= k (⇢ �N (L) + L) .

Thus, we can choose c as in (4.10).

Properties of the clone functions  k

The next Lemma states certain properties of the clone functions  k’s and problem (4.11). The Lemma also

relates (4.11) with the original problem (3.5).

Lemma 4.4 (Properties of (4.11)) Consider (4.11), and let Assumption 4.1 hold. Then:

(a) There exists a solution xc(k) = (xc
1

(k), ..., xcN (k)) to (4.11) that satisfies infx2RN  k(x) =  (xc(k)) =:

 

?
k > �1. Further, the corresponding solution set is compact.

(b) f? �  ?
k �  ?

t for all k, t, k > t.

(c) For any xc(k), there holds: krfi(xc
avg

(k))k  LD + G =: G?, for all i, k, where xc
avg

(k) =

1

N

PN
i=1

xci (k).

(d) For any k > 0,  ?
k � f? � N(G?

)

2

2⇢k�
2

(L) .

Proof: For part (a), note that the function  k is, by Assumption 4.3, coercive. Also, the function  k is

closed and convex. Hence, as  k is closed, convex, and coercive, problem (4.11) is solvable, the solution

set is compact, and  ?
k > �1 (see, e.g., [81]).

We prove part (b). Fix some k, and note that:

f?
=  k(x

?1) =
N
X

i=1

fi(x
?
) �  k(x

c

(k)) =  ?
k,

and thus f? �  ?
k. Next, fix k, t, k > t, and note that:

 

?
t =  t(x

c

(t))   t(x
c

(k)) =
N
X

i=1

fi(x
c

i (k)) +
⇢ t

2

xc(k)>Lxc(k)


N
X

i=1

fi(x
c

i (k)) +
⇢ k

2

xc(k)>Lxc(k) =  ?
k,

and so  ?
t   ?

k whenever t < k, which completes the proof of part (b).
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We now prove part (c). From part (b):

F (xc(k)) =
N
X

i=1

fi(x
c

i (k))   ?
k  f?  N bB, 8k.

Thus, xc(k) belongs to set S , and then, in view of (4.6), we have: kxci (k)k  kxc(k)k  D, 8i, 8k. Further:

kxc
avg

(k)k =

�

�

�

�

�

1

N

N
X

i=1

xci (k)

�

�

�

�

�

 1

N
Nkxc(k)k  D.

We now upper bound krfi(xc
avg

(k))k:

krfi(xc
avg

(k))k = krfi(xc
avg

(k))�rfi(xci (k)) +rfi(xci (k))k

 krfi(xc
avg

(k))�rfi(xci (k))k+ krfi(xci (k))k

 Lkxc
avg

(k)� xci (k)k+ krfi(xci (k))k

 L
�

kxc
avg

(k)k+ kxci (k)k
�

+ krfi(xci (k))k

 2LD +G =: G?, 8k,

where we use kxci (k)k  kxc(k)k  D (as xc(k) belongs to set S), (4.6), and the Lipschitz continuity of

the gradient rfi (see Assumption 4.2.) Thus, the result in part (c). We now prove part (d). We have:

 

?
k =

N
X

i=1

fi(x
c

i (k)) +
⇢

2

kxc(k)>Lxc(k)

�
N
X

i=1

�

fi(x
c

avg

(k)) +rfi(xc
avg

(k))(xci (k)� xc
avg

(k))
�

(4.14)

+

⇢

2

k(xc(k)� xc
avg

(k)1)>L(xc(k)� xc
avg

(k)1)

� f(xc
avg

(k)) +
N
X

i=1

⇣

�G?kxci (k)� xc
avg

(k)k+ ⇢

2

k�
2

(L)kxci (k)� xc
avg

(k)k2
⌘

(4.15)

� f? � N(G?
)

2

2⇢ k �
2

(L) ,

after (separately) minimizing each summand in (4.15) over ✏ := kxci (k)� xc
avg

(k)k 2 R. Inequality (4.14)

used convexity of the fi’s and the fact that L(xc
avg

(k)1) = 0. Inequality (4.15) used the bound on the

gradients krfi(xc
avg

(k))k  G?, and the variational characterization of the eigenvalues to show (xc(k) �

xc
avg

(k)1)>L(xc(k) � xc
avg

(k)1) � �
2

(L)kxc(k) � xc
avg

(k)1k2, as (xc(k) � xc
avg

(k)1) is orthogonal to

85



q
1

=

1p
N
1–the eigenvector of L that corresponds to �

1

(L) = 0. Thus, the result in part (d). 2

4.3.3 Convergence rate analysis

We briefly summarize the analysis. We first show that
PN

i=1

fi(xi(k)) = O(log k), thus showing that
PN

i=1

fi(xi(k)) does not grow fast with k. Then, using Assumption 4.3, we show that krfi(yi(k))k =

O(log k). We then apply the latter to Theorem 2.8 with Gk = O(log k), that gives us that f(xi(k))� f?
=

O(log

3 k/k), and, as a corollary, that f(xi(k)) is uniformly bounded, for all i, k. (Lemma 4.8.) Finally, we

explain how to boost the optimality gap bound to O(log k/k).

Bounding the function values by O(log k)

We now show that
PN

i=1

fi(xi(k)) is O(log k).

Lemma 4.5 Consider algorithm (4.7)–(4.10) under Assumptions 4.1, 4.2 and 4.3. Further, denote by R :=

kx(0)� x?k. Then, for all k = 1, 2, ...

N
X

i=1

fi(xi(k)) 
2N R2

c
+ f(x(0)) + 3

 

bN B �
N
X

i=1

f?
i

!

+

N(G?
)

2

2 ⇢ �
2

(L)Sk,

where

Sk = 1 +

k�1

X

t=1

(t+ 1)

2

t3
+

k�1

X

t=2

1

tbt/2c = O(log k). (4.16)

Proof: We prove Lemma 4.5 using the interpretation (4.12) that the iteration k of our algorithm (4.7)–

(4.8) is a Nesterov gradient step with respect to  k. We use Lemma 2.5 from Chapter 2. We use it here to

estimate the progress in one iteration with respect to  k. More precisely, denote by v(k) = y(k)�(1�✓k)x(k)
✓k

and ✓k = 2/(k + 2). Applying Lemma 2.5 with f ⌘  k, x• ⌘ x?1, and Lk = 1/↵k = k/c (Note that here

�k = 0; also, we do not choose x• to be an optimizer of  k, which is a valid choice):

(k + 1)

2

k
( k(x(k))� k(x

?1)) + (2/c)kv(k)� x?1k2 (4.17)

 k2 � 1

k
( k(x(k � 1))� k(x

?1)) + (2/c)kv(k � 1)� x?1k2.
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Next, note that the term k2�1

k ( k(x(k � 1))� k(x?1)) on the right hand side of (4.17) is, for k = 1, 2, ...,

upper bounded as (because  k(x?1) �  ?
k):

k2 � 1

k
( k(x(k � 1))� k(x

?1))  k2 � 1

k
( k(x(k � 1))� ?

k)

 k ( k(x(k � 1))� ?
k) , (4.18)

where the last inequality follows because k(x(k�1)) �  ?
k. Further, the term (k+1)

2

k ( k(x(k))� k(x?1))

on the left hand side of (4.17) is, for k = 1, 2, ..., lower bounded as:

(k + 1)

2

k
( k(x(k))� k(x

?1)) =

(k + 1)

2

k
( k(x(k))� ?

k)�
(k + 1)

2

k
( k(x

?1)� ?
k)

� (k + 2) ( k(x(k))� ?
k)�

(k + 1)

2

k
( k(x

?1)� ?
k) (4.19)

� (k + 2) ( k(x(k))� ?
k)�

(k + 1)

2

k

N(G?
)

2

2 ⇢ k�
2

(L) , (4.20)

Here, (4.19) uses the fact that  k(x(k))� ?
k � 0, so that k2+2k+1

k ( k(x(k))� ?
k) �

k2+2k
k ( k(x(k))�

 

?
k); and (4.20) uses inequality f? �  ?

k =  k(x?1) �  ?
k 

N(G?
)

2

2⇢k�
2

(L) from Lemma 4.4, part (d). Using

(4.18) and (4.20), dividing (4.17) by k, and rearranging the terms:

✓

1 +

2

k

◆

( k(x(k))� ?
k) +

2

ck
kv(k)� x?1k2

 ( k(x(k � 1))� ?
k) +

2

ck
kv(k � 1)� x?1k2 + (k + 1)

2

k3
N(G?

)

2

2 ⇢ �
2

(L) ,

or, equivalently:

( k(x(k))� ?
k) +

2

ck
kv(k)� x?1k2  ( k(x(k � 1))� ?

k) +
2

ck
kv(k � 1)� x?1k2

+

(k + 1)

2

k3
N(G?

)

2

2 ⇢ �
2

(L) �
2

k
( k(x(k))� ?

k) . (4.21)

We next replace the term ( k(x(k))� ?
k) on the left hand side in (4.21) with its lower bound that involves

�

 k+1

(x(k))� ?
k+1

�

. Using the definition of the functions  k and  k+1

, adding and subtracting  ?
k+1

+
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⇢
2

x(k)>Lx(k), and using the relation  ?
k+1

�  ?
k (see Lemma 4.4, part (b)):

( k(x(k))� ?
k) =

N
X

i=1

fi(xi(k)) +
⇢ k

2

x(k)>Lx(k)� ?
k + 

?
k+1

� ?
k+1

+

⇢

2

x(k)>Lx(k)� ⇢

2

x(k)>Lx(k)

=

�

 k+1

(x(k))� ?
k+1

�

� ⇢

2

x(k)>Lx(k) +
�

 

?
k+1

� ?
k

�

�
�

 k+1

(x(k))� ?
k+1

�

� ⇢

2

x(k)>Lx(k). (4.22)

Further, we replace the term � 2

k ( k(x(k))� ?
k) on the right hand side of (4.21) by an upper bound as

follows. We express ( k(x(k))� ?
k) in terms of

⇣

 bk/2c(x(k))� ?
bk/2c

⌘

as follows:

( k(x(k))� ?
k) =

N
X

i=1

fi(xi(k)) +
⇢ k

2

x(k)>Lx(k)� ?
k

=

N
X

i=1

fi(xi(k)) +
⇢ bk/2c

2

x(k)>Lx(k)� ?
bk/2c + 

?
bk/2c � ?

k +

⇢(k � bk/2c)
2

x(k)>Lx(k)

= ( bk/2c(x(k))� ?
bk/2c)� ( 

?
k � ?

bk/2c) +
⇢(k � bk/2c)

2

x(k)>Lx(k).

Thus, using ( bk/2c(x(k)) �  ?
bk/2c) � 0, and k � bk/2c � k/2, the term ( k(x(k))� ?

k) is bounded

from above as:

( k(x(k))� ?
k) � �( ?

k � ?
bk/2c) + ⇢

(k/2)

2

x(k)>Lx(k),

or, equivalently:

�2

k
( k(x(k))� ?

k) 
2

k
( 

?
k � ?

bk/2c)�
⇢

2

x(k)>Lx(k).

Next, by Lemma 4.4, parts (c) and (d), the term :

( 

?
k � ?

bk/2c) = ( 

?
k � f?

) + (f? � ?
bk/2c) 

N(G?
)

2

2 ⇢ �
2

(L)bk/2c , k = 2, 3, ...,

which finally gives:

�2

k
( k(x(k))� ?

k) 
⇣

 

?
k � ?

bk/2c

⌘

� ⇢

2

x(k)>Lx(k)  N(G?
)

2

⇢ �2(L)kbk/2c
� ⇢

2

x(k)>Lx(k), k = 2, 3, ...(4.23)
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Note that, for k = 1:

�2

k
( k(x(k))� ?

k)  2( 

?
1

� ?
0

)� ⇢

2

x(1)>Lx(1). (4.24)

Now, applying the bounds (4.22) and (4.23) to (4.21), for k = 2, 3, ...:

�

 k+1

(x(k))� ?
k+1

�

+

2

ck
kv(k)� x?1k2  ( k(x(k � 1))� ?

k) +
2

ck
kv(k � 1)� x?1k2

+

N(G?
)

2

2�
2

(L)

✓

(k + 1)

2

2 k3
+

1

kbk/2c

◆

,

which gives:

�

 k+1

(x(k))� ?
k+1

�

 ( k(x(k � 1))� ?
k) +

2

ck
kv(k � 1)� x?1k2 � 2

ck
kv(k)� x?1k2

+



(k + 1)

2

2 k3
+

1

kbk/2c

�

N(G?
)

2

⇢ �
2

(L) , k = 2, 3, ... (4.25)

Also, for k = 1:

( 

2

(x(1))� ?
2

)  ( 

1

(x(0))� ?
1

) +

2

c
kv(0)� x?1k2 � 2

c
kv(1)� x?1k2

+

(1 + 1)

2

2 · 13
N(G?

)

2

⇢ �
2

(L) + 2( 

?
1

� ?
0

). (4.26)

Finally, by telescoping (4.25) and (4.26), and using the definition of Sk+1

in (4.16):

�

 k+1

(x(k))� ?
k+1

�

  

1

(x(0))� ?
1

+ (2/c)kv(0)� x?1k2 + N(G?
)

2

⇢ �
2

(L) [Sk+1

] (4.27)

+ 2( 

?
1

� ?
0

).

Use equality x(0) = v(0) = x(0)1;  ?
1

 f?;  ?
0

�
PN

i=1

f?
i ;  ?

1

�
PN

i=1

f?
i ; and  

1

(x(0)1) = f(x(0)).

Substituting the latter findings in (4.27), we get the desired result. 2

Bounding gradients by O(log k)

We now use Lemma 4.5 to show that the gradients krfi(yi(k))k = O(logK), k = 1, ...,K. Denote by:

Cf :=

0

@ f? � min

i=1,...,N

X

j 6=i

f?
j

1

A

+ 3

 

bN B �
N
X

i=1

f?
i

!

+ f(x(0)) +
2N R2

c
+

N(G?
)

2

2 ⇢ �
2

(L) . (4.28)
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Lemma 4.6 Consider algorithm (4.7)–(4.10) under Assumptions 4.1, 4.2 and 4.3, and denote by:

C
grad

:= 3Lmax

⇢

B,
1

b
Cf

�

+ Lkx(0)k+ max

i=1,...,N
krfi(yi(x(0)))k. (4.29)

Then, for all k = 0, 1, ...,K:

krfi(yi(k))k  C
grad

SK .

Proof: Fix arbitrary node i 2 {1, 2, ..., N}. By Lemma 4.5, and using fj(xi(k)) � f?
j , j 6= i:

fi(xi(k)) 

0

@f? �
N
X

j 6=i

f?
j

1

A

+

2NR2

c
+

N(G?
)

2

2 ⇢ �
2

(L)Sk + 3

 

bNB �
N
X

i=1

f?
i

!

 Cf Sk  Cf SK ,

because Sk � 1 for all k = 1, ...,K, and Sk  SK , for all k = 1, ...,K. Next, using Assumption 4.3:

kxi(k)k  max {B, (1/b)Cf} SK .

which, because ky(k)k = kx(k) + k�1

k+2

(x(k)� x(k � 1))k  2kx(k)k+ kx(k � 1)k, gives:

kyi(k)k  3 max {B, (1/b)Cf} SK , (4.30)

Now, using the Lipschitz continuity ofrfi and the triangle inequality:

krfi(yi(k))k = krfi(yi(k))�rfi(yi(0)) +rfi(yi(0))k

 krfi(yi(k))�rfi(yi(0))k+ krfi(yi(0))k

 Lkyi(k)� yi(0)k+ krfi(yi(0))k

 Lkyi(k)k+ Lkyi(0)k+ krfi(yi(0))k.

The latter gives the desired result using the bound (4.66), the inequalities kyi(0)k = kxi(0)k = kx(0)k,

krfi(yi(0))k  maxi=1,...,N krfi(x(0))k, and using SK � 1. 2

Optimality gap O(log

3 k/k): Bounding the function values by O(1)

We are now ready to prove the O(log

3 k/k) rate of convergence, as well as the bounded gradients result.
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Theorem 4.7 (The O(log

3 k/k) rate of convergence under the growth assumption) Consider algorithm (4.7)–

(4.10) under Assumptions 4.1, 4.2 and 4.3. Then, for all nodes i, the optimality gap 1

N ( f(xi(k))  f?
) =

O(log

3 k/k); more precisely:

1

N
(f(xi(k))� f?

) (4.31)

 2R2

c
+ 16LC2

cons

C2

grad

S2

k

k

k
X

t=1

(t+ 1)

2

t3
+ C2

grad

C
cons

S2

k

k
, k = 1, 2, ...,

where Sk is in (4.16); C
cons

is in (2.21); and C
grad

is in (4.29).

Lemma 4.8 Consider algorithm (4.7)–(4.10) under Assumptions 4.1, 4.2 and 4.3. Then, for all nodes i, for

all k = 1, 2, ...:

f(xi(k))  f?
+

2NR2

c
+ a

1

LC2

cons

C2

grad

+ a
2

NC2

grad

C
cons

,

where Sk is in (4.16); C
cons

is in (2.21); C
grad

is in (4.29); and a
1

, a
2

are universal constants independent

of system parameters.

Proof: [Proof of Theorem 4.7] We recall Theorem 2.8 from Chapter 2. Recall that, to establish the

optimality gap at iteration k, the proof of this Theorem actually required only that the gradients krfi(yi(t))k

be bounded, 8t = 0, 1, ..., k. Hence, for a fixed k, we can replace the uniform bound on the gradients G

with a bound Gk that satisfies: krfi(yi(t))k  Gk, 8t = 0, 1, ..., k. We can use Gk = C
grad

Sk, with

Sk in (4.16) and C
grad

in (4.29). Applying Theorem 2.8 with Gk = C
cons

Sk, we get (4.31), and thus,

Theorem 4.7. 2

Proof: [Proof of Lemma 4.8] Lemma 4.8 follows after maximizing the right hand side in (4.31) over

k � 1, i.e., after calculating that:

16 max

k�1

(

S2

k

k

k
X

t=1

(t+ 1)

2

t3

)

 2000, max

k�1

⇢

S2

k

k

�

 50. 2

Improving convergence rate to O(log k/k)

It is clear that we can now improve convergence rate to O(log k/k). As the function values f(xi(k)) are

uniformly bounded by a constant for all k, we proceed like in the proof of Lemma 4.6, and conclude that the

gradientsrfi(yi(k)) are uniformly bounded by a constant, i.e., it holds that: krfi(yi(k))k  C 0
grad

, 8i, 8k,
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for a certain constant C 0
grad

. Applying Theorem 2.8 from Chapter 2, we obtain the O(log k/k) convergence

rate, as desired.

4.4 D–NG method: Constrained optimization with constant step-size

In this Section, we present a projected D–NG method for constrained optimization (4.1). Subsection 4.4.1

introduces the model, the algorithm, and clone functions similar to the previous Section; Subsection 4.4.2

performs convergence analysis. This Section assumes static networks.

4.4.1 Model and algorithm

We impose the following structure on the costs fi’s and the constraint set X :

Assumption 4.9 (a) For all i, fi is convex, coercive, and Lipschitz with respect to the Euclidean k · k norm

on the set X , i.e., there exists G0 2 (0,1), such that:

kfi(x)� fi(y)k  G0 kx� yk , 8x, y 2 X .

(b) fi is continuously differentiable, with Lipschitz continuous first derivative of constant L:

krfi(x)�rfi(y)k  L kx� yk, 8x, y 2 Rd.

(c) The set X is closed, convex, and non-empty.

Condition 1 (a) on the Lipschitz continuity of fi(·) on X holds for any function fi(·) that satisfies the other

Assumptions in 1 when X is a compact set. By Assumption 4.9, problem (3.5) is solvable, the optimal value

f? > �1, and the solution set is non-empty and compact, e.g., [81].

The algorithm

We now present the projected D–NG algorithm. The algorithm is the same as (4.7)–(4.8), except that it

introduces the projection step:

xi(k) = PX

8

<

:

(1� `iw) yi(k � 1) + w
X

j2Oi

yj(k � 1)� ↵rfi(yi(k � 1))

9

=

;

(4.32)

yi(k) = xi(k) + �k�1

(xi(k)� xi(k � 1)) , k = 1, 2, ..., (4.33)
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with initialization xi(0) = yi(0) = x(0). Here, �k is given in (4.9), and PX is the Euclidean projection onto

the set X :

PX {zi} = argminyi2X kyi � zik2.

The variables xi(k) are feasible, i.e., xi(k) 2 X , for all k, while the variables yi(k) may not be feasible.

We require that the step size ↵ and the averaging weight w satisfy:

↵  1

L+ ⇢�N (L) (4.34)

w = ↵⇢, (4.35)

where ⇢ > 0 is a parameter specified further ahead. Hence, we require the same a priori knowledge (param-

eters L and �N (L)) as in Section 4.3.

Clone functions  ⇢

Similarly to Section 4.3, we introduce the clone function  ⇢ and the clone problem as:

minimize  ⇢(x) :=
PN

i=1

fi(xi) +
⇢
2

x>Lx

subject to x 2 XN ,
. (4.36)

where XN denotes the Cartesian product XN
= X ⇥ ... ⇥ X (X repeated N times.) By Assumption 4.9,

problem (4.11) is solvable and has a compact solution set. Denote by  ?
⇢ the optimal value of (4.11), and

xc(⇢) a solution to (4.11). By Lemma 4.4, we have that  ?
⇢  f?.

4.4.2 Convergence analysis

We now study convergence of the projected D–NG algorithm (4.32)–(4.33). We have the following Theo-

rem.

Theorem 4.10 Consider algorithm (4.32)–(4.34) under Assumptions 4.1 and 4.9, with the step-size

↵ =

1

L+ ⇢�N (L) .

Then:
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(a) for all i = 1, ..., N , for all k = 1, 2, ... :

frac1N ( f(xi(k))� f?
)  N(N � 1)(G0

)

2

2 ⇢
+

[2 (L+ ⇢�N (L))] kx(0)� xc(⇢)k2

N k2
. (4.37)

(b) Let X be a compact set with kyk  B0, for all y 2 X , and fix the desired accuracy ✏ > 0. Then, for:

⇢ = ⇢(✏) =
N(G0

)

2

(N � 1)

✏
,

we have: 1

N ( f(xi(k))� f?
)  ✏, 8k � k

0

(✏), 8i, where:

k
0

(✏) =
4N

p

�N (L)G0B0

✏
+

4B0p
maxi Lp
✏

,

i.e., the ✏-accuracy is achieved after at most k
0

(✏) iterations.

Theorem 4.10 says that, with the proposed D–NG algorithm, for the compact set X and appropriately chosen

⇢, the number of iterations (per-node communications and per-node gradient evaluations) for ✏-accuracy in

the cost function is O(1/✏).

Proof: [Proof of Theorem 4.10] We first prove claim (a). The proof consists of two parts. First, we

use the convergence results for the Nesterov method [73, 82] to estimate the error in terms of the clone

function  ⇢(x(k))� ?
⇢. Second, we relate the clone error  ⇢(x(k))� ?

⇢ and the true error at any node j:

f(xj(k))� f?.

Clone function error

By the convergence results for the Nesterov gradient method [73], and noting that the Lipschitz constant of

 ⇢ equals L+ ⇢�N (L), we have that, for all k:

 ⇢(x(k))� ?
⇢ 

[2 (L+ ⇢�N (L))] kx(0)� xc(⇢)k2

k2
=:

C
 

k2
.

Relating the clone and the true errors

We now fix a node j and start with the clone error:

 ⇢(x(k))� ?
⇢ (4.38)

=

N
X

i=1

fi(xi(k)) +
1

2

⇢x(k)>Lx(k)� ?
⇢. (4.39)
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Consider equation (4.38), and fix a node j at which we want to estimate the true error. By Lipschitz conti-

nuity of fi(·) on X and by the fact that xi(k), xj(k) 2 X , we have that:

kfi(xi(k))� fi(xj(k))k  G0kxi(k)� xj(k)k. (4.40)

Now, adding and subtracting f? from (4.38) while using the fact that  ?
⇢  f?, and using (4.40) gives:

 ⇢(x(k))� ?
⇢ �

N
X

i=1

fi(xj(k))� f? (4.41)

�
N
X

i=1

G0kxi(k)� xj(k)k+
1

2

⇢x(k)>Lx(k)

� f(xj(k))� f? �N G0
✓

max

i: i 6=j
kxi(k)� xj(k)k

◆

+

1

2

⇢x(k)>Lx(k).

We now lower bound the quadratic form

x>Lx =

X

{i,j}2E

kxi � xjk2,

for any x 2 RN . Fix a node j, and let maxi: i 6=j kxi � xjk =: kxs � xjk. Because the graph is connected,

there is a path of length D from node s to node j, say (s = i
1

) ! i
2

! ... ! (iD+1

= j), where

1  D  N � 1. Then:

x>Lx � kxs � xi
2

k2 + ...+ kxiD � xjk2

= D

✓

1

D
kxs � xi

2

k2 + ...+
1

D
kxiD � xjk2

◆

� D

�

�

�

�

1

D
(xs � xi

2

) + ...+
1

D
(xiD � xj)

�

�

�

�

2

(4.42)

=

1

D
kxs � xjk2 �

1

(N � 1)

kxs � xjk2,
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where we use the fact that, for any path, D  (N � 1), and inequality (4.42) uses convexity of the quadratic

function z 7! kzk2. Using the latter bound for x = x(k), we have:

 ⇢(x(k))� ?
⇢ � f(xj(k))� f?

� NG0
✓

max

i:i 6=j
kxi(k)� xj(k)k

◆

+

1

2

⇢

(N � 1)

✓

max

i:i 6=j
kxi(k)� xj(k)k

◆

2

(4.43)

� f(xj(k))� f? � N2

(N � 1)(G0
)

2

2 ⇢
, (4.44)

where (4.44) follows by maximizing NG0� � 1

2

⇢
(N�1)

�2 over � 2 R. Equation (4.44) allows us to relate the

clone and the true errors:

f(xj(k))� f?   k(x(k))� ?
⇢ +

N2

(N � 1)(G0
)

2

2 ⇢
. (4.45)

Equation (4.45), combined with (4.38), and dividing both sides of the inequality by N , completes the proof

of part (a).

We now prove part (b). Let the set X be compact, such that kyk  B0, for all y 2 X . Denote by

B :=

p
NB0. Then,

kx(0)� xc(⇢)k  kx(0)k+ kxc(⇢)k  2B,

which gives:

f(xi(k))� f?  N2

(N � 1)(G0
)

2

2 ⇢
(4.46)

+

[2 (L+ ⇢�N (L))] (2B)

2

k2

=

C
1

⇢
+ ⇢

C
2

k2
+

C
3

k2
, (4.47)

with C
1

=

N2

(G0
)

2

(N�1)

2

, C
2

= 8B2�N (L), and C
3

= 8LB2. Now, fix an ✏ > 0, and consider the iteration

K(⇢)–the smallest iteration k at which f(xi(k)) � f?  ✏, for all i. Our goal is then to find ⇢ > 0

that minimizes K(⇢) and to find the corresponding minimal value K?
(✏). Instead of finding the actual

minimum, it suffices for our purpose to find an upper bound on K?
(✏), and a sub-optimal ⇢, which we call
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⇢(✏). By (4.47), we have that

K2

(⇢)  ⇢2C
2

+ ⇢C
3

✏⇢� C
1

=: M(✏, ⇢), ⇢ > C
1

/✏. (4.48)

Now, set ⇢(✏) := 2C
1

✏ =

N2

(G0
)

2

(N�1)

✏ . This value, when plugged in the right hand side of (4.48), gives:

M(✏, ⇢(✏)) =
4C

1

C
2

✏2
+

2C
3

✏
.

From above, using inequality
p
x+ y 

p
x+

p
y, x, y � 0, we can conclude that:

K?
(✏) 

p

M(✏, ⇢(✏))  2

p
C
1

C
2

✏
+

p
2C

3p
✏

.

Substituting the values of C
1

, C
2

, and C
3

, and replacing the value of ✏ to N ✏ (because we are interested in

the normalized optimality gap 1

N ( f(xi)� f?
)), we obtain the result (b). 2

Remark. For the projected D–NG method with a constant step size, the clone function approach gives

better bounds than the approach using “global averages” x(k) and y(k) that we adopted in Chapters 2 and 3.

Namely, with the “global averages” approach, we would get (we do not consider here the constants, expect

the step size ↵, to illsustrate the point):

f(x(k))� f?
= O

✓

1

k2

◆

+ ↵O

 

1

k2

k
X

t=1

t2key(t)k
!

,

where x(k) = 1

N

PN
i=1

xi(k), y(k) = 1

N

PN
i=1

yi(k), and ey(k) = y(k)�y(k)1. As the disagreement is not

guaranteed to converge to zero under a constant step-size, the second summand above is O(↵ k), and we get

the error accumulation. This, however, does not reflect the actual behavior of the projected D–NG method,

whereby the cost function stays in a neighborhood of f? when k increases.

4.5 Projected mD–NC method: Constrained optimization

This Section presents the projected mD–NC method for random networks. In Subsection 4.5.1, we intro-

duce the framework of (centralized) inexact projected Nesterov gradient. This extends our results from

Chapter 2 to constrained problems and inexact, feasible projections. Subsection 4.5.2 introduces the model

and presents the projected mD–NC method. Finally, Subsection 4.5.3 performs convergence rate analysis.
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4.5.1 Framework of Inexact Nesterov gradient method

Throughout this Subsection, we consider the (centralized) constrained minimization of a function f(x)

subject to x 2 X , where f : Rd ! R is convex, and X ⇢ Rd is a nonempty, closed, convex set. Before

detailing the inexact projected Nesterov gradient, we recall from Chapter 2 the pointwise inexact (first order)

oracle and the inexact projection.

Definition 4.11 (Inexact oracle) Consider a convex function f : Rd ! R and a nonempty, closed, convex

set X . We say that a pair
⇣

bfy, bgy
⌘

2 R ⇥ Rd is a (Ly, �y) inexact oracle of f at point y 2 Rd over the set

X if:

f(x) � bfy + bg>y (x� y) , 8x 2 X (4.49)

f(x)  bfy + bg>y (x� y) +
Ly

2

kx� yk2 + �y, 8x 2 X . (4.50)

We give a couple of remarks with respect to Definition 4.11. First, in Definition 4.11, we require that x

belongs to X , while y may lie outside X . Second, throughout we just use the wording “inexact oracle

at y” rather than “inexact oracle of f at y over X ,” as the set X and the function f are understood from

context. Finally, if
⇣

bfy, bgy
⌘

is a (Ly, �y) inexact oracle at y, then it is also a
�

L0
y, �y

�

inexact oracle at y,

with L0
y � Ly.

We next give the definition of an inexact projection. First, denote the exact (Euclidean) projection of

y 2 Rd on X by PX {y} = argminz2X kz � yk.

Definition 4.12 (Inexact projection) We say that x 2 Rd is a ⇣-inexact projection of y 2 Rd on X if: 1)

x 2 X ; and 2) kx� PX {y}k  ⇣.

Inexact projected Nesterov gradient

We consider the following inexact iteration of the Nesterov gradient method to minimize f(x) over X .

For a given point (x(k � 1), y(k � 1)) 2 X ⇥ Rd, let
⇣

bfk�1

, bgk�1

⌘

be a (Lk�1

, �k�1

) inexact oracle at

y(k � 1); further, let bPk

n

y(k � 1)� 1

Lk�1

bgk�1

o

be a ⇣k�1

-inexact projection of y(k � 1) � 1

Lk�1

bgk�1

.

Construct x(k), y(k) as:

x(k) =

bPk

⇢

y(k � 1)� 1

Lk�1

bgk�1

�

(4.51)

y(k) = x(k) + �k�1

(x(k)� x(k � 1)) . (4.52)
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We have the following Lemma on the progress (per iteration) of (4.51)–(4.52).

Lemma 4.13 (Progress per iteration) Consider (4.51)–(4.52) for some k = 1, 2, ... and let x• be arbitrary

point in X . Further, assume that the set X is compact with kxk  B, 8x 2 X , Then:

(k + 1)

2
(f(x(k))� f(x•

)) + 2Lk�1kv(k)� x•k2 (4.53)

 (k2 � 1) (f(x(k � 1))� f(x•
)) + 2Lk�1kv(k � 1)� x•k2 + (k + 1)

2�k�1 + (k + 1)

2⌘k�1,

where ✓k = 2/(k + 2) and

v(k � 1) =

y(k � 1)� (1� ✓k�1

)x(k � 1)

✓k�1

(4.54)

⌘k�1

= Lk�1

⇣2k�1

+ Lk�1

✓

6B +

kbgk�1

k
Lk�1

◆

⇣k�1

(4.55)

Proof of Lemma 4.13 is in Section 4.6.

4.5.2 Model and algorithm

We consider constrained optimization problem (4.1) and let the fi’s and X obey the following.

Assumption 4.14 (a) The set X is nonempty, convex, and compact with kxk  B, 8x 2 X for some

B 2 (0,1).

(b) For all i, fi : Rd 7! R is convex, continuously differentiable, with Lipschitz continuous gradient with

constant L on the set X 0
:=

�

x 2 Rd
: kxk  3B

 

:

krfi(x)�rfi(y)k  Lkx� yk, 8x, y 2 X 0.

By Assumption 4.14, there exists a solution x? 2 X with f(x?) = f?
= infx2X f(x), and the solution

set {x? 2 X : f(x?) � f?} is compact. Also, the gradient rfi(x) is bounded over the set X 0, i.e., there

exists a constant G 2 [0,1) such that krfi(x)k  G, 8x 2 X 0. Assumption 4.14 encompasses many costs

fi’s; e.g., any fi that is twice continuously differentiable on Rd obeys Assumption 4.14 (b) with constant

L = maxx2X 0 kr2fi(x)k.

For convenience, we briefly recall the random network model in Chapter 2. The projected mD–NC

algorithms operates in two time scales, i.e., it has inner iterations s and outer iterations k. There are ⌧k inner

iterations at the outer iteration s, with ⌧k specified further ahead. We capture the communication pattern at

(k, s) by the random matrix W (k, s) that obeys the following.
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Assumption 4.15 The matrices W (k, s) are:

(a) Mutually independent and identically distributed;

(b) Stochastic, symmetric, with positive diagonals, almost surely;

(c) There exists a positive number w, such that, for all i, j = 1, ..., N , almost surely, Wij(k, s) 2 {0} [

[w, 1];

(d) The graph is connected on average, i.e., kE [W (k, s)]� Jk < 1.

Denote by µ :=

�

kE
⇥

W (k, s)2
⇤

� Jk
�

1/2, and introduce, for future reference, the following matrices:

W(k) = W (k, ⌧k)W (k, ⌧k � 1)...W (k, 1) and

fW(k) := W(k)� J. (4.56)

Projected mD–NC algorithm

Projected mD–NC has all equal steps as the algorithm mD–NC in Chapter 2, and an additional projection

on the constraint set X . (Recall that PX {y} denotes the projection of y on X .) The projected mD–NC is

summarized in Algorithm 3. The step-size ↵  1/(2L).

Algorithm 3 The projected mD–NC algorithm
1: Initialization: Node i sets: xi(0) = yi(0) 2 Rd; and k = 1.

2: Node i calculates: x(a)
i (k) = yi(k � 1)� ↵rfi(yi(k � 1)).

3: (Consensus) Nodes run average consensus on a 2 d ⇥ 1 variable �i(s, k), initialized by �i(s = 0, k) =

(x(a)
i (k)>, xi(k � 1)

>
)

>:

�i(s, k) =
X

j2O
i

(k)

Wij(k, s)�j(s� 1, k), s = 1, 2, ..., ⌧k, ⌧k =

⇠

4 log k + logN

� log µ̄

⇡

, (4.57)

and set x(c)
i (k) := [�i(s = ⌧k, k)]1:d and x(b)

i (k� 1) := [�i(s = ⌧k, k)]d+1:2 d. (Here [a]l:m is a selection of l-th,
l + 1-th, ..., m-th entries of vector a.)

4: Node i calculates:
xi(k) := PX

n

x(c)
i (k)

o

.

5: Node i calculates:
yi(k) = (1 + �k�1)xi(k)� �k�1 x

(b)
i (k � 1).

6: Set k 7! k + 1 and go to step 2.
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4.5.3 Convergence rate analysis

Inexact oracle framework

To analyze the convergence rate of the projected mD–NC algorithm, we use the framework of inexact

projected Nesterov gradient method in Subsection 2.4.1. Similarly to mD–NC for the unconstrained opti-

mization in Chapter 2, we consider the global average x(k) :=

1

N

PN
i=1

xi(k), the disagreement at node

i: exi(k) := xi(k) � x(k), and the aggregate quantities x(k) := (x
1

(k)>, ..., xN (k)>)> and ex(k) :=

(x
1

(k)>, ..., xN (k)>)>. We also consider the counterparts for yi(k), x
(a)
i (k), x(b)i (k), and x(c)i (k), defined

analogously.

We next derive the update equation for (x(k), y(k)). From Algorithm 3, steps 2 and 3, we have that

x(a)(k) = x(c)(k) = y(k)� ↵
N

PN
i=1

rfi(yi(k � 1)); from the latter and steps 4 and 5:

x(k) =

bPk

(

y(k � 1)� ↵

N

N
X

i=1

rfi(yi(k � 1))

)

(4.58)

y(k) = x(k) + �k�1

(x(k)� x(k � 1)) , (4.59)

where we define the inexact projection bPk by:

bPk

(

y(k � 1)� ↵

N

N
X

i=1

rfi(yi(k � 1))

)

=

bPk

n

x(c)(k)
o

:=

1

N

N
X

i=1

PX

n

x(c)i (k)
o

. (4.60)

As with mD–NC for unconstrained optimization, algorithm (4.58)–(4.59) can be viewed as an inexact

projected Nesterov gradient algorithm. Both the “gradient direction” and the projection step are inexact.

With respect to “gradient direction” inexactness, we recall Lemma 2.5 in Chapter 2. This Lemma continues

to hold here as well. Furthermore, it can be shown that we still have �k�1

:= Lkey(k � 1)k2. The next

Lemma quantifies the projection inexactness.

Lemma 4.16 Consider the projected mD–NC algorithm with step size ↵  1/(2L), and let Assump-

tions 4.14 and 4.15 hold. Then, x(k) is ⇣k�1

–inexact projection of y(k � 1) � ↵
N

PN
i=1

rfi(yi(k � 1)),

with

k⇣k�1

k  1p
N
kex(c)(k)k. (4.61)

That is: 1) x(k) 2 X , and 2) kx(k)� PX

n

y(k � 1)� ↵
N

PN
i=1

rfi(yi(k � 1))

o

k  ⇣k�1

.

Proof: We first prove claim 1 (x(k) 2 X ). Note that x(k) = 1

N

PN
i=1

PX

n

x(c)i (k)
o

, and so it belongs

to X as a convex combination of the points that belong to X . We next prove claim 2. Using x(c)(k) = y(k�
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1)� ↵
N

PN
i=1

rfi(yi(k � 1)), equations (4.58) and (4.60), and expressing x(k) = 1

N

PN
i=1

PX

n

x(c)i (k)
o

:

kx(k)� PX

(

y(k � 1)� ↵

N

N
X

i=1

rfi(yi(k � 1))

)

k  1

N

N
X

i=1

kPX

n

x(c)i (k)
o

� PX

n

x(c)(k)
o

k.(4.62)

Consider the right hand side in (4.62). Expressing x(c)i (k) = x(c)(k) + ex(c)i (k), and using the non-

expansiveness property of projection: kPX {u}� PX {v}k  ku� vk, 8u, v 2 Rd, obtain:

�

�

�

�

�

x(k)� PX

(

y(k � 1)� ↵

N

N
X

i=1

rfi(yi(k � 1))

)

�

�

�

�

�

 1

N

N
X

i=1

�

�

�

ex(c)
i (k)

�

�

�

 1p
N

�

�

�

ex(c)
(k)

�

�

�

, (4.63)

where the last inequality follows by convexity of u 7! u2:
⇣

1

N

PN
i=1

kex(c)i (k)k
⌘

2

 1

N

PN
i=1

kex(c)i (k)k2 =
1

N kex
(c)k2. 2

Disagreement estimate

We next find the bounds on key(k)k and kex(c)(k)k, in order to characterize the oracle inexactness �k and the

projection inexactness ⇣k.

Lemma 4.17 Consider the projected mD–NC algorithm under Assumptions 4.14 and 4.15, and set the step

size ↵  1/(2L). Then, for all k = 1, 2, ...:

⇣

E
h

kex(c)(k)k
i⌘

2

 E
h

kex(c)(k)k2
i

 N (3B + ↵G)

2

k8
(4.64)

(E [key(k)k])2  E
⇥

key(k)k2
⇤

 5N (3B + ↵G)

2

k8
. (4.65)

Proof: The left inequalities in (4.64) and (4.65) follow, e.g., from the Jensen inequality h (E[Z]) 

E[h(Z)], with h(z) = z2.

We now prove the two right inequalities. We conduct the proof for d = 1, while the extension to generic

d is straightforward.

The proof has four steps. In Step 1, we upper bound ky(k)k. In Step 2, we prove (4.64). In Step 3, we

upper bound E
⇥

kex(k)k2
⇤

. Finally, in Step 4, we prove (4.65).

Step 1: Bounding ky(k)k. We first prove a bound for key(k)k. Consider step 3 in Algorithm 3 and

fix arbitrary node i. Note that x(b)i (k � 1) belongs to X , because it is a convex combination of the points
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xj(k � 1), j = 1, ..., N , that belong to the set X . Next, using |�k�1

|  1:

kyi(k)k  2kxi(k)k+ kx(b)i (k � 1)k  3B,

as xi(k), x
(b)
i (k � 1) 2 X , 8k. Thus, we obtain the desired bound:

ky(k)k  3

p
NB, 8k. (4.66)

Step 2: Proof of (4.64). Recall the definition of W(k) in (4.56). and fW(k) = W(k)� J . From steps 2

and 3 in Algorithm 3, note that ex(c)(k) can be written as:

ex(c)(k) = fW(k)(I � J) (y(k � 1)� ↵rF (y(k � 1))) .

Recall Lemma 3.13 in Chapter 2. Take the norm, use the sub-multiplicative and sub-additive properties

of norms, and square the obtained inequality. Further, use kI�Jk = 1, inequality (4.66), krF (y(k�1))k 
p
NG, Lemma 3.13, and the Jensen inequality, to obtain (4.64).

Step 3: Upper bounding E
⇥

kex(k)k2
⇤

. For exi(k) := xi(k) � x(k), using xi(k) = PX

n

x(c)i (k)
o

and

x(k) = 1

N

PN
j=1

PX {xj(k)}, we have:

kexi(k)k =

�

�

�

�

�

�

PX {x(c)i (k)}� 1

N

N
X

j=1

PX {x(c)j (k)}

�

�

�

�

�

�

=

�

�

�

�

�

�

1

N

N
X

j=1

⇣

PX {x(c)i (k)}� PX {x(c)j (k)}
⌘

�

�

�

�

�

�

 1

N

N
X

j=1

�

�

�

PX {x(c)i (k)}� PX {x(c)j (k)}
�

�

�

 1

N

N
X

j=1

�

�

�

x(c)i (k)� x(c)j (k)
�

�

�

(4.67)

 1

N

N
X

j=1

⇣

�

�

�

ex(c)i (k)
�

�

�

+

�

�

�

ex(c)j (k)
�

�

�

⌘


�

�

�

ex(c)i (k)
�

�

�

+

1p
N

�

�

�

ex(c)(k)
�

�

�

. (4.68)

The left inequality in (4.67) is by convexity of norms, while the right inequality is by the non-expansiveness

of the Euclidean projection: kPX {a} � PX {b}k  ka � bk, 8a, b 2 Rd. The left inequality in (4.68) is

by expressing kx(c)i (k) � x(c)j (k)k = k(x(c)i (k) � x(c)(k)) + (x(c)(k) � x(c)j )k  kx(c)i (k) � x(c)(k)k +

kx(c)(k) � x(c)j )k; and the right inequality in (4.68) is by
⇣

1

N

PN
i=1

kex(c)j (k)k
⌘

2

 1

N

PN
i=1

kex(c)j (k)k2 =

1

N kex
(c)
(k)k2. Summing the squared right inequalities in (4.68) over i = 1, ..., N , and using

✓

�

�

�

ex(c)i (k)
�

�

�

2

+

1p
N

�

�

�

ex(c)(k)
�

�

�

◆

2

 2

�

�

�

ex(c)i (k)
�

�

�

2

+

2

N

�

�

�

ex(c)(k)
�

�

�

2

,
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we obtain:

kex(k)k2  4 kex(c)(k)k2.

Thus, from (4.64), we obtain the desired bound:

(E [kex(k)k])2  E
h

kex(c)(k)k2
i

 4N(3B + ↵G)

2

k8
. (4.69)

Step 4: Proof of (4.65). From step 5 in Algorithm 3, we have:

ey(k) = (1 + �k�1

)ex(k)� �k�1

ex(b)(k � 1)

= (1 + �k�1

)ex(k)� �k�1

fW(k) (I � J)x(k � 1).

Thus, using k�k�1

k  1:

key(k)k  2 kex(k)k+ kfW(k)k kex(k � 1)k.

Squaring the latter inequality, using (a + b)2  2a2 + 2b2, (4.69), and k(I � J)x(k � 1)k 
p
NB, we

obtain:

key(k)k2  4 kex(k)k2 + 2kfW(k)k2 kex(k � 1)k2.

Taking expectations, using (4.69), and using Jensen’s inequality, we finally obtain (4.65). 2

Convergence rate

We are now ready to state the convergence rate result for the projected mD–NC algorithm.

Theorem 4.18 Consider the projected mD–NC given in Algorithm 3 under Assumptions 3.1, 3.2, and 4.14

with the constant step size ↵  1/(2L). Let kx(0)� x?k  R, R � 0. Then, after

K =

k
X

t=1

⌧t 
1

� log µ̄
(4(k + 1) log(k + 1) + (k + 1) logN)

communication rounds, i.e., after k outer iterations, we have, at any node i:

E [f(xi(k))� f?
]

N
 1

k2

✓

2

↵
R2

+ a0
1

LB2

+ a0
2

L(6B + ↵G)

2

+ ↵G2

◆

, k = 1, 2, ..., (4.70)

where a0
1

and a0
2

are universal constants independent of system parameters.
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Proof: [Proof outline] We apply Lemma 4.13 with x• ⌘ x?. Further, as �k  Lkey(k)k2. we have,

by Lemma 4.16, and Lemma 4.17: �k  Lkey(k)k2 =

9NLB2

k8 , ⇣k  kex(b)
(k)kp
N

 3B+↵G
k4 . Finally, set

Lk�1

⌘ N/↵, and note that kbgkk = k
PN

i=1

rfi(yi(k))k  NG, 8k, as yi(x) 2 X 0, 8k. We now have

all the relevant quantities set, and the proof proceeds by applying Lemma 4.13, and is similar to proofs of

Theorem 3.8 and 3.15. 2

4.6 Proof of Lemma 4.13

Proof: We perform the proof in three steps.

Step 1. We first prove the following auxiliary equality:

✓k�1

v(k) = x(k)� (1� ✓k�1

)x(k � 1). (4.71)

Using the definition of v(k) in (4.54), ✓k = 2/(k + 2), �k�1

= (k � 1)/(k + 2), and (4.52):

v(k) =
k + 2

2

✓

x(k) +
k � 1

k + 2

x(k)� k � 1

k + 2

x(k � 1)� k

k + 2

x(k)

◆

=

k + 1

2

x(k)� k � 1

2

x(k � 1).

Multiplying the expression on the right hand side of the last equality by ✓k�1

= 2/(k+1), the result follows.

Step 2. We prove the following relation:

f(x(k))  f(z)+Lk�1

(x(k)�y(k�1))

>
(z�x(k))+

Lk�1

2

kx(k)�y(k�1)k2+ �k�1

+⌘k�1

, 8z 2 X .

(4.72)

Because x(k) 2 X (by construction), we have, using (4.50):

f(x(k))  bfk�1

+ bg>k�1

(x(k)� y(k � 1)) +

Lk�1

2

kx(k)� y(k � 1)k2 + �k�1

. (4.73)

Denote by p := PX

n

y(k � 1)� 1

Lk�1

bgk�1

o

. We next upper bound the term

⇧(z) := Lk�1

✓

y(k � 1)� bgk�1

Lk�1

� x(k)

◆>
(x(k)� z) ,
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for arbitrary z 2 X . Adding and subtracting p in the second and third factors of ⇧(z), obtain:

⇧(z) = Lk�1

✓

y(k � 1)� bgk�1

Lk�1
� p

◆>
(p� z)

+ Lk�1

✓

y(k � 1)� bgk�1

Lk�1
� p

◆>
(bx(k)� p) + Lk�1(p� bx(k))>(p� z)� Lk�1kp� bx(k)k2

� �Lk�1ky(k � 1)� bgk�1

Lk�1
� pk kbx(k)� pk � Lk�1kp� bx(k)k kp� zk � Lk�1kp� bx(k)k2.(4.74)

The inequality follows by: 1) upper bounding the last three summands of ⇧(z) via u>v � �kuk kvk,

8u, v 2 Rd; and 2) using the fact that the first summand is nonnegative by the following projection property:

(w � PX {w})> (pX {w}� z) � 0, 8z 2 X . We next upper bound kx(k)� pk, ky(k� 1)� bgk�1

Lk�1

� pk, and

kp� zk. Upper bound ky(k � 1)� bgk�1

Lk�1

� pk using the sub-additive property of norms:

ky(k � 1)� bgk�1

Lk�1

� pk  ky(k � 1)k+ kbgk�1

k
Lk�1

+ kpk.

Next, from (4.52), |�k�1

|  1, and because x(k � 1), x(k) 2 X : ky(k � 1)k  3B. Also, because

x(k), p 2 X , we have kx(k)k  B and kpk  B. Using the latter bounds on ky(k � 1)k, kx(k)k, and kpk:

kx(k)� pk  ⇣k�1

, ky(k � 1)� bgk�1

Lk�1

� pk  4B +

kbgk�1

k
Lk�1

, kz � pk  2B, (4.75)

where the bound on kx(k)� pk is by the algorithm construction. Applying (4.75) to (4.74), obtain:

0  ⇧(z) + ⌘k�1

= Lk�1

✓

y(k � 1)� bgk�1

Lk�1

� x(k)

◆>
(x(k)� z) + ⌘k�1

, (4.76)

where ⌘k�1

is given in (4.55). From property (4.49): bfk�1

 f(z) + bg>k�1

(y(k � 1)� z), and so, using the

last equation and adding (A.3) and (A.4), the claim (A.2) follows.

Step 3. We finalize the proof of Lemma 4.13 by proving (4.53). We start by using relation (A.2).

Namely: 1) setting z = x(k � 1) in (A.2) and multiplying inequality (A.2) by 1 � ✓k�1

; 2) setting z = x•

106



in (A.2) and multiplying inequality (A.2) by ✓k�1

; and 3) adding the corresponding two inequalities:

✓k�1 {f(x(k))� f(x•
)}+ (1� ✓k�1) {f(x(k))� f(x(k � 1))}

= {f(x(k))� f(x•
)}� (1� ✓k�1) {f(x(k � 1))� f(x•

)}

 ✓k�1Lk�1 (x(k)� y(k � 1))

>
(x• � x(k)) + (1� ✓k�1)Lk�1 (x(k)� y(k � 1))

>
(x(k � 1)� x(k))

+

Lk�1

2

kx(k)� y(k � 1)k2 + �k�1 + ⌘k�1

= Lk�1(x(k)� y(k � 1))

>
(✓k�1x

•
+ (1� ✓k�1)x(k � 1)� x(k)) +

Lk�1

2

kx(k)� y(k � 1)k2 + �k�1 + ⌘k�1

=

Lk�1

2

(2(x(k)� y(k � 1))

>
(✓k�1x

•
+ (1� ✓k�1)x(k � 1)� x(k))

+ kx(k)� y(k � 1)k2) + �k�1 + ⌘k�1. (4.77)

Denote by:

Mk�1

= (2(x(k)� y(k � 1))

>
(✓k�1

x• + (1� ✓k�1

)x(k � 1)� x(k)) + kx(k)� y(k � 1)k2).

Then, inequality (A.5) is written simply as:

{f(x(k))� f(x•)}� (1� ✓k�1

) {f(x(k � 1))� f(x•)}  Lk�1

2

Mk�1

+ �k�1

+ ⌘k�1

. (4.78)

Now, we simplify the expression for Mk�1

as follows. Using the identity:

kx(k)� y(k � 1)k2 = 2(x(k)� y(k � 1))

>x(k) + ky(k � 1)k2 � kx(k)k2,

we have:

Mk�1 = 2(x(k)� y(k � 1))

>
(✓k�1x

•
+ (1� ✓k�1)x(k � 1))� kx(k)k2 + ky(k � 1)k2

= ky(k � 1)� ((1� ✓k�1)x(k � 1) + ✓k�1x
•
)k2 � kx(k)� ((1� ✓k�1)x(k � 1) + ✓k�1x

•
)k2

= ✓2k�1kv(k � 1)� x•k2 � ✓2k�1kv(k)� x•k2, (4.79)

where the last equality follows by the definition of v(k � 1) in (4.54) and by the identity (A.1). Now,

combining (A.6) and (A.7):

(f(x(k))� f(x•)) � (1� ✓k�1

)(f(x(k � 1))� f(x•))


Lk�1

✓2k�1

2

�

kv(k � 1)� x•k2 � kv(k)� x•k2
�

+ �k�1

+ ⌘k�1

.

107



Finally, multiplying the last equation by 4

✓2k�1

, and using ✓k�1

= 2/(k + 1), we get the result. 2

4.7 Simulation example

We provide a simulation example for the D–NG method and an acoustic source localization problem. The

cost function specified further ahead does not have bounded gradients, but it satisfies Assumptions 4.2

and 4.3, i.e., it fall in the setup of Section 4.3.

We explain the source localization problem. A sensor network instruments the environment where

an acoustic source is positioned at an unknown location ✓ 2 R2, e.g. [64]. The source emits a signal

isotropically. Each node (sensor) i measures the received signal energy:

yi =
A

k✓ � rik
+ ⇣i. (4.80)

Here ri 2 R2 is node i’s location, known to node i, A > 0 and  > 0 are constants known to all nodes, and ⇣i

is zero-mean additive noise. The goal is for each node to estimate the source’s position ✓. A straightforward

approach is to find the nonlinear least squares estimate ✓ = x? by minimizing the following cost function

(of the variable x):

minimize
PN

i=1

⇣

yi � A
kx�rik

⌘

2

. (4.81)

Problem (4.81) is nonconvex and is difficult; still, it is possible to efficiently obtain a good estimator b✓ based

on the data yi, i = 1, ..., N , by solving the following convex problem:

minimize
N
X

i=1

dist

2

(x,Ci) , (4.82)

where Ci is the disk Ci =

⇢

x 2 R2

: kx� rik 
⇣

A
yi

⌘

1/
�

, and dist(x,C) = infy2C kx � yk is the

distance from x to the set C. In words, (4.82) finds a point b✓ that has the minimal total squared distance

from disks Ci, i = 1, ..., N.

The simulation setup is as follows. Each node i acquires a single data sample yi according to model (4.80).

The coefficients A = 1 and  = 2; the true source’s position is (0.2, 0.2)>; and the measurement noise ⇣i is

zero mean, Gaussian, i.i.d. across sensors, with the standard deviation 0.5. In case that the measurement yi

is negative (due to adding a large negative noise ⇣i, we set yi = 0.

The network has N = 70 nodes (sensors) and 299 links and is modeled as a geometric graph. Sensors

are deployed uniformly randomly on a unit square, and the sensor pairs whose distance is less than a radius
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are connected by an (undirected) edge.

Figure 4.1 plots the relative error averaged across nodes
⇣

=

1

N f?

PN
i=1

(f(xi)� f?
)

⌘

, f? 6= 0, versus

the iteration number k in a log

10

� log

10

scale. We compare D–NG in (4.7)–(4.8) with the algorithm in [2].

With (4.7)–(4.8), we set the step-size ↵k = 1/(k + 1); with [2], we set ↵k = 1/[(k + 1)

⌧
], with ⌧ 2

{1/10, 1/3, 1/2, 1}. We can see that our D–NG method converges much faster in k than the algorithm in [2]

for any of the considered step-size choices (choices of ⌧ ). For example, for the target average relative error

of 0.001, D–NG takes about 500 iterations, while [2] requires about 14, 000 iterations. At the same time,

both algorithms have the same communication cost per k and a similar computational cost per k. Also,

from Figure 4.1, the rate of convergence (the slope of the log-log plot) is approximately 1/k2 with our

method (4.7)–(4.8), while the best rate with [2] (among all considered choices of ⌧ ) is for ⌧ = 1/2 and is

slightly worse than 1/k.
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dis. Nesterov
dis. grad., k=1/(k+1)1/2

dis. grad., k=1/(k+1)1/3

dis. grad., k=1/(k+1)1/10

dis. grad., k=1/(k+1)

Figure 4.1: Acoustic source localization in sensor networks: Relative error averaged across nodes:
1

N f?

PN
i=1

(f(xi)� f?
), f? 6= 0, versus iteration number k in a log

10

� log

10

scale for: 1) algorithm (4.7)–
(4.8) with step size ↵k = 1/(k+1); and 2) algorithm in [2] with ↵k = 1/(k+1)

⌧ , ⌧ 2 {1/10, 1/3, 1/2, 1}.

4.8 Conclusion

In this Chapter, we analyzed our distributed Nesterov-like gradient methods under alternative function

classes, in the following three scenarios. The first two scenarios holds for static networks, while the third

scenario is valid for random networks as well. 1) We analyze D–NG method for unconstrained problems,

109



when the bounded gradients Assumption is replaced with a certain growth condition and show that rates

O(log k/k) and O(logK/K) are still achieved by the D–NG. 2) We analyze projected D–NG method for

constrained optimization and differentiable, coercive costs with Lipschitz continuous gradients. for compact

constraints, we show that the constant step size projected D–NG method converges within ✏ neighborhood

of the optimal cost function in O(1/✏) communications and gradient evaluations per-node. Finally, 3) we

analyze the projected mD–NC method for differentiable costs with Lipschitz continuous gradients, when

the constraint ste is compact, and show O(1/k2) and O(1/K2�xi
) convergence rates.
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Chapter 5

Weight Optimization for Consensus over

Random Networks

5.1 Introduction

In Chapters 2 and 3, we have seen that the consensus algorithm and the products of stochastic matrices

W (k) play an important role in the performance of distributed optimization algorithms like D–NG, D–NC,

and their modifications mD–NG and mD–NC. In particular, the convergence constant of these methods

depends on the inverse spectral gap 1

1�µ , where µ :=

�

kE
⇥

W (k)2
⇤

� Jk
�

1/2. The quantity µ depends

significantly on the weights that nodes assign to their neighbors. In this Chapter, we address the weight

optimization (to minimize µ), when the underlying network is random, with spatially correlated and tem-

porally independent links. For simplicity of presentation, we introduce our results from the perspective of

the consensus algorithm – distributed computation of an average. However, studying the random consensus

dynamics is equivalent to studying the products W (k)W (k � 1)...W (0) of the random stochastic matrices.

Hence, the results from this Chapter are of directed use in distributed optimization algorithms like mD–NG

and mD–NC. We demonstrate this by a simulation example in Section 5.5.

Specifically, we consider the following problem: how to assign the weights Cij with which the nodes

mix their states across the network, so that the convergence of the consensus algorithm is the fastest possible.

This problem has not been solved (with full generality) for consensus in random topologies. We study this

problem for networks with symmetric and asymmetric random links separately, since the properties of the

corresponding algorithm are different. For symmetric links (and connected network topology on average),

the consensus algorithm converges to the average of the initial nodes’ states almost surely. For asymmetric
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random links, all the nodes asymptotically reach agreement, but they only agree to a random variable in the

neighborhood of the true initial average.

We refer to our weight solution as probability-based weights (PBW). PBW are simple and suitable for

distributed implementation: we assume at each iteration that the weight of link (i, j) is Cij (to be optimized),

when the link is alive, or 0, otherwise. Self-weights are adapted such that the row-sums of the weight matrix

at each iteration are one. This is suitable for distributed implementation. Each node updates readily after

receiving messages from its current neighbors. No information about the number of nodes in the network

or the neighbor’s current degrees is needed. Hence, no additional online communication is required for

computing weights, in contrast, for instance, to the case of the Metropolis weights (MW) [65].

Our weight design method assumes that the link occurrence probabilities and their spatial correlations

are known. With randomized protocols, the link occurrence probabilities and their correlations are induced

by the protocol itself, and thus are known. For networks with random link failures, the link occurrence

probabilities relate to the signal to noise ratio at the receiver and can be computed. In [13], the occurrence

probabilities are designed in the presence of link communication costs and an overall network communi-

cation cost budget. When the WSN infrastructure is known, it is possible to estimate the link occurrence

probabilities by measuring the reception rate of a link computed as the ratio between the number of received

and the total number of sent packets. Another possibility is to estimate the link occurrence probabilities

based on the received signal strength. Link occurrence correlations can also be estimated on actual WSNs,

[83]. If there is no training period to characterize quantitatively the links on an actual WSN, we can still

model the probabilities and the correlations as a function of the transmitted power and the inter-sensor

distances. Moreover, several empirical studies ([83, 84] and references therein) on the quantitative proper-

ties of wireless communication in sensor networks have been done that provide models for packet delivery

performance in WSNs.

Contribution. Building our results on the previous extensive studies of convergence conditions and rates

for consensus algorithm, e.g., [1, 80, 13], we address optimization of the weights in consensus algorithms

with correlated random topologies. Our method is applicable to: 1) networks with correlated random link

failures (see, e.g., [13] and 2) networks with randomized algorithms (see, e.g, [10, 1]). We first address the

weight design problem for symmetric random links and then extend the results to asymmetric random links.

With symmetric random links, we use as the optimization criterion the mean squared consensus con-

vergence rate µ2, which we denote here by �(C), thus indicating the dependence on the weights C. We

explicitly express the rate �(C) as a function of the link occurrence probabilities, their correlations, and the

weights. We prove that �(C) is a convex, nonsmooth function of the weights. This enables global optimiza-
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tion of the weights for arbitrary link occurrence probabilities and and arbitrary link correlation structures.

We solve numerically the resulting optimization problem by a subgradient algorithm, showing also that the

optimization computational cost grows tolerably with the network size. We provide insights into weight de-

sign with a simple example of complete random network that admits a closed form solution for the optimal

weights and convergence rate and show how the optimal weights depend on the number of nodes, the link

occurrence probabilities, and their correlations.

We extend our results to the case of asymmetric random links, adopting as an optimization criterion the

mean squared deviation (from the current average state) rate  (C), and show that  (C) is a convex function

of the weights.

We provide simulation experiments to demonstrate the effectiveness of our approach. We provide two

different models of random networks with correlated link failures; in addition, we study the broadcast gossip

algorithm [1], as an example of randomized protocol with asymmetric links. In all cases, simulations confirm

that our method shows significant gain compared to the methods available in the literature. Finally, we

demonstrate by a simulation example with the mD–NG algorithm in Chapter 3 and Huber loss cost functions

that the PBW can significantly improve convergence constant with distributed optimization algorithms.

Related work. Reference [13] studies the tradeoff between the convergence rate and the amount of commu-

nication that takes place in the network. This reference is mainly concerned with the design of the network

topology, i.e., the design of the probabilities of reliable communication {Pij} and the weight ↵ (assuming

all nonzero weights are equal), assuming a communication cost Cij per link and an overall network com-

munication budget. Reference [1] proposes the broadcast gossip algorithm, where at each time step, a single

node, selected at random, broadcasts unidirectionally its state to all the neighbors within its wireless range.

We detail the broadcast gossip in subsection 5.5.2. This reference optimizes the weight for the broadcast

gossip algorithm assuming equal weights for all links.

The problem of optimizing the weights for consensus under a random topology, when the weights for

different links may be different, has not received much attention in the literature. Authors have proposed

weight choices for random or time-varying networks [85, 65], but no claims to optimality are made. Ref-

erence [65] proposes the Metropolis weights (MW), based on the Metropolis-Hastings algorithm for sim-

ulating a Markov chain with uniform equilibrium distribution [86]. The weights choice in [85] is based

on the fastest mixing Markov chain problem studied in [87] and uses the information about the underlying

supergraph. We refer to this weight choice as the supergraph based weights (SGBW).

Summary of the chapter. Section 5.2 describes our model of random networks and the consensus algo-

rithm. Sections 5.3 and 5.4 study the weight optimization for symmetric random graphs and asymmetric
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random graphs, respectively. Section 5.5 demonstrates the effectiveness of our approach with simulations.

Finally, Section 5.6 concludes the chapter. We derive the proofs of some results in Appendices C.

Notation. Symbol RN is the N -dimensional Euclidean space. Inequality x  y is understood element

wise, i.e., it is equivalent to xi  yi, for all i. A sequence of random matrices is denoted by {W (k)}1k=0

and the random matrix indexed by k is denoted W (k). If the distribution of W (k) is the same for any k, we

shorten the notation W (k) to W when the time instant k is not of interest. Symbol RN⇥M denotes the set

of N ⇥M real valued matrices and SN denotes the set of symmetric real valued N ⇥N matrices. The i-th

column of a matrix W is denoted by Wi. Matrix entries are denoted by Wij . Quantities W ⌦ V , W � V ,

and W � V denote the Kronecker product, the Hadamard product, and the direct sum of the matrices W

and V , respectively. Inequality W ⌫ V (W � V ) means that the matrix W � V is positive (negative)

semidefinite. Inequality W � V (W  V ) is understood entry wise, i.e., it is equivalent to Wij � Vij ,

for all i, j. Quantities kWk, �i(W ), and r(W ) denote the matrix 2-norm, the i-th smallest eigenvalue, and

the spectral radius of W , respectively. The identity matrix is I . Given a matrix W , Vec(W ) is the column

vector that stacks the columns of W . For given scalars x
1

, ..., xN , diag (x
1

, ..., xN ) denotes the diagonal

N ⇥ N matrix with the i-th diagonal entry equal to xi. Similarly, diag(x) is the diagonal matrix whose

diagonal entries are the elements of x. The matrix diag (W ) is a diagonal matrix with the diagonal equal to

the diagonal of W . The N -dimensional column vector of ones is denoted by 1. The ideal consensus matrix

J =

1

N 11

>. The i-th canonical unit vector, i.e., the i-th column of I , is denoted by ei. Symbol |S| denotes

the cardinality of a set S.

The result in this Chapter have been published in [46].

5.2 Problem model

This section introduces the random network model that we apply to networks with link failures and to

networks with randomized algorithms. It also introduces the consensus algorithm and the corresponding

weight rule assumed in this chapter.

5.2.1 Random network model: symmetric and asymmetric random links

We consider random networks�networks with random links or with a random protocol. Random links arise

because of packet loss or drop, or when a sensor is activated from sleep mode at a random time. Randomized

protocols like standard pairwise gossip [10] or broadcast gossip [1] activate links randomly. This section

describes the network model that applies to both problems. We assume that the links are up or down (link
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failures) or selected to use (randomized gossip) according to spatially correlated Bernoulli random variables.

To be specific, the network is modeled by a graph G = (V,E), where the set of nodes V has cardinality

|V | = N and the set of directed edges E, with |E| = 2M , collects all possible ordered node pairs that

can communicate, i.e., all realizable links. For example, with geometric graphs, realizable links connect

nodes within their communication radius. The graph G is called supergraph, e.g., [13]. The directed edge

(i, j) 2 E if node j can transmit to node i.

The supergraph G is assumed to be connected and without loops. For the fully connected supergraph,

the number of directed edges (arcs) 2M is equal to N(N � 1). We are interested in sparse supergraphs, i.e.,

the case when M ⌧ 1

2

N(N � 1).

Associated with the graph G is its N ⇥N adjacency matrix A:

Aij =

8

<

:

1 if (i, j) 2 E

0 otherwise

The in-neighborhood set ⌦i (nodes that can transmit to node i) and the in-degree di of a node i are

⌦i = {j : (i, j) 2 E}

di = |⌦i|.

We model the connectivity of a random WSN at time step k by a (possibly) directed random graph G(k) =

(V, E(k)). The random edge set is

E(k) = {(i, j) 2 E : (i, j) is online at time step k} ,

with E(k) ✓ E. The random adjacency matrix associated to G(k) is denoted by A(k) and the random

in-neighborhood for sensor i by ⌦i(k).

We assume that link failures are temporally independent and spatially correlated. That is, we assume

that the random matrices A(k), k = 0, 1, 2, ... are independent identically distributed. The state of the link

(i, j) at a time step k is a Bernoulli random variable, with mean Pij , i.e., Pij is the occurrence probability

of link (i, j). At time step k, different edges (i, j) and (p, q) may be correlated, i.e., the entries Aij(k) and

Apq(k) may be correlated. For the link r, by which node j transmits to node i, and for the link s, by which
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node q transmits to node p, the corresponding cross-variance is

[Rq]rs = E [AijApq]� PijPpq.

5.2.2 Consensus algorithm

We recall the consensus algorithm from Chapter 2. Besides the consensus problem (distributed computation

of an average), the random consensus dynamics plays an important role in the performance of distributed

optimization algorithms like D–NG and D–NC in Chapter 2 and their modifications mD–NG and mD–NC in

Chapter 3. In this Chapter, we present the results mainly in the context of consensus algorithm; Section 5.5

considers a simulation example on distributed optimization via mD–NG.

Let xi(0) represent a scalar measurement or initial data available at sensor i, i = 1, ..., N . Denote by

xavg the average:

xavg =

1

N

N
X

i=1

xi(0).

The consensus algorithm computes xavg iteratively at each sensor i by the distributed weighted average:

xi(k + 1) = Wii(k)xi(k) +
X

j2⌦i(k)

Wij(k)xj(k), k = 0, 1, ... (5.1)

We assume that the random weights Wij(k) at iteration k are given by:

Wij(k) =

8

>

>

>

<

>

>

>

:

Cij if j 2 ⌦i(k)

1�
P

m2⌦i(k)
Wim(k) if i = m

0 otherwise.

(5.2)

In (5.2), the quantities Cij are non random and will be the variables to be optimized in this Chapter. We also

take Cii = 0, for all i. By (5.2), when the link is active, the weight is Cij , and when not active it is zero.

Note that Cij are non zero only for edges (i, j) in the supergraph G. If an edge (i, j) is not in the supergraph

the corresponding Cij = 0 and Wij(k) ⌘ 0.

We write the consensus algorithm in compact form. Let x(k) = (x
1

(k) x
2

(k) ... xN (k))>, W = [Cij ],

W (k) = [Wij(k)]. The random weight matrix W (k) can be written in compact form as

W (k) = C �A(k)� diag (WA(k)) + I (5.3)
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and the consensus algorithm is simply stated with x(k = 0) = x(0) as

x(k + 1) = W (k)x(k), k � 0 (5.4)

To implement the update rule, nodes need to know their random in-neighborhood ⌦i(k) at every iteration.

In practice, nodes determine ⌦i(k) based on who they receive messages from at iteration k.

It is well known [1, 88] that, when the random matrix W (k) is symmetric, the consensus algorithm is

average preserving, i.e., the sum of the states xi(k), and so the average state over time, does not change, even

in the presence of random links. In that case the consensus algorithm converges almost surely to the true

average xavg. When the matrix W (k) is not symmetric, the average state is not preserved in time, and the

state of each node converges to the same random variable with bounded mean squared error from xavg [1].

When the physical communication channels are asymmetric, and the error on the asymptotic consensus

limit c is tolerable, consensus with an asymmetric weight matrix W (k) can be used. An example of such a

protocol is the broadcast gossip algorithm proposed in [1]. Section 5.4 studies this type of algorithms.

Set of possible weight choices: symmetric network. With symmetric random links, we will always

assume Cij = Cji. By doing this we easily achieve the desirable property that W (k) is symmetric. The set

of all possible weight choices for symmetric random links C becomes:

C =

�

C 2 RN⇥N
: Cij = Cji, Cij = 0, if (i, j) /2 E, Cii = 0, 8i

 

(5.5)

Set of possible weight choices: asymmetric network. With asymmetric random links, there is no good

reason to require that Cij = Cji, and thus we drop the restriction Cij = Cji. The set of possible weight

choices in this case becomes:

Casym
=

�

C 2 RN⇥N
: Cij = 0, if (i, j) /2 E, Cii = 0, 8i

 

(5.6)

Depending whether the random network is symmetric or asymmetric, there will be two error quantities that

will play a role. We introduce them here briefly, for reference.

Mean square error (MSE): symmetric network. Define the consensus error vector e(k) and the error

covariance matrix ⌃(k):

e(k) = x(k)� xavg1 (5.7)

⌃(k) = E
h

e(k)e(k)>
i

. (5.8)
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The mean squared consensus error MSE is given by:

MSE(k) =
N
X

i=1

E
h

�

xi(k)� xavg
�

2

i

= E
h

e(k)>e(k)
i

= tr⌃(k). (5.9)

Mean square deviation (MSdev): asymmetric network. As explained, when the random links are asym-

metric (i.e., when W (k) is not symmetric), and if the underlying supergraph is strongly connected, then the

states of all nodes converge to a common value c that is in general a random variable that depends on the

sequence of network realizations and on the initial state x(0) (see [88, 1]). In order to have c = xavg, almost

surely, an additional condition must be satisfied:

1

>W (k) = 1

>, a.s. (5.10)

See [88, 1] for the details. We remark that (5.10) is a crucial assumption in the derivation of the MSE

decay (5.25). Theoretically, equation (5.23) is still valid if the condition W (k) = W (k)> is relaxed to

1

>W (k) = 1

>. While this condition is trivially satisfied for symmetric links and symmetric weights Cij =

Cji, it is very difficult to realize (5.10) in practice when the random links are asymmetric. So, in our work,

we do not assume (5.10) with asymmetric links.

For asymmetric networks, we follow reference [1] and introduce the mean square state deviation MSdev

as a performance measure. Denote the current average of the node states by xavg(k) =
1

N 1

>x(k). Quantity

MSdev describes how far apart different states xi(k) are; it is given by

MSdev(k) =
N
X

i=1

E
⇥

(xi(k)� xavg(k))
2

⇤

= E
h

⇣(k)>⇣(k)
i

,

where

⇣(k) = x(k)� xavg(k)1 = (I � J)x(k). (5.11)

5.2.3 Symmetric links: Statistics of W (k)

In this subsection, we derive closed form expressions for the first and the second order statistics on the

random matrix W (k). Let q(k) be the random vector that collects the non redundant entries of A(k):

ql(k) = Aij(k), i < j, (i, j) 2 E, (5.12)
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where the entries of A(k) are ordered in lexicographic order with respect to i and j, from left to right, top to

bottom. For symmetric links, Aij(k) = Aji(k), so the dimension of q(k) is half of the number of directed

links, i.e., M . We let the mean and the covariance of q(k) and Vec (A(k)) be:

⇡ = E [q(k)] (5.13)

⇡l = E[ql(k)] (5.14)

Rq = Cov(q(k)) = E[ (q(k)� ⇡) (q(k)� ⇡)> ] (5.15)

RA = Cov(Vec(A(k)) ) (5.16)

The relation between Rq and RA can be written as:

RA = FRqF
>. (5.17)

where F 2 RN2⇥M is the zero one selection matrix that linearly maps q(k) to Vec (A(k)), i.e., Vec (A(k)) =

Fq(k). We introduce further notation. Let P be the matrix of the link occurrence probabilities

P = [Pij ] .

Define the matrix B 2 RN2⇥N2 with N ⇥N zero diagonal blocks and N ⇥N off diagonal blocks Bij equal

to:

Bij = 1ei
>
+ ej1

>.

and write C in terms of its columns C = [C
1

C
2

... CN ]. We let

bC = C
1

� C
2

� ...� CN .

For symmetric random networks, the mean of the random weight matrix W (k) and of W 2

(k) play an

important role for the convergence rate of the consensus algorithm. Using the above notation, we can get

compact representations for these quantities, as provided in Lemma 1 proved in Appendix C.

Lemma 5.1 Consider the consensus algorithm (5.4). Then the mean and the second moment R
corr

of W
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defined below are:

W = E [W ] = C � P + I � diag (CP ) (5.18)

R
corr

= E
⇥

W 2

⇤

�W
2

(5.19)

=

bC>
n

RA � ( I ⌦ 11

>
+ 11

> ⌦ I �B)

o

bC (5.20)

In the special case of spatially uncorrelated links, the second moment R
corr

of W are

1

2

R
corr

= diag

n⇣⇣

11

> � P
⌘

� P
⌘

(C � C)

o

�
⇣

11

> � P
⌘

� P � C � C. (5.21)

For asymmetric random links, the expression for the mean of the random weight matrix W (k) remains

the same (as in Lemma 1). For asymmetric random links, instead of E
⇥

W 2

⇤

� J , the quantity of inter-

est becomes E
⇥

W>
(I � J)W

⇤

(The quantity of interest is different since the optimization criterion will

be different.) For symmetric links, the matrix E
⇥

W 2

⇤

� J is a quadratic matrix function of the weights

Cij ; it depends also quadratically on the Pij’s and is an affine function of [Rq]ij’s. The same will still

hold for E
⇥

W>
(I � J)W

⇤

in the case of asymmetric random links. The difference, however, is that

E
⇥

W>
(I � J)W

⇤

does not admit the compact representation as given in (5.19), and we do not pursue

here cumbersome entry wise representations. In the Appendix C, we do present the expressions for the

matrix E
⇥

W>
(I � J)W (k)

⇤

for the broadcast gossip algorithm [1] (that we study in subsection 5.5.2).

5.3 Weight optimization: symmetric random links

5.3.1 Optimization criterion: Mean square convergence rate

We are interested in finding the rate at which MSE(k) decays to zero and to optimize this rate with respect

to the weights C. First we derive the recursion for the error e(k). We have from (5.4):

1

>x(k + 1) = 1

>W (k)x(k) = 1

>x(k) = 1

>x(0) = N xavg

1

>e(k) = 1

>x(k)� 1

>
1xavg = N xavg �N xavg = 0

We derive the error vector dynamics:

e(k + 1) = x(k + 1)� xavg 1 = W (k)x(k)�W (k)xavg 1 = W (k)e(k) = (W (k)� J) e(k) (5.22)
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where the last equality holds because Je(k) = 1

N 11

>e(k) = 0.

Recall the definition of the mean squared consensus error (5.9) and the error covariance matrix in (5.8)

and recall that MSE(k) = tr⌃(k) = E
⇥

e(k)e(k)>
⇤

. Introduce the quantity

�(C) = �N
�

E[W 2

]� J
�

. (5.23)

The quantity � = �(C) is precisely the square of the quantity µ in Chapter 3. The next Lemma shows that

the mean squared error decays at the rate �(C).

Lemma 5.2 (m.s.s convergence rate) Consider the consensus algorithm given by (5.4). Then:

tr (⌃(k + 1)) = tr

��

E[W 2

]� J
�

⌃(k)
�

(5.24)

tr (⌃(k + 1))  (�(C)) tr (⌃(k)) , k � 0. (5.25)

From the definition of the covariance ⌃(k+ 1), using the dynamics of the error e(k+ 1), interchanging

expectation with the tr operator, using properties of the trace, interchanging the expectation with the tr

once again, using the independence of e(k) and W (k), and, finally, noting that W (k)J = J , we get (5.24).

The independence between e(k) and W (k) follows because W (k) is an i.i.d. sequence, and e(k) depends

on W (0),..., W (k � 1). Then e(k) and W (k) are independent by the disjoint block theorem [89]. Hav-

ing (5.24), (5.25) can be easily shown, for example, by exercise 18, page 423, [90].

We remark that, in the case of asymmetric random links, MSE does not asymptotically go to zero. For

the case of asymmetric links, we use different performance metric. This will be detailed in section 5.4.

5.3.2 Symmetric links: Weight optimization problem formulation

We now formulate the weight optimization problem as finding the weights Cij that optimize the mean

squared rate of convergence:

minimize �(C)

subject to W 2 C.
(5.26)

The set C is defined in (5.6) and the rate �(C) is given by (5.23). The optimization problem (5.26) is

unconstrained, since effectively the optimization variables are Cij 2 R, (i, j) 2 E, other entries of C being

zero.

A point C• 2 C such that �(C•
) < 1 will always exist if the supergraph G is connected. Reference [80]

studies the case when the random matrices W (k) are stochastic and shows that �(C•
) < 1 if the supergraph
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is connected and all the realizations of the random matrix W (k) are stochastic symmetric matrices. Thus,

to locate a point C• 2 C such that �(C•
) < 1, we just take C• that assures all the realizations of W be

symmetric stochastic matrices. It is trivial to show that for any point in the set

S
stoch

= {C 2 C : Cij > 0, if (i, j) 2 E, W1 < 1} ✓ C (5.27)

all the realizations of W (k) are stochastic, symmetric. Thus, for any point C• 2 S
stoch

, we have that

�(C•
) < 1 if G is connected.

We remark that the optimum C? does not have to lie in the set S
stoch

. In general, C? lies in the set

S
conv

= {C 2 C : �(C) < 1} ✓ C (5.28)

The set S
stoch

is a proper subset of S
conv

(If W 2 S
stoch

then �(C) < 1, but the converse statement is not

true in general.) We also remark that the consensus algorithm (5.4) converges almost surely if �(C) < 1

(not only in mean squared sense). This can be shown, for instance, by the technique developed in [80].

We now relate (5.26) to reference [91]. This reference studies the weight optimization for the case

of a static topology. In this case the topology is deterministic, described by the supergraph G. The link

occurrence probability matrix P reduces to the supergraph adjacency (zero-one) matrix A, since the links

occur always if they are realizable. Also, the link covariance matrix Rq becomes zero. The weight matrix

W is deterministic and equal to

W = W = diag (CA)� C �A+ I

Recall that r(X) denotes the spectral radius of X . Then, the quantities (r (W � J))2 and � (W ) coin-

cide. Thus, for the case of static topology, the optimization problem (5.26) that we address reduces to the

optimization problem proposed in [91].

5.3.3 Convexity of the weight optimization problem

We show that � : C ! R
+

is convex, where C is defined in (5.6) and �(C) by (5.23).

Lemma 5.1 gives the closed form expression of E
⇥

W 2

⇤

. We see that �(C) is the concatenation of

a quadratic matrix function and �N (·). This concatenation is not convex in general. However, the next

Lemma shows that �(C) is convex for our problem.
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Lemma 5.3 (Convexity of �(C)) The function � : C ! R
+

is convex.

Choose arbitrary X, Y 2 C. We restrict our attention to matrices C of the form

C = X + t Y, t 2 R. (5.29)

Recall the expression for W given by (5.2) and (5.4). For the matrix C given by (5.29), we have for

W = W (t)

W (t) = I � diag [(X + tY ) A] + (X + tY )�A (5.30)

= X + tY, X = X �A+ I � diag (XA) , Y = Y �A� diag (XA) .

Introduce the auxiliary function ⌘ : R! R
+

,

⌘(t) = �N
�

E
⇥

W (t)2
⇤

� J
�

. (5.31)

To prove that �(C) is convex, it suffices to prove that the function � is convex. Introduce Z(t) and compute

successively

Z(t) = W (t)2 � J (5.32)

= (X + tY)

2 � J (5.33)

= t2 Y2

+ t (XY + YX ) + X 2 � J (5.34)

= t2Z
2

+ tZ
1

+ Z
0

. (5.35)

The random matrices Z
2

, Z
1

, and Z
0

do not depend on t. Also, Z
2

is semidefinite positive. The function

⌘(t) can be expressed as

⌘(t) = �N (E [Z(t)]) .

We will now derive that

Z ((1� ↵)t+ ↵u) � (1� ↵)Z(t) + ↵Z (u) , 8↵ 2 [0, 1] , 8t, u 2 R. (5.36)

Since ⌘(t) = t2 is convex, the following inequality holds:

[(1� ↵)t+ ↵u]2  (1� ↵)t2 + ↵u2, ↵ 2 [0, 1] . (5.37)
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Since the matrix Z
2

is positive semidefinite, (5.37) implies that:

⇣

((1� ↵)t+ ↵u)2
⌘

Z
2

� (1� ↵) t2Z
2

+ ↵u2Z
2

, ↵ 2 [0, 1]

After adding to both sides ((1� ↵)t+ ↵u) Z
1

+ Z
0

, we get (5.36). Taking the expectation to both sides

of (5.36), get:

E [Z ((1� ↵)t+ ↵u) ] � E [ (1� ↵)Z(t) + ↵Z (u) ]

= (1� ↵)E [Z (t) ] + ↵E [Z (u) ] , ↵ 2 [0, 1] .

Now, we have that:

⌘ ((1� ↵)t+ ↵u) = �N (E [Z ((1� ↵)t+ ↵u)] )

 �N ( (1� ↵)E [Z(t)] + ↵E [Z (u)] )

 (1� ↵)�N (E [Z(t)] ) + ↵�N (E [Z (u)] )

= (1� ↵) ⌘(t) + ↵ ⌘(u), ↵ 2 [0, 1] .

The last inequality holds since �N (·) is convex. This implies ⌘(t) is convex and hence �(C) is convex.

5.3.4 Fully connected random network: Closed form solution

To get some insight how the optimal weights depend on the network parameters, we consider the impracti-

cal, but simple geometry of a complete random symmetric graph. For this example, the optimization prob-

lem (5.26) admits a closed form solution, while, in general, numerical optimization is needed to solve (5.26).

Although not practical, this example provides insight how the optimal weights depend on the network size

N , the link occurrence probabilities, and the link occurrence spatial correlations. The supergraph is sym-

metric, fully connected, with N nodes and M = N(N � 1)/2 undirected links. We assume that all the

links have the same occurrence probability, i.e., that P (ql = 1) = ⇡l = p, p 2 (0, 1], l = 1, ...,M . We

assume that the cross-variance between any pair of links i and j equals to [Rq]ij = � p(1 � p), where � is

the correlation coefficient. The matrix Rq is given by

Rq = p(1� p)
h

(1� �)I + � 11>
i

.
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The eigenvalues of Rq are �N (Rq) = p(1 � p) (1 + (M � 1)�), and �i(Rq) = p(1 � p) (1� �) � 0,

i = 2, ...,M . The condition that Rq ⌫ 0 implies that � � �1/(M � 1). Also, we have that

� :=

E [qiqj ]� E [qi]E [qj ]
p

Var(qi)
p

Var(qj)
(5.38)

=

P (qi = 1, qj = 1)� p2

p(1� p)
� � p

1� p
. (5.39)

Thus, the range of � is restricted to

max

✓

�1
M � 1

,
�p
1� p

◆

 �  1. (5.40)

Due to the problem symmetry, the optimal weights for all links are the same, say C?. The expressions for

the optimal weight C? and for the optimal convergence rate �? can be obtained after careful manipulations

and expressing the matrix E
⇥

W 2

⇤

� J explicitly in terms of p and �; then, it is easy to show that:

C?
=

1

Np+ (1� p) (2 + �(N � 2))

(5.41)

�? = 1� 1

1 +

1�p
p

�

2

N (1� �) + �
� . (5.42)

The optimal weight C? decreases as � increases. This is intuitive, since positive correlations imply

that the links emanating from the same node tend to occur simultaneously, and thus the weight should be

smaller. Similarly, negative correlations imply that the links emanating from the same node tend to occur

exclusively, which results in larger weights. Finally, we observe that in the uncorrelated case (� = 0), as

N becomes very large, the optimal weight behaves as 1/(Np). Thus, for the uncorrelated links and large

network, the optimal strategy (at least for this example) is to rescale the supergraph-optimal weight 1/N by

its occurrence probability p. Finally, for fixed p and N , the fastest rate is achieved when � is as negative as

possible.

5.3.5 Numerical optimization: subgradient algorithm

We solve the optimization problem in (5.26) for generic networks by the subgradient algorithm, [92]. In this

subsection, we consider spatially uncorrelated links, and we comment on extensions for spatially correlated

links. Expressions for spatially correlated links are provided in Appendix C.

We recall that the function �(W ) is convex (proved in Section 5.3.3). It is nonsmooth because �N (·)

is nonsmooth. Let H 2 SN be the subgradient of the function �(C). To derive the expression for the
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subgradient of �(C), we use the variational interpretation of �(C):

�(C) = max

v>v=1

v>
�

E
⇥

W 2

⇤

� J
�

v = max

v>v=1

fv(C). (5.43)

By the subgradient calculus, a subgradient of �(C) at point C is equal to a subgradient Hu of the function

fu(C) for which the maximum of the optimization problem (5.43) is attained, see, e.g., [92]. The maximum

of fv(C) (with respect to v) is attained at v = u, where u is the eigenvector of the matrix E
⇥

W 2

⇤

� J

that corresponds to its maximal eigenvalue, i.e., the maximal eigenvector. In our case, the function fu(C) is

differentiable (quadratic function), and hence the subgradient of fu(C) (and also the subgradient of �(C))

is equal to the gradient of fu(C), [92]:

Hij =

8

<

:

u>
@
(

E
[

W 2

]

�J
)

@Cij
u if (i, j) 2 E

0 otherwise.
(5.44)

We compute for (i, j) 2 E

Hij = u>
@
⇣

W
2

� J +R
corr

⌘

@Cij
u (5.45)

= u>
⇣

�2W Pij(ei � ej)(ei � ej)
>
+ 4Cij Pij(1� Pij)(ei � ej)(ei � ej)

>
⌘

u

= 2Pij(ui � uj)u
>
(W j �W i) + 4Pij(1� Pij)Cij(ui � uj)

2 (5.46)

The subgradient algorithm is given by Algorithm 4. The stepsize ↵k is nonnegative, diminishing, and

Algorithm 4 Subgradient algorithm
Set initial W (1) 2 C
Set k = 1

Repeat
Compute a subgradient H(k) of � at W (k), and set W (k+1)

= W (k) � ↵kH(k)

k := k + 1

nonsummable: limk!1↵k = 0,
P1

k=1

↵k =1. We choose ↵k =

1p
k

, k = 1, 2, ...

5.4 Weight optimization: asymmetric random links

We now address the weight optimization for asymmetric random networks. Subsections 5.4.1 and V-B intro-

duce the optimization criterion and the corresponding weight optimization problem, respectively. Subsection

V-C shows that this optimization problem is convex.
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5.4.1 Optimization criterion: Mean square deviation convergence rate

Introduce now

 (C) := �N
⇣

E
h

W>
(I � J)W

i⌘

. (5.47)

Reference [1] shows that the mean square deviation MSdev satisfies the following equation:

MSdev(k + 1)   (C)MSdev(k), 8k � 0. (5.48)

Thus, if the quantity  (C) is strictly less than one, then MSdev converges to zero asymptotically, with the

worst case rate equal to  (C). We remark that the condition (5.10) is not needed for (5.48) to hold, i.e.,

MSdev converges to zero even if condition (5.10) is not satisfied; this condition is needed only for (5.25) to

hold, i.e., only to have MSE to converge to zero.

5.4.2 Asymmetric network: Weight optimization problem formulation

In the case of asymmetric links, we optimize the mean square deviation convergence rate, i.e., we solve the

following optimization problem:

minimize  (C)

subject to W 2 Casym

PN
i=1

PijCij = 1, i = 1, ..., N

(5.49)

The constraints in the optimization problem (5.49) assure that, in expectation, condition (5.10) is satisfied,

i.e., that

1

> E [W ] = 1

>. (5.50)

If (5.50) is satisfied, then the consensus algorithm converges to the true average xavg in expectation [1].

Equation (5.50) is a linear constraint with respect to the weights Cij , and thus does not violate the

convexity of the optimization problem (5.49). We emphasize that in the case of asymmetric links, we do

not assume the weights Cij and Cji to be equal. In section 5.5.2, we show that allowing Cij and Cji to be

different leads to better solutions in the case of asymmetric networks.
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5.4.3 Convexity of the weight optimization problem

We show that the function  (C) is convex. We remark that reference [1] shows that the function is convex,

when all the weights Cij are equal to g. We show here that this function is convex even when the weights

are different.

Lemma 5.4 (Convexity of  (C)) The function � : Casym ! R
+

is convex.

The proof is very similar to the proof of Lemma 5.3. The proof starts with introducing C as in (5.29)

and with introducing W (t) as in (5.30). The difference is that, instead of considering the matrix W 2�J , we

consider now the matrix W>
(I � J)W . In the proof of Lemma 5.3, we introduced the auxiliary function

⌘(t) given by (5.31); here, we introduce the auxiliary function (t), given by:

(t) = �N
⇣

W (t)>(I � J)W (t)
⌘

, (5.51)

and show that  (C) is convex by proving that (t) is convex. Then, we proceed as in the proof of

Lemma 5.3. In (5.35) the matrix Z
2

becomes Z
2

:= Y>
(I � J)Y . The random matrix Z

2

is obviously

positive semidefinite. The proof then proceeds as in Lemma 5.3.

5.5 Simulations

We demonstrate the effectiveness of our approach with a comprehensive set of simulations. These simu-

lations cover both examples of asymmetric and symmetric networks and both networks with random link

failures and with randomized protocols. In particular, we consider the following two standard sets of exper-

iments with random networks: 1) spatially correlated link failures and symmetric links and 2) randomized

protocols, in particular, the broadcast gossip algorithm [1]. With respect to the first set, we consider cor-

related link failures with two types of correlation structure. We are particularly interested in studying the

dependence of the performance and of the gains on the size of the network N and on the link correlation

structure.

In all these experiments, we consider geometric random graphs. Nodes communicate among themselves

if within their radius of communication, r. The nodes are uniformly distributed on a unit square. The number

of nodes is N = 100 and the average degree is 15%N (= average number of neighbors across all nodes.) In

subsection 5.5.1, the random instantiations of the networks are undirected; in subsection VI-B, the random

instantiations of the networks are directed.

128



In the first set of experiments with correlated link failures, the link occurrence probabilities Pij are

chosen such that they decay quadratically with the distance:

Pij = 1� k

✓

�ij
r

◆

2

, (5.52)

where we choose k = 0.7. We see that, with (5.52), a link will be active with high probability if the nodes

are close (�ij ' 0), while the link will be down with probability at most 0.7, if the nodes are apart by r.

We recall that we refer to our weight design, i.e., to the solutions of the weight optimization prob-

lems (5.26), (5.49), as probability based weights (PBW). We study the performance of PBW, comparing

it with the standard weight choices available in the literature: in subsection 5.5.1, we compare it with the

Metropolis weights (MW), discussed in [91], and the supergraph based weights (SGBW). The SGBW are

the optimal (nonnegative) weights designed for a static (nonrandom) graph G, which are then applied to a

random network when the underlying supergraph is G. This is the strategy used in [85]. For asymmetric

links (and for asymmetric weights Cij 6= Cji), in subsection 5.5.2, we compare PBW with the optimal

weight choice in [1] for broadcast gossip that considers all the weights to be equal.

In the first set of experiments in subsection 5.5.1, we quantify the performance gain of PBW over SGBW

and MW by the gains:

�

⌧
s =

⌧
SGBW

⌧
PBW

(5.53)

where ⌧ is a time constant defined as:

⌧ =

1

0.5 ln�(C)

(5.54)

We also compare PBW with SGBW and MW with the following measure:

�

⌘
s =

⌘
SGBW

⌘
PBW

(5.55)

�

⌘
m =

⌘
MW

⌘
PBW

(5.56)

where ⌘ is the asymptotic time constant defined by

⌘ =

1

|�| (5.57)

� = lim

k!1

✓

ke(k)k
ke(0)k

◆

1/k

(5.58)

For random networks ⌘ is an almost sure constant and ⌧ is an upper bound on ⌘, [85].
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Subsections 5.5.1 and 5.5.2 will provide further details on the expermints.

5.5.1 Symmetric links: random networks with correlated link failures

To completely define the probability distribution of the random link vector q 2 RM , we must assign prob-

ability to each of the 2

M possible realizations of q, q = (↵
1

, ...,↵M )

>, ↵i 2 {0, 1}. Since in networks of

practical interest M may be very large, of order 1000 or larger, specifying the complete distribution of the

vector q is most likely infeasible. Hence, we work with the second moment description and specify only

the first two moments of its distribution, the mean and the covariance, ⇡ and Rq. Without loss of generality,

order the links so that ⇡
1

 ⇡
2

 ...  ⇡M .

Lemma 5.5 The mean and the variance (⇡, Rq) of a Bernoulli random vector satisfy:

0  ⇡i  1, i = 1, ..., N (5.59)

Rq ⌫ 0 (5.60)

max (�⇡i⇡j , ⇡i + ⇡j � 1� ⇡i ⇡j)  [Rq]ij  ⇡i (1� ⇡j) = Rij , i < j (5.61)

Equations (5.59) and (5.60) must hold because ⇡l’s are probabilities and Rq is a covariance matrix.

Recall that

[Rq]ij = E [qiqj ]� E [qi]E [qj ] = P (qi = 1, qj = 1)� ⇡i⇡j . (5.62)

To prove the lower bound in (5.61), observe that:

P (qi = 1, qj = 1) = P (qi = 1) + P (qj = 1)� P ({qi = 1} or {qj = 1})

= ⇡i + ⇡j � P ({qi = 1} or {qj = 1}) � ⇡i + ⇡j � 1. (5.63)

In view of the fact that P (qi = 1, qj = 1) � 0, (5.63), and (5.62), the proof for the lower bound in (5.61)

follows. The upper bound in (5.61) holds because P (qi = 1, qj = 1)  ⇡i, i < j and (5.62).

If we choose a pair (⇡, Rq) that satisfies (5.59), (5.60), (5.61), one cannot guarantee that (⇡, Rq) is a

valid pair, in the sense that there exists a probability distribution on q with its first and second moments

being equal to (⇡, Rq), [93]. Furthermore, if (⇡, Rq) is given, to simulate binary random variables with the

marginal probabilities and correlations equal to (⇡, Rq) is challenging. These questions have been studied,

see [94, 93]. We use the results in [94, 93] to generate our correlation models. In particular, we use the

result that R =

⇥

Rij
⇤

(see (5.61)) is a valid correlation structure for any ⇡, [94]. We simulate the correlated
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links by the method proposed in [93]; this method handles a wide range of different correlation structures

and has a small computational cost.

Link correlation structures. We consider two different correlation structures for any pair of links i and j

in the supergraph:

[Rq]ij = c
1

Rij (5.64)

[Rq]ij = c
2

✓ij Rij (5.65)

where c
1

2 (0, 1], ✓ 2 (0, 1) and c
2

2 (0, 1] are parameters, and ij is the distance between links i and j

defined as the length of the shortest path that connects them in the supergraph.

The correlation structure (5.64) assumes that the correlation between any pair of links is a fraction of the

maximal possible correlation, for the given ⇡ (see (5.61) to recall Rij). Reference [94] constructs a method

for generating the correlation structure (5.64).

The correlation structure (5.65) assumes that the correlation between the links decays geometrically

with this distance . In our simulations, we set ✓ = 0.95, and find the maximal c
2

, such that the resulting

correlation structure can be simulated by the method in [93]. For all the networks that we simulated in the

chapter, c
2

is between 0.09 and 0.11.

Results. We want to address the following two questions: 1) What is the performance gain (�s, �m of PBW

over SGBW and MW; and 2) How does this gain scale with the network size, i.e., the number of nodes N?

Performance gain of PBW over SGBW and MW. We consider question 1) for both correlation struc-

tures (5.64), (5.65). We generate 20 instantiations of our standard supergraphs (with 100 nodes each and

approximately the same average relative degree, equal to 15%). Then, for each supergraph, we generate

occurrence probabilities according to rule (5.52). For each supergraph with the given occurrence probabil-

ities, we generate two link correlation structures, (5.64) and (5.65). We evaluate the convergence rate �j

given by (5.25), time constants ⌘j given by (5.57), and ⌧j , given by (5.54), and the performance gains [�⌘s ]j ,

[�

⌘
m]j for each supergraph (j = 1, ..., 20). We compute the mean �, the maximum �+ and the minimum ��

from the list {�j}, j = 1, ..., 20 (and similarly for {⌘j} and {⌧j}, j = 1, ..., 20). Results for the correlation

structure (5.64) are given in Table 5.1 and for the correlation structure (5.65), in Table 5.2. The performance

gains �s, �m, for both correlation structures are in Table 5.3. In addition, Figure 5.1 depicts the averaged

error norm over 100 sample paths. We can see that the PBW show better performance than the SGBW and

the MW for both correlation structures (5.64) and (5.65). For example, for the correlation (5.64), the PBW

take less than 40 iterations to achieve 0.2% precision, while the SGBW take more than 70, and the MW take
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Table 5.1: Correlation structure (5.64): Average (·), maximal (·)+, and minimal (·)� values of the MSE convergence
rate � (5.23), and corresponding time constants ⌧ (5.54) and ⌘ (5.57), for 20 generated supergraphs

SGBW PBW MW

� 0.91 0.87
�+ 0.95 0.92
�� 0.89 0.83
⌧ 22.7 15.4
⌧+ 28 19
⌧� 20 14
⌘ 20 13 29
⌘+ 25 16 38
⌘� 19 12 27

more than 80 iterations. For correlation (5.65), to achieve 0.2% precision, the PBW take about 47 iterations,

while the SGBW and the MW take more than 90 and 100 iterations, respectively. The average performance

0 20 40 60 80 10010-6

10-5

10-4

10-3

10-2

10-1

100

iteration number

av
er

ag
e 

er
ro

r n
or

m

 

 

SGBW
PBW
MW

0 20 40 60 80 100

10-5

10-4

10-3

10-2

10-1

100

iteration number

av
er

ag
e 

er
ro

r n
or

m

 

 

SGBW
PBW
MW

Figure 5.1: Average error norm versus iteration number. Left: correlation structure (5.64); right: correlation
structure (5.65).

gain of PBW over MW is larger than the performance gain over SGBW, for both (5.64) and (5.65). The gain

over SGBW, �s, is significant, being 1.54 for (5.64) and 1.73 for (5.65). The gain with the correlation

structure (5.65) is larger than the gain with (5.64), suggesting that larger gain over SGBW is achieved with

smaller correlations. This is intuitive, since large positive correlations imply that the random links tend to

occur simultaneously, i.e., in a certain sense random network realizations are more similar to the underlying

supergraph.

Notice that the networks with Rq as in (5.65) achieve faster rate than for (5.64) (having at the same

time similar supergraphs and occurrence probabilities). This is in accordance with the analytical studies in

section 5.3.4 that suggest that faster rates can be achieved for smaller (or negative correlations) if G and ⇡

are fixed.
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Table 5.2: Correlation structure (5.65): Average (·), maximal (·)+, and minimal (·)� values of the MSE convergence
rate � (5.23), and corresponding time constants ⌧ (5.54) and ⌘ (5.57), for 20 generated supergraphs

SGBW PBW MW

� 0.92 0.86
�+ 0.94 0.90
�� 0.91 0.84
⌧ 25.5 14.3
⌧+ 34 19
⌧� 21 12
⌘ 20 11.5 24.4
⌘+ 23 14 29
⌘� 16 9 19

Table 5.3: Average (·), maximal (·)+, and minimal (·)� performance gains �⌘s and �⌘m (5.55) for the two correlation
structures (5.64) and (5.65) for 20 generated supergraphs

Correlation (5.64) Correlation (5.65)

(�

⌘
s) 1.54 1.73

(�

⌘
s)

+ 1.66 1.91
(�

⌘
s)

� 1.46 1.58
(�

eta
m ) 2.22 2.11

(�

⌘
m)

+ 2.42 2.45
(�

⌘
m)

� 2.07 1.92

Performance gain of PBW over SGBW as a function of the network size. To answer question 2), we

generate the supergraphs with N ranging from 30 up to 160, keeping the average relative degree of the

supergraph approximately the same (15%). Again, PBW performs better than MW (⌧
SGBW

< 0.85⌧
MW

),

so we focus on the dependence of �s on N , since it is more critical.

Figure 5.2 plots �s versus N , for the two correlation structures. The gain �s increases with N for

both (5.65) and (5.64).

5.5.2 Broadcast gossip algorithm [1]: Asymmetric random links

In the previous section, we demonstrated the effectiveness of our approach in networks with random sym-

metric link failures. This section demonstrates the validity of our approach in randomized protocols with

asymmetric links. We study the broadcast gossip algorithm [1]. Although the optimization problem (5.49)

is convex for generic spatially correlated directed random links, we pursue here numerical optimization of

the broadcast gossip algorithm proposed in [1], where, at each time step, node i is selected at random, with

probability 1/N . Node i then broadcasts its state to all its neighbors within its wireless range. The neighbors

then update their state by performing the weighted average of the received state with their own state. The

nodes outside the set ⌦i and the node i itself keep their previous state unchanged. The broadcast gossip
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Figure 5.2: Performance gain of PBW over SGBW (�⌘s , (5.55)) as a function of the number of nodes in the
network.

algorithm is well suited for WSN applications, since it exploits the broadcast nature of wireless media and

avoids bidirectional communication [1].

Reference [1] shows that, in broadcast gossiping, all the nodes converge a.s. to a common random value

c with mean xavg and bounded mean squared error. Reference [1] studies the case when the weights Cij = g,

8(i, j) 2 E and finds the optimal g = g? that optimizes the mean square deviation MSdev (see (5.49)). We

optimize the same objective function (see (5.49)) as in [1], but allowing different weights for different

directed links. We detail on the numerical optimization for the broadcast gossip in the Appendix C. We

consider again the supergraph G from our standard experiment with N = 100 and average degree 15%N .

For the broadcast gossip, we compare the performance of PBW with 1) the optimal equal weights in [1]

with Cij = g?, (i, j) 2 E; 2) broadcast gossip with Cij = 0.5, (i, j) 2 E.

Figure 5.3 (left) plots the consensus mean square deviation MSdev for the 3 different weight choices.

The decay of MSdev is much faster for the PBW than for Cij = 0.5, 8 (i, j) and Cij = g?, 8 (i, j).

For example, the MSdev falls below 10% after 260 iterations for PBW (i.e., 260 broadcast transmissions);

broadcast gossip with Cij = g? and Cij = 0.5 take 420 transmissions to achieve the same precision. This

is to be expected, since PBW has many moredegrees of freedom for to optimize than the broadcast gossip

in [1] with all equal weights Cij = g?. Figure 5.3 (right) plots the MSE, i.e., the deviation of the true

average xavg, for the three weight choices. PBW shows faster decay of MSE than the broadcast gossip with

Cij = g? and Cij = 0.5. The weights provided by PBW are different among themselves, varying from 0.3

to 0.95. The weights Cij and Cji are also different, where the maximal difference between Cij and Cji,

(i, j) 2 E, is 0.6. Thus, in the case of directed random networks, asymmetric matrix C results in faster

convergence rate.
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Figure 5.3: Broadcast gossip algorithm with different weight choices. Left: total variance; right: total mean
squared error.

5.5.3 Distributed optimization of Huber losses via D–NG algorithm
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Figure 5.4: Average normalized optimality gap errf versus K0 (in the log

10

� log

10

scale) for the N = 20-
node network and mD–NG method with different weight assignments; Red, solid line: optimized, PBW
weights; black, dotted line: Cij = 1/N , 8{i, j} 2 E.

We have seen in Chapter 3 that the convergence constant of our distributed optimization algorithms, e.g.,

mD–NG, depends on the mean square convergence rate, �(C) = µ2 through the inverse spectral gap 1

1�µ .

We provide here a simulation example to show that PBW significantly reduce the number of communications

and gradient evaluations to achieve a certain accuracy.

We simulate mD–NG on a N = 20-node random network. We compare the mD–NG’s performance

with: 1) the uniform weights Cij = 1/N ; and 2) the PBW weights. Clearly, the optimized weights corre-

spond to a smaller (better) parameter µ. The supergraph G has N = 20 nodes and 91 links; it is generated

as a geometric graph (as in the previous simulation), with a connectivity radius �
0

= 0.55. (Only the nodes
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whose distance is less or equal �
0

are connected by an edge.) The links {i, j} 2 E are spatio-temporally

independent, and the link failure probabilities are generated as: Pij = 0.5⇥ �2ij
�2
0

. We consider Huber losses

fi’s, with: 1) for i = 1, 2, ..., 7, ✓i = ✓•(1 + ⌫i); and 2) for j = 8, 9, ..., 20, ✓j = (�✓•)(1 + ⌫j). Here

✓• = 4 and ⌫i’s and ⌫j’s are generated randomly from the uniform distribution on [�0.1, 0.1]. We generate

one random simulation run and compare the two weight choices. Figure 4.4 plots errf versus K0 for the

two weight choices. First, we can see that the weight optimization does not affect the convergence rate (the

slopes of the two lines match), but it improves the convergence constant. This is in accordance with the

established upper bounds in Theorem 3.8. Second, the optimized weights significantly reduce the commu-

nication cost for higher accuracies. For example, for the precision 10

�4, the method with the optimized

weights requires about 1.12 ⇥ 10

4 transmissions, while the method with uniform weights requires about

3.15⇥ 10

4 transmissions for the same accuracy.

5.6 Conclusion

In this chapter, we studied the optimization of the weights for the consensus algorithm under random topol-

ogy and spatially correlated links. We consider both networks with random link failures and randomized

algorithms; from the weights optimization point of view, both fit into the same framework. We show that,

for symmetric random links, optimizing the MSE convergence rate is a convex optimization problem, and

for asymmetric links, optimizing the mean squared deviation from the current average state is also a con-

vex optimization problem. We illustrate with simulations the performance of our probability based weights

(PBW) and compare them with existing weight assignments, both for distributed averaging and distributed

optimization problems.
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Chapter 6

Distributed Augmented Lagrangian

Methods: General Problems

6.1 Introduction

In this Chapter, we develop distributed augmented Lagrangian (AL) algorithms of type (1.6)–(1.7) that

utilize asynchronous communication. We assume a very general distributed optimization model

minimize
PN

i=1

fi(x)

subject to x 2 Xi, i = 1, ..., N
. (6.1)

Here N is the number of nodes in the network, the private cost functions fi : Rd ! R are convex, and each

fi(·) is known locally only by node i. The sets Xi are private, closed, convex constraint sets. We remark

that (6.1) captures the scenario when, in addition to private constraints, there is a public constraint x 2 X

(where X is a closed, convex set,) by replacing Xi with Xi \X .

This chapter proposes a novel augmented Lagrangian (AL) dual distributed algorithm for solving (6.1),

which handles private costs fi(·), private constraints Xi, and is resilient to random communication failures.

We refer to this algorithm as AL–G (augmented Lagrangian gossiping.) We also consider two variants to

AL–G, namely, the AL–MG (augmented Lagrangian multiple neighbor gossiping) and the AL–BG (aug-

mented Lagrangian broadcast gossiping.) The AL–G and AL–MG algorithms use unidirectional gossip

communication (see, e.g., [10]). For networks with reliable communication (i.e., no failures,) we propose

the simplified AL–BG algorithm with reduced communication, reduced computation, and lower data storage

cost. Our algorithms update the dual variables by the standard method of multipliers, [15], synchronously,
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at a slow time scale, and update the primal variables with a novel, Gauss-Seidel type (see, e.g., [37]) ran-

domized algorithm with asynchronous gossip communication, at a fast time scale. Proof of convergence for

the method of multipliers (for the dual variables update) is available in the literature, e.g., [15]. However,

our algorithms to update primal variables (referred to as P–AL–G (primal AL gossip), P–AL–MG and P–

AL–BG) are novel; a major contribution of this chapter is to prove convergence of the P–AL–G, for private

constraints, under very generic network topologies, random link failures, and gossip communication. The

proof is then adapted to P–AL–MG and P–AL–BG.

We provide two simulation examples, namely, l
1

–regularized logistic regression for classification and

cooperative spectrum sensing for cognitive radio networks. These simulation examples: 1) corroborate

convergence of the proposed algorithms; and 2) compare their performance, in terms of communication and

computational cost, with the algorithms in [24, 22, 8, 5].

As far as we are aware, distributed AL dual algorithms have been studied only for static networks. For

example, references [8, 5] consider a special case of (6.1), namely, the Lasso (least-absolute shrinkage and

selection operator) type problem. They propose the ADMM (alternating direction method of multipliers)

type dual algorithms for static networks, synchronous communication, and no constraints. Reference [78]

applies ADMM to various statistical learning problems, including Lasso, support vector machines, and

sparse logistic regression, assuming a parallel network architecture (all nodes communicate with a fusion

node,) synchronous communication, and no link failures.

In this chapter, we develop a AL dual algorithm for the optimization (6.1) with private costs and private

constraints, random networks, and asynchronous gossip communication. In contrast with existing work on

dual methods, for example, [8, 5], our AL–G handles private constraints, random networks, asymmetric link

failures, and gossip communication.1

This Chapter does not study convergence rates. We study convergence rates in Chapter 7 for more

structured cost functions.

Chapter organization. Section 6.2 introduces the communication and computational model. Section 6.3

presents the AL–G algorithm for the networks with link failures. Section 6.3 analyzes the convergence

of the AL–G algorithm. Section 6.4 studies the variants to AL–G, the AL–MG, and AL–BG algorithms.

Section 6.6 provides two simulation examples: 1) l
1

–regularized logistic regression for classification; and 2)

cooperative spectrum sensing for cognitive radios. Finally, section 6.7 concludes the chapter. Appendix D

analyzes convergence of AL–MG and AL–BG.

1AL–G algorithm uses asynchronous gossip communication, but it is not completely asynchronous algorithm, as it updates the
dual variables synchronously, at a slow time scale (as detailed in Section 6.4.)
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The results in this chapter have been published in [38].

6.2 Problem model

This section explains the communication model (the time slotting, the communication protocol, and the link

failures,) and the computation model (assumptions underlying the optimization problem (6.1).)

Network model: Supergraph

The connectivity of the networked system is described by the bidirectional, connected supergraph G =

(N , E), where N is the set of nodes (with cardinality |N | = N ) and E is the set of bidirectional edges

{i, j} (|E| = M ). The supergraph G is simple, i.e., there are no self-edges. Denote by ⌦i ⇢ N , the

neighborhood set of node i in G, with cardinality di = |⌦i|. The integer di is the (supergraph) degree

of node i. The supergraph G models and collects all (possibly unreliable) communication channels in the

network; actual network realizations during the algorithm run will be directed subgraphs of G. We denote

the directed edge (arc) that originates in node i and ends in node j either by (i, j) or i ! j, as appropriate.

The set of all arcs is: Ed = {(i, j) : {i, j} 2 E}, where |Ed| = 2M . We assume that the supergraph is

known, i.e., each node knows a priori with whom it can communicate (over a possibly unreliable link.)

Optimization model

We summarize the assumptions on the cost functions fi(·) and f(·), f(x) :=
PN

i=1

fi(x), and the constraint

sets Xi in (6.1):

Assumption 6.1 We assume the following for the optimization problem (6.1):

1. The functions fi : Rd ! R are convex and coercive, i.e., fi(x)!1 whenever kxk ! 1.

2. The constraint sets Xi ⇢ Rd are closed and convex, and X := \Ni=1

Xi is nonempty.

3. (Regularity condition) There exists a point x
0

2 ri (Xi), for all i = 1, ..., N .

Here ri (S) denotes the relative interior of a set S ⇢ Rd.2

We will derive the AL–G algorithm to solve (6.1) by first reformulating it (see ahead (6.2),) and then

dualizing the reformulated problem (using AL dual.) Assumption 1.3 will play a role to assure strong

duality. This will be detailed in subsection III-A. Note that Assumption 1.3 is rather mild, saying only that
2Relative interior of a nonempty set S ⇢ Rd is the set: {x 2 S : 8y 2 S, 9a > 1 : ax+ (1� a)y 2 S }.
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the intersection of the Xi’s, i = 1, ..., N , is “large” enough to contain a point from the relative interior of

each of the Xi’s. Denote by f? the optimal value and X ?
=

n

x? 2 X :

PN
i=1

fi(x?) = f?
o

the solution

set to (6.1). Under Assumptions 6.1, f? is finite, and X ? is nonempty, compact, and convex, [81]. The

model (6.1) applies also when Xi = Rd, for i’s in a subset of {1, ..., N}. The functions fi(·), f(·) need not

be differentiable; f(·) satisfies an additional assumption detailed in Section 6.4.

We now reformulate (6.1) to derive the AL–G algorithm. Start by cloning the variable x 2 Rd and

attaching a local copy of it, xi 2 Rd, to each node in the network. In addition, introduce the variables

yij 2 Rd and yji 2 Rd, attached to each link {i, j} in the supergraph. To keep the reformulated problem

equivalent to (6.1), we introduce coupling constraints xi = yij , (i, j) 2 Ed and yij = yji, {i, j} 2 E. The

reformulated optimization problem becomes:

minimize
PN

i=1

fi(xi)

subject to xi 2 Xi, i = 1, ..., N,

xi = yij , (i, j) 2 Ed

yij = yji, {i, j} 2 E.

(6.2)

The variables xi and yij may be interpreted as virtual nodes in the network (see Figure 6.1.) Physically, the

Figure 6.1: Illustration of the reformulation (6.2) for a chain supergraph with N = 3 (physical) nodes.

variables xi, yij , j 2 ⌦i are maintained by (physical) node i. The virtual link between nodes xi and yij is

reliable (non-failing,) as both xi and yij are physically maintained by node i. On the other hand, the virtual

link between yij and yji may be unreliable (failing,) as this link corresponds to the physical link between

nodes i and j.

The optimization problems (6.1) and (6.2) are equivalent because the supergraph is connected. The

optimal value for (6.2) is equal to the optimal value for (6.1) and equals f?; the set of solutions to (6.2) is
n

{x?i }, {y?ij} : x?i = x?, 8i = 1, ..., N, y?ij = x?, 8(i, j) 2 Ed, for somex? 2 X ?
o

.

Time slotting

As we will see in section 6.3., the AL–G algorithm (and also its variants AL–MG and AL–BG in Section 6.5)

is based on the AL dual of (6.2). The AL–G operates at 2 time scales: the dual variables are updated at a slow
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time scale, and the primal variables are updated at a fast time scale. Thus, accordingly, the time is slotted

with: 1) slow time scale slots {t}; and 2) fast time scale slots {k}. Fast time scale slots (for the primal

variables update) involve asynchronous communication between the nodes in the network and are detailed

in the next paragraph. At the end of each t-slot, there is an idle time interval with no communication, when

the dual variables are updated. The dual variables update at each node requires no communication.

Fast time scale slots {k} and asynchronous communication model

We now define the fast time scale slots {k} for the asynchronous communication and the primal variables

update. We assume the standard model for asynchronous communication [10]. Each node (both physical and

virtual) has a clock that ticks (independently across nodes) according to a �-rate Poisson process. Denote

the clocks of xi and yij by T x
i and T y

ij , respectively. If T x
i ticks, a virtual communication from yij , 8j 2 ⌦i,

to xi, follows. With the AL–G algorithm, this will physically correspond to the update of the variable xi, as

we will see later. If the clock T y
ij ticks, then (virtual) node yij transmits to yji (physically, node i transmits

to node j.) We will see later that, after a (successful) communication yij ! yji, the update of yji follows.

We also introduce a virtual clock T that ticks whenever one of the clocks T x
i , T y

ij , ticks; the clock T ticks

according to a (N + 2M)–rate Poisson process. Denote by ⌧k, k = 1, 2, ... the times when the k-th tick of

T occurs. The time is slotted and the k-th slot is [⌧k�1

, ⌧k), ⌧0 = 0, k = 1, 2, ...3

Random link failures

Motivated by applications in wireless networked systems, we allow that transmissions yij ! yji may fail.

(Of course, the transmissions through the virtual links yij ! xi do not fail.) To formally account for link

failures, we define the N ⇥ N random adjacency matrices A(k), k = 1, 2, ...; the matrix A(k) defines the

set of available physical links at time slot k. We assume that the link failures are temporally independent,

i.e., {A(k)} are independent identically distributed (i.i.d.) The entries Aij(k), (i, j) 2 Ed, are Bernoulli

random variables, Aij(k) ⇠ Bernoulli(⇡ij), ⇡ij = P (Aij(k) = 1) > 0, and Aij(k) ⌘ 0, for (i, j) /2 Ed.

We allow Aij(k) and Alm(k) to be correlated.4 At time slot k, at most one link (i, j) 2 Ed is activated

for transmission. If it is available at time k, i.e., if Aij(k) = 1, then the transmission is successful; if the

link (i, j) is unavailable (Aij(k) = 0,) then the transmission is unsuccessful. We assume naturally that the

Poisson process that governs the ticks of T and the adjacency matrices A(k), k = 1, 2, ... are independent.

Introduce the ordering of links (i, j) 2 Ed, by attaching a distinct number l, l = 1, ..., 2M , to each link

3For notation simplicity, at the beginning of each t–slot, we reset ⌧
0

to zero, and we start counting the k–slots from k = 1.
4With AL–MG algorithm, in Section 6.6, we will additionally require Aij(k) and Alm(k) be independent.
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(i, j); symbolically, we write this as l ⇠ (i, j). Introduce now the random variables ⇣(k), k = 1, 2, ...,

defined as follows: 1) ⇣(k) = i, if the k-th tick of T comes from T x
i ; 2) ⇣(k) = N + l, l ⇠ (i, j), if the

k-th tick of T comes from T y
ij and Aij(k) = 1; and 3) ⇣(k) = 0, otherwise. It can be shown that ⇣(k),

k = 1, 2, ..., are i.i.d. The random variables ⇣(k) define the order of events in our communication model. For

example, ⇣ = N + l, l ⇠ (i, j), means that, at time slot k =1, the virtual node yij successfully transmitted

data to the virtual node yji. We remark that P (⇣(k) = s) is strictly positive, 8s = 0, 1, ..., N + 2M . This

fact will be important when studying the convergence of AL–G.

6.3 AL–G algorithm (augmented Lagrangian gossiping)

This section details the AL–G algorithm for solving (6.1). In subsection 6.3.1, we dualize (6.2) to form the

AL dual of problem (6.2). Subsection IV-B details the D–AL–G algorithm for the dual variable update, at a

slow time scale; subsection IV-C details P–AL–G to update the primal variables, at a fast time scale.

6.3.1 Dualization

We form the AL dual of the optimization problem (6.2) by dualizing all the constraints of the type xi = yij

and yij = yji. The dual variable that corresponds to the constraint xi = yij will be denoted by ⌘
(i,j), the

dual variable that corresponds to the (different) constraint xj = yji will be denoted by ⌘
(j,i), and the one

that corresponds to yij = yji is denoted by �{i,j}. In the algorithm implementation, both nodes i and j

will maintain their own copy of the variable �{i,j}–the variable �
(i,j) at node i and the variable �

(j,i) at

node j. Formally, we use both �
(i,j) and �

(j,i), and we add the constraint �
(i,j) = �

(j,i). The term after

dualizing yij = yji, equal to �>{i,j}(yij � yji), becomes: �>
(i,j)yij ��

>
(j,i)yji. The resulting AL dual function

La(·), the (augmented) Lagrangian L(·), and the AL dual optimization problem are, respectively, given

in (6.3), (6.4), and (6.5).

La
�

{�
(i,j)}, {⌘(i,j)}

�

= min L
�

{xi}, {yij}, {�
(i,j)}, {⌘(i,j)}

�

subject to xi 2 Xi, i = 1, ..., N

yij 2 Rd, (i, j) 2 Ed

(6.3)
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L
�

{xi}, {yij}, {�
(i,j)}, {⌘(i,j)}

�

=

N
X

i=1

fi(xi) +
X

(i,j)2Ed

⌘>
(i,j) (xi � yij) (6.4)

+

X

{i,j}2E, i<j

�>
(i,j) yij � �

>
(j,i) yji +

1

2

⇢
X

(i,j)2Ed

kxi � yijk2 +
1

2

⇢
X

{i,j}2E, i<j

kyij � yjik2

maximize La
�

{�
(i,j)}, {⌘(i,j)}

�

subject to �
(i,j) = �

(j,i), {i, j} 2 E

⌘
(i,j) 2 Rd, (i, j) 2 Ed

. (6.5)

In (6.4), ⇢ is a positive parameter. See [15] for some background on AL methods. The terms �>
(i,j) yij �

�>
(j,i) yji in the sum

P

{i,j}2E �
>
(i,j) yij � �

>
(j,i) yji are arranged such that i < j, for all {i, j} 2 E. 5

Denote by d? the optimal value of the dual problem (6.5), the dual of (6.2). Under Assumption 6.1,

the strong duality between (6.2) and (6.5) holds, and d? = f?; moreover, the set of optimal solutions

D?
=

n

{�?
(i,j)}, {⌘

?
(i,j)} : La

⇣

{�?
(i,j)}, {⌘

?
(i,j)}

⌘

= f?
o

is nonempty. Denote by C := X
1

⇥ X
2

⇥ ... ⇥

XN ⇥ (R)m(2M) the constraint set in (6.3), i.e., the constraints in (6.2) that are not dualized. Let x
0

be a

point in ri(Xi), i = 1, ..., N (see Assumption 1.3.) Then, a point ({xi,0}, {yij,0}) 2 C, where xi,0 = x
0

,

yij,0 = x
0

, belongs to ri(C), and it clearly satisfies all equality constraints in the primal problem (6.2);

hence, it is a Slater point, and the above claims on strong duality hold, [92]. We remark that strong duality

holds for any choice of ⇢ � 0 (but we are interested only in the case ⇢ > 0,) and, moreover, the set of dual

solutions D? does not depend on the choice of ⇢, provided that ⇢ � 0 (see, e.g., [33], p.359.)

6.3.2 Solving the dual: D–AL–G (dual augmented Lagrangian gossiping) algorithm

We now explain how to solve the dual problem (6.5). First, we note that (6.5) is equivalent to the un-

constrained maximization of L0
a

�

{�{i,j}}, {⌘(i,j)}
�

= minxi2Xi,yij2Rd L0 �{xi}, {yij}, {�{i,j}}, {⌘(i,j)}
�

,

where the function L0 �{xi}, {yij}, {�{i,j}}, {⌘(i,j)}
�

is defined by replacing both �
(i,j) and �

(j,i) in L(·)

(eqn. (6.4)) with �{i,j}, for all {i, j} 2 E. The standard method of multipliers for the unconstrained maxi-

mization of L0
a(·) is given by:

�{i,j}(t+ 1) = �{i,j}(t) + ⇢ sign(j � i)
�

y?ij(t)� y?ji(t)
�

, {i, j} 2 E (6.6)

⌘
(i,j)(t+ 1) = ⌘

(i,j)(t) + ⇢
�

x?i (t)� y?ij(t)
�

, (i, j) 2 Ed.

5For each link {i, j} 2 E, the virtual nodes yij and yji (i.e., nodes i and j,) have to agree beforehand (in the network training
period) which one takes the + sign and which one takes the � sign in �>

(i,j) yij ��>
(j,i) yji. In (6.4), for sake of notation simplicity,

the distribution of + and � signs at each link {i, j} is realized by the order of node numbers, where a distinct number in {1, ..., N}
is assigned to each node. However, what matters is only to assign + to one node (say i) and � to the other, for each {i, j} 2 E.
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⇣

{x?i (t)}, {y?ij(t)}
⌘

2 arg min L0 �{xi}, {yij}, {�{i,j}(t)}, {⌘(i,j)(t)}
�

subject to xi 2 Xi, i = 1, ..., N

yij 2 Rd, (i, j) 2 Ed.

(6.7)

Assigning a copy of �{i,j} to both nodes i (the corresponding copy is �
(i,j)) and j (the corresponding copy

is �
(j,i)), (6.6) immediately yields an algorithm to solve (6.5), given by:

�
(i,j)(t+ 1) = �

(i,j)(t) + ⇢ sign(j � i)
�

y?ij(t)� y?ji(t)
�

, (i, j) 2 Ed (6.8)

⌘
(i,j)(t+ 1) = ⌘

(i,j)(t) + ⇢
�

x?i (t)� y?ij(t)
�

, (i, j) 2 Ed,

where

⇣

{x?i (t)}, {y?ij(t)}
⌘

2 arg min L
�

{xi}, {yij}, {�
(i,j)(t)}, {⌘(i,j)(t)}

�

subject to xi 2 Xi, i = 1, ..., N

yij 2 Rd, (i, j) 2 Ed.

(6.9)

(Note that
⇣

{x?i (t)}, {y?ij(t)}
⌘

is the same in (6.7) and (6.9).) According to (6.8), essentially, both nodes i

and j maintain their own copy (�
(i,j) and �

(j,i), respectively) of the same variable, �{i,j}. It can be shown

that, under Assumption 6.1, any limit point of the sequence
⇣

{x?i (t)}, {y?ij(t)}
⌘

, t = 0, 1, ..., is a solution

of (6.2) (see, e.g., [37], Section 3.4); and the corresponding limit point of the sequence x?i (t), t = 0, 1, ..., is

a solution of (6.1).

Before updating the dual variables as in (6.8), the nodes need to solve problem (6.9), with fixed dual

variables, to get
⇣

{x?i (t)}, {y?ij(t)}
⌘

. We will explain in the next subsection, how the P–AL–G algorithm

solves problem (6.9) in a distributed, iterative way, at a fast time scale {k}. We remark that P–AL–G

terminates after a finite number of iterations k, and thus produces an inexact solution of (6.9). We will see

that, after termination of the P–AL–G algorithm, an inexact solution for yji is available at node i; denote

it by yLji(t). Denote, respectively, by xFi (t) and yFij(t), the inexact solutions for xi and yij at node i, after

termination of P–AL–G. Then, the implementable update of the dual variables is:

�
(i,j)(t+ 1) = �

(i,j)(t) + ⇢ sign(j � i)
�

yFij(t)� yLji(t)
�

(6.10)

⌘
(i,j)(t+ 1) = ⌘

(i,j)(t) + ⇢
�

xFi (t)� yFij(t)
�

.
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Note that the “inexact” algorithm in (6.10) differs from (6.8) in that it does not guarantee that �
(i,j)(t) =

�
(j,i)(t), due to a finite time termination of P–AL–G.

6.3.3 Solving the primal: P–AL–G algorithm

Given {�
(i,j)(t)}, {⌘(i,j)(t)}, we solve the primal problem (6.9) by a randomized, block-coordinate, itera-

tive algorithm, that we refer to as P–AL–G. To simplify notation, we will write only �
(i,j) and ⌘

(i,j) instead

of �
(i,j)(t), ⌘(i,j)(t). We remark that �

(i,j)(t), ⌘(i,j)(t) stay fixed while the optimization in (6.9) is done

(with respect to xi, yij .)

The block-coordinate iterative algorithm works as follows: at time slot k, the function in (6.4) is op-

timized with respect to a single block-coordinate, either xi or yij , while other blocks are fixed. Such an

algorithm for solving (6.9) admits distributed implementation, as we show next. Minimization of the func-

tion L
�

{xi}, {yij}, {�
(i,j)}, {⌘(i,j)}

�

with respect to xi, while the other coordinates xj and yij are fixed, is

equivalent to the following problem:

minimize fi(xi) + (⌘i � ⇢ yi)
> xi +

1

2

⇢ dikxik2

subject to xi 2 Xi

, (6.11)

where ⌘i =
P

j2⌦i
⌘
(i,j) and yi =

P

j2⌦i
yij . Thus, in order to update xi, the node i needs only information

from its (virtual) neighbors. Minimization of the function L
�

{xi}, {yij}, {�
(i,j)}, {⌘(i,j)}

�

with respect to

yij , while the other coordinates xj and ylm are fixed, is equivalent to:

minimize ⌘>
(i,j) (xi � yij) + �>

(i,j)sign(j � i) (yij � yji) +
1

2

⇢kxi � yijk2 + 1

2

⇢kyij � yjik2

subject to yij 2 Rd.
(6.12)

Thus, in order to update yij , the corresponding virtual node needs only to communicate information with its

neighbors in the network, yji and xi. Physical communication is required only with yji (i.e., with physical

node j.) The optimization problem (6.12) is an unconstrained problem with convex quadratic cost and

admits the closed form solution:

yij =
1

2

yji +
1

2

xi +
1

2⇢

�

⌘
(i,j) � sign(j � i)�

(i,j)

�

. (6.13)
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Distributed implementation

We have seen that the block-coordinate updates in (6.11) and (6.13) only require neighborhood informa-

tion at each node. We next give the distributed implementation of P–AL–G (see Algorithm 5) using the

asynchronous communication model defined in Section 6.2.

Algorithm 5 Algorithm with gossiping for solving (6.9) (P–AL–G)
1: repeat
2: Wait for the tick of one of the clocks T x

j , T y
ij .

3: If clock T y
ij ticks, node i transmits to node j the current value of yij .

If node j successfully receives yij , it updates the variable yji according to the equation (6.13).
4: If clock T x

i ticks, node i updates the variable xi by solving (6.11).
5: until a stopping criterion is met.

Simplified notation and an abstract model of the P–AL–G

We now simplify the notation and introduce an abstract model for the P–AL–G algorithm, for the purpose

of convergence analysis in Section 6.4. Denote, in a unified way, by zi, the primal variables xi and yij ,

i.e., zi := xi, i = 1, ..., N , and zl := yij , l = N + 1, ..., N + 2M , (i, j) 2 Ed. Then, we can write the

function in (6.4), viewed as a function of the primal variables, simply as L(z), L : Rm(N+2M) ! R. Also,

denote in a unified way the constraint sets Ci := Xi, i = 1, ..., N , and Cl := Rd, l = N + 1, ..., 2M + N

(Cl, l = N + 1, ..., N + 2M ; these sets correspond to the constraints on yij , (i, j) 2 Ed.) Finally, define

C := C
1

⇥C
2

⇥...⇥CN+2M . Thus, the optimizations in (6.11) and (6.13) are simply minimizations of L(z)

with respect to a single (block) coordinate zl, l = 1, ..., 2M +N . Recall the definition of ⇣(k), k = 1, 2, ...

in section 6.2. Further, denote Pi := P (⇣(k) = i) > 0, i = 0, 1, 2, ..., 2M +N . Then, it is easy to see that

the AL–G algorithm can be formulated as in Algorithm 6.

Finally, we summarize the overall dual AL–G algorithm in Algorithm 6.

Algorithm 6 AL–G algorithm at node i

1: Set t = 0, �
(i,j)(t = 0) = 0, ⌘

(i,j)(t = 0) = 0, j 2 ⌦i

2: repeat
3: Run P–AL–G (cooperatively with the rest of the network) to get xFi (t), yFij(t) and yLji(t),

j 2 ⌦i. At k = 1, 2, ..., if ⇣(k) = i, i 6= 0, then zi(k + 1) =

argminwi
L ( z

1

(k), ..., zi�1

(k), w, zi+1

(k), ..., zN+2M (k) ).
4: Update the dual variables, �

(i,j)(t), ⌘(i,j)(t), j 2 ⌦i, according to eqn. (6.8).
5: Set t t+ 1

6: until a stopping criterion is met.

Remark. With AL–G, the updates of the primal variables, on a fast time scale k, are asynchronous and use
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gossip communication, while the updates of the dual variables, on a slow time scale t, are synchronous and

require no communication. Physically, this can be realized as follows. Each (physical) node in the network

has a timer, and the timers of different nodes are synchronized. At the beginning of each (slow time scale)

t-slot, nodes start the gossip communication phase and cooperatively run the P–AL–G algorithm. After a

certain predetermined time elapsed, nodes stop the communication phase and, during an idle communication

interval, they update the dual variables. After the idle time elapses, the nodes restart the communication

phase at the beginning of the new t-slot.

Choice of ⇢. It is known that, under Assumption 6.1, the method of multipliers (6.6) converges (i.e., any limit

point of the sequence x?i (t), t = 0, 1, ..., is a solution of (6.1)) for any choice of the positive parameter ⇢,

[95], Theorem 2.1. It converges also if a sequence ⇢t+1

� ⇢t is used, [96], Proposition 4. See [15], 4.2.2, for

a discussion on the choice of ⇢. The method of multipliers still converges if we use different parameters ⇢ =

⇢
(

�
(i,j),t)

, ⇢ = ⇢
(

⌘
(i,j),t)

, for each of the variables �
(i,j), ⌘(i,j). This corresponds to replacing the quadratic

terms ⇢ kxi � yijk2 and ⇢ kyij � yjik2 in eqn. (6.4) with ⇢
(

⌘
(i,j),t)

kxi � yijk2 and ⇢
(

⌘
(i,j),t)

kyij � yjik2,

respectively. See reference [97] for details. (We still need ⇢
(

�
(i,j),t)

⇡ ⇢
(

�
(j,i),t)

.) Equation (6.11) becomes6

minimize fi(xi) +
⇣

⌘i �
P

j2⌦i
⇢
(�

(i,j),t) yij
⌘>

xi +
1

2

⇣

P

j2⌦i
⇢
(⌘

(i,j),t)

⌘

kxik2

subject to xi 2 Xi

(6.14)

and equation (6.13) becomes

yij =
⇢
(�

(i,j),t)

⇢
(�

(i,j),t) + ⇢
(⌘

(i,j),t)
(xi + yji) +

⌘
(i,j) � sign(j � i)�

(i,j)

⇢
(�

(i,j),t)+⇢(⌘
(i,j),t)

. (6.15)

One possibility for adjusting the parameters ⇢
(⌘

(i,j),t) and ⇢
(�

(i,j),t) in a distributed way is as follows.

Each node i adjusts (updates) the parameters ⇢
(�

(i,j),t)
, ⇢

(⌘
(i,j),t)

, j 2 ⌦i. We focus on the parameter

⇢
(�

(i,j),t); other parameters are updated similarly. Suppose that the current time is t. Node i has stored

in its memory the constraint violation at the previous time t � 1 that equals ✏
(�

(i,j),t�1)

= kyFij(t � 1) �

yLji(t � 1)k. Node i calculates the constraint violation at the current time ✏
(�

(i,j),t) = kyFij(t) � yLji(t)k.

If ✏
(�

(i,j),t)/✏(�(i,j),t�1)

 
(�

(i,j))
< 1, then the constraint violation is sufficiently decreased, and the

parameter ⇢
(�

(i,j),t) remains unchanged, i.e., node i sets ⇢
(�

(i,j),t) = ⇢
(�

(i,j),t�1)

; otherwise, node i increases

the parameter, i.e., it sets ⇢
(�

(i,j),t) = �
(�

(i,j))
⇢
(�

(i,j),t�1)

. The constants 
(�

(i,j))
2 (0, 1) and �

(�
(i,j))

> 1

are local to node i.
6Reference [97] proves convergence of the method of multipliers with the positive definite matrix (possibly time-varying)

penalty update, see eqn. (1.5) in [97]; the case of different (possibly time-varying) penalties assigned to different constraints is a
special case of the matrix penalty, when the matrix is diagonal (possibly time-varying.)
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6.4 Convergence analysis of the AL–G algorithm

This section analyzes convergence of the AL–G algorithm. Convergence of the multiplier method for the

dual variable updates (on slow time scale {t}) in (6.8) is available in the literature, e.g., [15]. We remark that,

in practice, P–AL–G runs for a finite time, producing an inexact solution of (6.9). This, however, does not

violate the convergence of the overall dual AL–G scheme, as corroborated by simulations in Section 6.6. The

P–AL–G algorithm for the primal variable update (on the fast time scale {k}) is novel, and its convergence

requires a novel proof.

In Chapter 7, we shall analyze distributed AL methods in terms of the overall number of per-node com-

munications (overall number of inner iterations) under a restricted class of costs and unconstrained problems.

Hence, Chapter 7 analytically accounts for the finite time termination of the inner primal algorithms and the

inexactness of the dual updates.

We proceed with the convergence analysis of P–AL–G. First, we state an additional assumption on the

function f(·), and we state Theorem 6.4 on the almost sure convergence of P–AL–G.

Assumptions and statement of the result

Recall the equivalent definition of the P–AL–G and the simplified notation in 6.3.3. The P–AL–G algorithm

solves the following optimization problem:

minimize L(z)

subject to z 2 C
. (6.16)

We will impose an additional assumption on the function L(z), and, consequently, on the function f(·).

First, we give the definition of a block-optimal point.

Definition 6.2 (Block-optimal point) A point z• =
�

z•
1

, z•
2

, ..., z•N+2M

�

is block-optimal for the problem (6.16)

if: z•i 2 argminwi2Ci
L
�

z•
1

, z•
2

, ..., z•i�1

, wi, z•i+1

, ..., z•N+2M

�

, i = 1, ..., N + 2M.

Assumption 6.3 If a point z• is a block-optimal point of (6.16), then it is also a solution of (6.16).

Remark. Assumption 6.3 is valid if, e.g., fi(x) = kikxk1 + Wi(x), ki � 0, where Wi : Rd ! R is a

continuously differentiable, convex function, and kxk
1

=

PN
i=1

|xi| is the l
1

norm of x, [14].
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Define the set of optimal solutions B = {z? 2 C : L(z?) = L?}, where L?
= infz2C L(z).7 Further,

denote by dist(b, A) the Euclidean distance of point b 2 Rd to the set A ⇢ Rd, i.e., dist(b, A) = infa2A ka�

bk
2

, where kxk
2

is the Euclidean, l
2

norm. We now state the Theorem on almost sure (a.s.) convergence

of the P–AL–G algorithm (Theorem 6.4,) after which we give some auxiliary Lemmas needed to prove

Theorem 6.4.

Theorem 6.4 Let Assumptions 6.1 and 6.3 hold, and consider the optimization problem (6.16) (with fixed

dual variables.) Consider the sequence {z(k)}1k=0

generated by the algorithm P–AL–G. Then:

1. limk!1 dist (z(k), B) = 0, a.s.

2. limk!1 L (z(k)) = L?, a.s.

Auxiliary Lemmas

Let iC : Rd ! R[{+1} be the indicator function of the set C, i.e., iC(z) = 0 if z 2 C and +1 otherwise.

It will be useful to define the function L + iC : Rm(N+2M) ! R [ {+1}, (L + iC)(z) = L(z) + iC(z).

Thus, the optimization problem (6.16) is equivalent to the unconstrained minimization of (L+ iC)(·). The

following Lemma establishes properties of the set of solutions B, the optimal value L?, and the function

(L+ iC)(·).

Lemma 6.5 Let Assumption 6.1 hold. The functions L(z) and (L+ iC)(z) are coercive, L? > �1, and the

set B is nonempty and compact.

Proof: The function L(z) (given in eqn. (6.4)) is coercive. To see this, consider an arbitrary sequence

{z(j)}1j=1

, where kz(j)k ! 1 as j !1. We must show that L(z(j))!1. Consider two possible cases:

1) there is i 2 {1, ..., N} such that kxi(j)k ! 1; and 2) there is no i 2 {1, ..., N} such that kxi(j)k ! 1.

For case 1), pick an i such that kxi(j)k ! 1; then fi(xi(j)) ! 1, and hence, L(z(j)) ! 1. In case 2),

there exists a pair (i, l) such that kyilk ! 1; but then, as xi(j) is bounded, we have that kxi(j)�yil(j)k2 !

1, and hence, L(z(j)) !1. The function (L+ iC)(z) is coercive because (L+ iC)(z) � L(z), 8z, and

L(z) is coercive. The function (L+ iC)(z) is a closed8 (convex) function, because L(z) is clearly a closed

function and iC(z) is a closed function because C is a closed set; hence, (L+ iC)(z) is closed function as a

sum of two closed functions.Hence, B is a closed set, as a sublevel set of the closed function (L + iC)(z).
7Under Assumption 6.1, the set B is nonempty and compact and L? > �1. This will be shown in Lemma 6.5. Clearly,

L? = L?
�
{�

(i,j)}, {⌘(i,j)}
�

and B = B
�
{�

(i,j)}, {⌘(i,j)}
�

depend on the dual variables. For simplicity, we write only L? and
B.

8A function q : Rd ! R [ {+1} is closed if its epigraph epi(q) = {(x, v) : q(x)  v} is a closed subset of Rm+1.
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The set B is bounded as a sublevel set of a coercive function (L+ iC)(z). Hence, B is closed and bounded,

and thus, compact. We have that L? > �1 (and B is non empty) as L(z) is a continuous, convex, and

coercive on Rm(N+2M). 2

Define U✏(B) = {z : dist(z,B) < ✏}, and let V✏(B) be its complement, i.e., V✏(B) = Rd\U✏(B). Fur-

ther, denote by S and F the initial sublevel sets of L and L+iC , respectively, i.e., S = {z : L(z)  L(z(0))},

and F = {z : (L+ iC)(z)  L(z(0))} = S \C, where z(0) 2 C is a feasible, deterministic, initial point.

We remark that, given z(0), any realization of the sequence {z(k)}1k=0

stays inside the set F . This is true

because L(z(k)) is a nonincreasing sequence by the definition of the algorithm P–AL–G and because any

point z(k) is feasible. Define also the set �(✏) = F \ V✏(B). We now remark that, by construction of

the P–AL–G algorithm, the sequence of iterates z(k) generated by P–AL–G is a Markov sequence. We are

interested in the expected decrease of the function L(·) in one algorithm step, given that the current point is

equal to z(k) = z:

 (z) = E [L (z(k + 1)) |z(k) = z]� L(z). (6.17)

Denote by Li
(z) the block-optimal value of the function L(z) after minimization with respect to zi:

Li
(z) = min

wi2Ci

L (z
1

, z
2

, ..., zi�1

, wi, zi+1

, ..., zN+2M ) (6.18)

We have, by the definition of P–AL–G, that (recall the definition of Pi above Algorithm 6:)

 (z) =

N+2M
X

i=1

Pi
�

Li
(z)� L(z)

�

. (6.19)

Define �(z) = � (z). From (6.19), it can be seen that �(z) � 0, for any z 2 C. We will show that

�(z) is strictly positive on the set �(✏) for any positive ✏.

Lemma 6.6

inf

z2�(✏)
�(z) = a(✏) > 0 (6.20)

We first show that �(✏) is compact and that Li is continuous on �(✏) (latter proof is in Appendix D.)

Lemma 6.7 (Compactness of �(✏)) The set �(✏) is compact, for all ✏ > 0.

Proof: We must show that �(✏) is closed and bounded. It is closed because it is the intersection of the

closed sets F and V✏(B). It is bounded because �(✏) ⇢ F , and F is bounded. The set F is bounded as a

sublevel set of the coercive function L + iC . The set F is closed as a sublevel set of the closed function

150



L+ iC . 2

Lemma 6.8 (Continuity of Li) The function Li
: �(✏)! R is continuous, i = 1, ..., N + 2M .

Proof: [Proof of Lemma 6.6] First, we show that �(z) > 0, for all z 2 �(✏). Suppose not. Then, we

have: Li
(z) = L(z), for all i. This means that the point z 2 �(✏) is block-optimal; Then, by Assumption 6.3,

the point z is an optimal solution of (6.16). This is a contradiction and �(z) > 0, for all z 2 �(✏). Consider

the infimum in (6.20). The infimum is over the compact set and the function �(·) is continuous (as a scaled

sum of continuous functions Li
(·)); thus, by the Weierstrass theorem, the infimum is attained for some

z• 2 �(✏) and �(z•) = a(✏) > 0. 2

Proof of Theorem 6.4–1

Recall the expected decrease of the function L(·),  (z). We have:

E [ (z(k))] = E [E [L (z(k + 1)) |z(k)]� L (z(k))] = E [L (z(k + 1))]� E [L (z(k))] . (6.21)

On the other hand, we have that E [ (z(k))] equals:

E [ (z(k)) |z(k) 2 �(✏)] P (z(k) 2 �(✏)) + E [ (z(k)) |z(k) /2 �(✏)] P (z(k) /2 �(✏)) . (6.22)

Denote by pk = P (z(k) 2 �(✏)). Since  (z(k))  �a(✏), for z(k) 2 �(✏), and  (z(k))  0, for any

z(k), we have that: E [ (z(k))] = E [L(z(k + 1))]�E [L(z(k))]  �a(✏) pk; summing up latter inequality

for j = 0 up to j = k � 1, we get:

E [L(z(k))]� L(z(0))  �a(✏)
k�1

X

j=0

pk, 8j � 0. (6.23)

The last inequality implies that:
P1

k=0

pk  1

a(✏) (L (z(0))� L?
) < 1. Thus, by the first Borel-Cantelli

Lemma, P (z(k) 2 �(✏), infinitely often) = 0, 8✏ > 0. Thus, P (A✏) = 1, 8✏ > 0, where the event A✏ is:

A✏ := {the tail of the sequence z(k) belongs to U✏(B)}. Consider the event A := \1s=1

A✏s , where ✏s is

a decreasing sequence, converging to 0. Then, P (A) = P (\1s=1

A✏s) = lims!1 P (A✏s) = lims!1 1 = 1.

Now, the event B := {limk!1 dist(z(k), B) = 0} is equal to A, and thus P (B) = 1.
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Expected number of iterations for convergence: Proof of Theorem 6.4–2

Consider now the sets U✏(B) = {z : L(z)  ✏+ L?} and V✏(B) = Rd\U✏(B) and define the sets F and

G(✏) as F = C \ S and G(✏) = F \ V✏(B). Similarly as in Lemmas 6.8, we can obtain that

inf

z2G(✏)
�(z) = b(✏) > 0. (6.24)

We remark that, once z(k) enters the set U✏(B) at k = K✏, it never leaves this set, i.e., z(k) 2 U✏(B), for

all k � K✏. Of course, the integer K✏ is random. In the next Theorem, we provide an upper bound on the

expected value of K✏ (the time slot when z(k) enters the set U✏(B),) thus giving a stopping criterion (in

certain sense) of the algorithm P–AL–G.

Theorem 6.9 ( Expected number of iterations for convergence ) Consider the sequence {z(k)}1k=0

generated

by the algorithm P–AL–G. Then, we have:

E [K✏] 
L (z(0))� L?

b(✏)
. (6.25)

Proof: Let us define an auxiliary sequence ez(k) as ez(k) = z(k), if z(k) 2 G(✏), and z(k) = z?, if

z(k) 2 U✏(B). Here z? is a point in B. That is, ez(k) is identical to z(k) all the time while z(k) is outside

the set U✏(B) and ez(k) becomes z? and remains equal to z? once z(k) enters U✏(B). (Remark that z(k)

never leaves the set U✏(B) once it enters it by construction of Algorithm P–AL–G.)

Now, we have that:

 (ez(k)) =

8

<

:

 (z(k))  �b(✏) if z(k) 2 G(✏)

0 if z(k) 2 U✏(B)

. (6.26)

Taking the expectation of  (z(k)), k = 0, ..., t� 1 and summing up these expectations, and letting t!1,

we get:

E [L (ez(1))]� L(z(0)) =
1
X

k=0

E [ (ez(k + 1))]� E [ (ez(k))] = E
1
X

k=0

 (ez(k))  �E [K✏] b(✏)

Thus, the claim in (6.25) follows. 2

We now prove Theorem 6.4–2. By Theorem 10, the expected value of K✏ is finite, and thus K✏ is finite

a.s. This means that for all ✏ > 0, there exists random number K✏ (a.s. finite), such that ez(k) = z?, for all

k � K✏, i.e., such that z(k) 2 U✏(B) for all k � K✏. The last statement is equivalent to Theorem 6.4–2. 2
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6.5 Variants to AL–G: AL–MG (augmented Lagrangian multi neighbor gos-

siping) and AL–BG (augmented Lagrangian broadcast gossiping) algo-

rithms

This section introduces two variants to the AL–G algorithm, the AL–MG (augmented Lagrangian multi

neighbor gossiping) and the AL–BG (augmented Lagrangian broadcast gossiping). Relying on the previous

description and analysis of the AL–G algorithm, the Section explains specificities of the AL–MG and AL–

BG algorithms. Subsection 6.5.1 details the AL–MG, and subsection 6.5.2 details the AL–BG algorithm.

Proofs of the convergence for P–AL–MG and P–AL–BG are in Appendix D.

6.5.1 AL–MG algorithm

The AL–MG algorithm is a variation of the AL–G algorithm. The algorithms AL–G and AL–MG are based

on the same reformulation of (6.1) (eqn.(6.2)), and they have the same dual variable update (that is, D–AL–

G and D–AL–MG are the same.) We proceed by detailing the difference between P–AL–MG and P–AL–G

to solve (6.9) (with fixed dual variables.) With the algorithm P–AL–MG, each node has two independent

Poisson clocks, T x
i and T y

i . Update followed by a tick of T x
i is the same as with P–AL–G (see Algorithm 5,

step 4.) If T y
i ticks, then node i transmits simultaneously the variables yij , j 2 ⌦i, to all its neighbors (yi,j

1

is transmitted to node j
1

, yi,j
2

is transmitted to node j
2

, etc.) Due to link failures, the neighborhood nodes

may or may not receive the transmitted information. Successfull transmissions are followed by updates of

yji’s, according to (6.13). Define also the virtual clock T that ticks whenever one of the clocks T x
i , T y

i , ticks.

Accordingly, we define the k-time slots as [⌧k�1

, ⌧k), k = 1, 2..., ⌧
0

= 0, and ⌧k is the time of the k-th tick

of T . Overall AL–MG algorithm is the same as AL–G (see Algorithm 6,) except that, instead of P–AL–G,

nodes run P–AL–MG algorithms at each t. We prove convergence of the P–AL–MG in Appendix D; for

convergence of the overall AL–MG algorithm, see discussion at the beginning of Section 6.5.

6.5.2 AL–BG algorithm: An algorithm for static networks

We now present a simplified algorithm for the networks with reliable transmissions. This algorithm is

based on the reformulation of (6.1) that eliminates the variables yij’s. That is, we start with the following
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equivalent formulation of (6.1):

minimize
PN

i=1

fi(xi)

subject to xi 2 Xi, i = 1, ..., N,

xi = xj , {i, j} 2 E

(6.27)

We remark that (6.27) is equivalent to (6.1) because the supergraph is connected. After dualizing the con-

straints xi = xj , (i, j) 2 E, the AL dual function La(·) and the Lagrangian L(·) become:

La
�

{�{i,j}}
�

= min L
�

{xi}, {�{i,j}}
�

subject to xi 2 Xi, i = 1, ..., N

L
�

{xi}, {�{i,j}}
�

=

N
X

i=1

fi(xi) +
X

{i,j}2E, i<j

�>{i,j} (xi � xj) +
1

2

⇢
X

{i,j}2E, i<j

kxi � xjk2. (6.28)

In the sums
P

{i,j}2E �
>
{i,j} (xi � xj) and

P

{i,j}2E kxi�xjk2, the terms �>{i,j} (xi � xj) and kxi�xjk2

are included once. (The summation is over the undirected edges {i, j}.) Also, terms �>{i,j} (xi � xj) in

the sum
P

{i,j}2E �
>
{i,j} (xi � xj) are arranged such that i < j, for all {i, j} 2 E. The resulting dual

optimization problem is the unconstrained maximization of La(�{i,j}).

Solving the dual: D–AL–BG algorithm

We solve the dual (6.28) by the method of multipliers, which can be shown to have the following form:

�{i,j}(t+ 1) = �{i,j}(t) + ⇢ sign(j � i)
�

x?i (t)� x?j (t)
�

(6.29)

x?(t) = (x?
1

(t), x⇤
2

(t), ..., x⇤N (t)) 2 arg min L
�

{xi}, {�{i,j}(t)}
�

subject to xi 2 Xi, i = 1, ..., N
. (6.30)

We will explain in the next paragraph how the P–AL–BG algorithm solves (6.30) in a distributed, iter-

ative way. With AL–BG, each node needs to maintain only one m-dimensional dual variable: �i :=

P

j2⌦i
sign(j � i)�{i,j}. Also, define xi :=

P

j2⌦i
xj . The P–AL–G algorithm terminates after a finite

number of inner iterations k, producing an inexact solution. Denote by xFi (resp. xFj ) the inexact solution

of xi (resp. xj , j 2 ⌦i), available at node i, after termination of P–AL–BG. We will see that xFi = xLi ,
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8i; accordingly, after termination of P–AL–BG, node i has available xFi :=

P

j2⌦i
xFj . Summing up equa-

tions (6.29) for �{i,j}, j 2 ⌦i, and taking into account the finite time termination of the P–AL–BG, we

arrive at the following dual variable update at node i:

�i(t+ 1) = �i(t) + ⇢
�

di x
F
i (t)� xFi (t)

�

, i = 1, ..., N. (6.31)

Solving for (6.30): P–AL–BG algorithm

We solve the problem (6.30) by a randomized, block-coordinate P–AL–BG algorithm. After straightforward

calculations, it can be shown that minimization of the function in (6.28) with respect to xi (while other

coordinates are fixed) is equivalent to the following minimization:

minimize fi(xi) +
�

�i � ⇢xi
�>

xi +
1

2

⇢ dikxik2

subject to xi 2 Xi

(6.32)

Similarly as with AL–G, we assume that the clock ticks at all nodes are governed by independent Poisson

process Ti’s. P–AL–BG is as follows. Whenever clock Ti ticks, node i updates xi via (6.32) and broad-

casts the updated xi to all the neighbors in the network. Discrete random iterations {k} of the P–AL–BG

algorithm are defined as ticks of the virtual clock T that ticks whenever one of Ti ticks. The P–AL–BG

algorithm produces xFi and xFi at node i. Overall dual AL–BG algorithm is similar to the AL–G algorithm

(see Algorithm 6), except that, at each t, nodes cooperatively run the P–AL–BG algorithm, instead of P–

AL–G algorithm. We prove convergence of P–AL–BG in Appendix D; for convergence of the overall dual

AL–BG scheme, see discussion at the beginning of Section 6.5.

6.6 Simulation examples

In this section, we consider two simulation examples, namely, l
1

–regularized logistic regression for classifi-

cation (subsection 6.6.1), and cooperative spectrum sensing for cognitive radio networks (subsection 6.6.2.)

Both examples corroborate the convergence of our algorithms AL–G, AL–MG on random networks, and

AL–BG on static networks, and illustrate tradeoffs that our algorithms show with respect to the existing

literature. We compare our and existing algorithms with respect to: 1) communication cost; and 2) compu-

tational cost, while the communication cost is dominant in networked systems supported by wireless com-

munication. On our simulation example, AL–BG converge faster than existing algorithms (in [23, 24, 98, 8])
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9) on static networks in terms of communication cost, on both examples; at the same time, it has a larger

computational cost. For our l
1

-regularized logistic regression example and random networks, AL–G and

AL–MG converges faster than existing algorithms ([23, 24]10) in terms of communication cost, while hav-

ing larger computational cost. For the cooperative spectrum sensing example and random networks, AL–G

and AL–MG converge slower than existing algorithms [23, 24].

6.6.1 l
1

–regularized logistic regression for classification

We study distributed learning of a linear discriminant function. In particular, we consider the l
1

–regularized

logistic regression optimization problem (eqn. (45) in [78]; see Subsections 7.1 and 10.2). We add private

constraints and adapt the notation from [78] to fit our exposition.11 The problem setup is as follows. Each

node i, i = 1, ..., N , has Nd data samples, {aij , bij}Nd
j=1

, where aij 2 Rd is a feature vector (data vector,)

and bij 2 {�1,+1} is the class label of the feature vector aij . That is, when bij = 1 (respectively, �1,)

then the feature vector aij belongs to the class “1” (respectively, “�1”.) The goal is to learn the weight

vector w 2 Rd, and the offset v 2 R, based on the available samples at all nodes, {aij , bij}Nd
j=1

, i = 1, ..., N ,

so that w is sparse, and the equality: sign

⇣

a>ijw + v
⌘

= bij , i = 1, ..., N, j = 1, ..., Nd, holds for the

maximal possible number of data samples {aij , bij}Nd
j=1

, i = 1, ..., N . One approach to choose w and v

is via l
1

–regularized logistic regression; that is, choose w? and v? that solve the following optimization

problem, [78]:

minimize
PN

i=1

PNd
j=1

log

⇣

1 + exp

⇣

�bij(a>ijw + v)
⌘⌘

+ �kwk
1

subject to w>w  ki, i = 1, ..., N

|v|  k0i, i = 1, ..., N

. (6.33)

The parameter � > 0 enforces the sparsity in w, [63]. The private constraints on w and v at node i (ki’s and

k0i’s are positive) represent the prior knowledge available at node i (see [99], Chapter 7.) Problem (6.33)

clearly fits our generic framework in (6.1) and has a vector optimization variable, a non smooth objective

function, and quadratic private constraints. Alternatives to (6.33) to learn w and v include support vector

machines and boosting, [63, 78].

9Reference [8] focusses specifically on the Lasso problem; we compare with [8] in subsection 6.6.2.
10Only references [23, 24] consider random networks.
11Note that [78] studies only the parallel network architecture, with a fusion center, and it does not propose an algorithm to solve

the l
1

–regularized logistic regression problem on generic networks, the case that we address here.
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Simulation setup

We consider a supergraph with N = 20 nodes and |E| = 37 undirected edges (74 arcs). Nodes are uniformly

distributed on a unit square and pairs of nodes with distance smaller than a radius r are connected by an

edge. For networks with link failures, the link failures of different arcs at the same time slot are independent

and the failures of the same arc at different time slots are independent also. Link failure probabilities ⇡ij

are generated as follows: ⇡ij = k
�2ij
r2 , �ij < r, where k = 0.5. Each node has Nd = 5 data samples.

Each feature vector aij 2 Rd, m = 20, and the “true” vector w
true

have approximately 60% zero entries.

Nonzero entries of aij and w
true

, and the offset v
true

are generated independently, from the standard normal

distribution. Class labels bij are generated by: bij = sign

⇣

a>ijwtrue

+ v
true

+ ✏ij
⌘

, where ✏ij comes from

the normal distribution with zero mean and variance 0.1. The penalty parameter � is set to be 0.5 · �
max

,

where �
max

is the maximal value of � above which the solution to (6.33) is w?
= 0 (see ([78], subsection

10.2) how to find �
max

.) We set ki and k0i as follows. We solve the unconstrained version of (6.33) via

the centralized subgradient algorithm; we denote the corresponding solution by w• and v•. We set ki =

(1 + ri) · kw•k2, k0i = (1 + r0i) · |v•|, where ri and r0i are drawn from the uniform distribution on [0, 1].

Thus, the solution to problem (6.33) is in the interior of the constraint set. (Similar numerical results to

the ones presented are obtained when the solution is at the boundary.) To update xi with P–AL–G and

P–AL–MG (6.11), we solve (6.11) via the projected subgradient algorithm.

Algorithms that we compare with

In the first set of experiments, we consider AL–BG for (static) networks; in the second set of experiments, we

test AL–G and AL–MG on networks with link failures. We compare our algorithms with the ones proposed

in [23, 2, 22, 24]12 and in [98]. References [23, 2, 22, 24] propose a primal projected subgradient algorithm,

here refer to as PS (Primal Subgradient.) PS, as an intermediate step, computes weighted average of the

optimal point estimates across node i’s neighborhood. Averaging weights have not been recommended

in [23, 2, 22, 24]; we use the standard time-varying Metropolis weights, see [65], (6.11). Reference [98]

proposes an incremental primal subgradient algorithm, here referred to as MCS (Markov chain subgradient.)

With MCS, the order of incremental updates is guided by a Markov chain, [98].13 We simulate MCS and PS

with fixed subgradient step size rather than the diminishing step size, as the former yields faster convergence.

We compare the algorithms based on two criteria. The first is the amount of inter-neighbor communica-

12We simulate the algorithms in [23, 2, 22, 24] with symmetric link failures.
13Convergence for MCS has been proved only with the projection onto a public constraint set, but we simulate it here with

the straightforward generalization of the projection onto private constraint sets; MCS showed convergence for our example in the
private constraints case also.
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tion that the algorithms require to meet a certain accuracy. We count the total number of radio transmissions

(counting both successful and unsuccessful transmissions.) The second is the total number of floating point

operations (at all nodes.) In networked systems supported by wireless communication (e.g., WSNs,) the

dominant cost (e.g., power consumption) is induced by communication. Total number of floating point op-

erations depends on the algorithm implementation, but the results to be presented give a good estimate of

the algorithms’ computational cost. It may be possible to reduce the computational cost of AL–G, AL–MG,

and AL–BG by a more computationally efficient solutions to problems (6.11) and (6.32) than (here adopted)

projected subgradient method.

Denote by f? the optimal value of (6.33). We compare the algorithms in terms of the following metric:

errf =

1

N

N
X

i=1

(f(xi)� f?
) ,

where xi is the estimate of the optimal solution available at node i at a certain time.

With our AL–G, AL-MG, and AL–BG algorithms, the simulations to be presented use an increasing

sequence of AL penalty parameters (see the end of Section 6.4,) which, after some experimentation, we set

to the following values: ⇢t = tA⇢
+B⇢, t = 0, 1, ..., with A⇢ = 1.3, and B⇢ = 1. We also implemented the

algorithms with different and increasing ⇢’s assigned to each dual variable, with the scheme for adjusting

⇢’s explained at the end of Section 6.4, with �
(i,j)

= ⌘
(i,j)

= 0.3, and ��
(i,j)

= �⌘
(i,j)

= 1.2. The latter

choice also showed convergence of AL–G, AL-MG, and AL–BG, but the former yielded faster convergence.

Our simulation experience shows that the convergence speed of AL–G, AL-MG, and AL–BG depend on the

choice of ⇢t, but the optimal tuning of ⇢t is left for future studies. With our proposed methods, we set the

number of inner iterations as follows. AL–G’s t-th slow slot has 15900N inner iterations (ticks of T ); AL–

MG’s 6000N +1350tN ; and AL–BG’s 500N . With PS and MCS, and a fixed step size, the estimates f(xi)

converge only to a neighborhood of f?. There is a tradeoff between the limiting error errf (1) and the rate

of convergence with respect to the stepsize ↵: larger ↵ leads to faster convergence and larger errf (1). We

notice by simulation that AL–G, AL–MG, and AL–BG converge to a plateau neighborhood of f?; after that,

they improve slowly; call the error that corresponds to this plateau errf (ss). To make the comparison fair

or in favor of PS and MCS, we set ↵ for the PS and MCS algorithms such that the errf (1) for PS and MCS

is equal (or greater) than the err(ss) attained by AL–G, AL–MG, and AL–BG.
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Results: Static network

Figure 6.2 (top left) plots errf versus the number of (m = 20-dimensional vector) transmissions (cumula-

tively at all nodes.) We can see that AL–BG outperforms PS and MCS by one to two orders of magnitude.

AL–BG needs about 0.3 · 105 transmissions to reduce errf below 0.001, while MCS and PS need, respec-

tively, about 4 ·105 and 18 ·105 transmissions for the same precision. With respect to the number of floating

point operations (Figure 6.2, top right,) AL–BG needs more operations than MCS and PS; 45 · 108 for AL–

BG versus 13 ·108 for PS, and 2 ·108 for MCS. Thus, with respect to MCS, AL–BG reduces communication

at a cost of additional computation. Note that with AL–BG, MCS, and PS, due to private constraints, node

i’s estimate xi may not be feasible at certain time slots; in this numerical example, AL–BG, MCS, and PS

all produced feasible solutions at any time slot, at all nodes. A drawback of MCS in certain applications,

with respect to PS and AL–BG, can be the delay time that MCS needs for the “token” to be passed from

node to node as MCS evolves, see [98].

Results: Random network

Figure 6.2 (bottom left) plots errf versus the total number of transmissions. AL–MG and AL–G converges

faster than PS. To decrease errf below 5 · 10�4, AL–MG and AL–G require about 1.2 · 106 transmissions,

and AL–G 1.5 · 106 transmissions; PS requires about 3.7 · 106 transmissions to achieve the same precision.

Figure 6.2 (bottom right) plots errf plots versus the total number of floating point operations. PS requires

less computation than AL–G and AL–MG. To decrease errf below 5 · 10�4, AL–MG and AL–G require

about 69 · 109 transmissions; PS requires about 2.8 · 109 transmissions for same precision. With each of the

algorithms AL–G, AL–MG, and PS, each node i’s estimate xi was feasible along time slots.

6.6.2 Cooperative spectrum sensing for cognitive radio networks

We now consider cooperative spectrum sensing for cognitive radio networks. Cognitive radios are an emerg-

ing technology for improving the efficiency of usage of the radio spectrum. (For a tutorial on cognitive radios

see, e.g., [100].) We focus here on the cooperative spectrum sensing approach that has been studied in [8, 5].

Suppose that Nr cognitive radios, located at xr positions in 2D space, cooperate to determine: 1) the spatial

locations; and 2) the power spectrum density (PSD) of primary users. Primary users can be located on Ns

potential locations, xs, on
p
Ns ⇥

p
Ns square grid (See Figure 6.3, top, in [5].) For brevity, we omit the

details of the problem setup; we refer to reference [8], subsection II-A, for the problem setup, and section II

(eqn. (6.2)) in the same reference, for the Lasso optimization problem of estimating the locations and the
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Figure 6.2: Performance of AL–BG, MCS, and PS on a static network (top figures,) and the AL–G, AL–MG
and PS algorithms on a random network (bottom figures.) Left: total number of transmissions; Right: total
number of floating point operations.

PSD of primary users. This (unconstrained) optimization problem in eqn. (6.2) in [8] fits the generic frame-

work in eqn. (6.1); thus, our algorithms AL–G, AL–MG and AL–BG apply to solve the problem in (6.2)

in [8]. Throughout, we use the same terminology and notation as in [8]. We now detail the simulation

parameters. The number of potential sources is Ns = 25; they are distributed on a regular 5 ⇥ 5 grid over

the square surface of 4km2. Channel gains �sr are modeled as �sr = min

n

1, A
kxs�xrka

o

, with A = 200

[meters] and a=3. The number of basis rectangles is Nb = 6, and the number of frequencies at which cog-

nitive radios sample PSD is Nf = 6. There are 3 active sources; each source transmits at 2 out of Nb = 6

possible frequency bands. After some experimentation, we set the Lasso parameter � (see (6.2) in [8]) to

� = 1; for a distributed algorithm to optimally set �, see [8]. We consider the supergraph with Nr = 20

nodes (cognitive radios) and |E| = 46 undirected edges (92 arcs.) Nodes are uniformly distributed on a unit

2km⇥2km square and the pairs of nodes with distance smaller than r =750m are connected.

For static networks, we compare AL–BG (our algorithm) with MCS, PS, and an algorithm in [8]. Ref-

erence [8] proposes three (variants of ADMM type algorithms, mutually differing in: 1) the total number of

primal and dual variables maintained by each node (cognitive radio); 2) the method by which nodes solve

local optimizations for primal variable update (These problems are similar to (6.32).) We compare AL–BG

with the DCD-Lasso variant, because it has the same number of primal and dual variables as AL–BG and

a smaller computational cost than the alternative DQP-Lasso variant. With AL–BG, we set the number of
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inner iterations as follows: t-th slow time scale slot has 100N ticks of T (inner iterations). Further, with

AL–BG, we use an increasing sequence of AL penalty parameters, ⇢t = K⇢At
⇢ + C⇢, t = 0, 1, ..., with

K⇢ = 1, A⇢ = 1.15 and C⇢ = 3. With DCD-Lasso, we use fixed ⇢ = ⇢t, as in [8, 5]. 14 After experimenta-

tion, we set ⇢ = 8. We solve the local problems in AL–BG (eqn. (6.32)), AL–G and AL–MG (eqn. (6.11),)

by an efficient block coordinate method in [8] (see eqn. (13) in [8].) For the networks with link failures, we

have compared our AL–G and AL–MG algorithms with PS (in [23, 2, 22, 24].) We briefly comment on the

results. Both AL–G and AL–MG converge to a solution, in the presence of link failures as in 6.6.1; they

converge slower than the PS algorithm, both in terms of communication and computational cost.

Results for static network

Figure 6.3 (left) plots errf for PS, MCS, DCD-Lasso, and AL–BG versus the number of transmissions (at all

nodes.) AL–BG shows improvement over the other algorithms. To achieve the precision of errf  0.044,

AL–BG requires about 5·104 transmissions; MCS 20·104 transmissions; DCD-Lasso 25·104 transmissions;

PS 50 · 104 transmissions. Limiting error for PS is 0.027 (not visible in the plot.) Figure 6.3 (right) plots
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Figure 6.3: Performance of AL–BG, DCD-Lasso, PS and MCS algorithms on static CR network. Left:
total number of transmissions (cumulatively, at all nodes). Right: total number of floating point operations
(cumulatively, at all nodes.)

the errf for the PS, MCS, DCD-Lasso, and AL–BG algorithms versus the total number of floating point

operations. AL–BG, MCS and DCD-Lasso show similar performance, while PS is slower.

6.7 Conclusion

We considered very general distributed optimization problems with private, possibly nondifferentiable costs

and private constraints. Nodes utilize gossip to communicate through a generic connected network with

14It may be possible to improve on the speed of DCD-Lasso by selecting appropriate time varying ⇢ = ⇢t; this is outside of our
scope.
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failing links. We proposed a novel distributed algorithm, the AL–G algorithm. AL–G handles private costs,

private constraints, random networks, asymmetric link failures, and gossip communication.

This contrasts with existing augmented Lagrangian dual methods that handle only static networks and

synchronous communication, while, as mentioned, the AL–G algorithm handles random networks and uses

gossip communication. In distinction with existing distributed gradient algorithms that essentially handle

symmetric link failures, AL–G handles asymmetric link failures.

AL–G updates the dual variables synchronously via a standard method of multipliers, and it updates

the primal variables via a novel algorithm with gossip communication, the P–AL–G algorithm. P–AL–G

is a nonlinear Gauss-Seidel type algorithm with random order of minimizations. Nonlinear Gauss-Seidel

was previously shown to converge only under the cyclic or the essentially cyclic rules, [14, 15]; we prove

convergence of P–AL–G, which has a random minimization order. Moreover, our proof is different from

standard proofs for nonlinear Gauss-Seidel, as it uses as main argument the expected decrease in the ob-

jective function after one Gauss-Seidel step. We studied and proved convergence of two variants of AL–G,

namely, AL–MG and AL–BG. An interesting future research direction is to develop a fully asynchronous

dual algorithm that updates both the dual and primal variables asynchronously.

We demonstrated the effectiveness of our method on two simulation examples, l
1

–regularized logistic

regression for classification, and cooperative spectrum sensing for cognitive radios.
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Chapter 7

Distributed Augmented Lagrangian

Methods: Costs with Bounded Hessian

7.1 Introduction

In Chapter 6, we developed and analyzed distributed augmented Lagrangian (AL) dual methods for generic,

nondifferentiable costs and private constraints. In this Chapter, we assume a restricted class of unconstrained

problems with differentiable costs and bounded Hessian, but we establish strong convergence rate guaran-

tees.

To state the problem, we recall the algorithm AL–BG from Chapter 6. Abstractly, this algorithm updates

the primal variables xi(k) and dual variables ⌘i(k) (at the outer iteration level) as follows:

(x
1

(k + 1), ..., xN (k + 1) ) = argmin

(x
1

,...,xN )2RdN La (x1, ..., xN ; ⌘
1

(k), ..., ⌘N (k) ) (7.1)

⌘i(k + 1) = ⌘i(k) + ↵
X

j2Oi

Wij (xi(k + 1)� xj(k + 1) ) , (7.2)

where ↵ > 0 is the (dual) step-size, and La : RdN ⇥ RdN ! R, is the AL function:

La(x1, ... , xN ; ⌘
1

, ..., ⌘N ) =

N
X

i=1

fi(xi) +
N
X

i=1

⌘>i xi +
⇢

2

X

{i,j}2E, i<j

Wij kxi � xjk2. (7.3)

Differently from Chapter 6, we employ here a straightforward modification by weighting the (undirected)

link {i, j} 2 E with the weight Wij . Chapter 6 developed randomized, iterative methods, to solve (7.1) at

a fast time scale. We shall consider here the primal methods from Chapter 6, as well as other (deterministic
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and randomized) variants.

Specifically, we study a class of deterministic and randomized methods of type (7.1)–(7.2). Both de-

terministic and randomized methods update the dual variables via (7.2). With the deterministic variants,

step (7.1) is done via multiple inner iterations of either: 1) the NJ method on L(·; ⌘(k)); or 2) the gra-

dient descent on L(·; ⌘(k)). With both cases, one inner iteration corresponds to one per-node broadcast

communication to all neighbors. With the randomized methods, step (7.1) is done either via multiple inner

iterations of: 1) a randomized NGS method on L(·; ⌘(k)); or 2) a randomized coordinate gradient descent

on L(·; ⌘(k)). Hence, we consider the total of four algorithm variants: 1) deterministic NJ; 2) deterministic

gradient; 3) randomized NGS (this is AL–BG in [38]); and 4) randomized gradient. With all variants, we

establish linear convergence rates in the total number of elapsed per-node communications K(k) after k

outer iterations, assuming that nodes know beforehand (a lower bound on) h
min

, (an upper bound on) h
max

,

and (a lower bound) on the network spectral gap �
2

.1 (See [9] how this knowledge can be acquired in a

distributed way.) With the deterministic variants, the distance to the solution x? of (1.1), at any node i and

any outer iteration k is upper bounded as:

kxi(k)� x?k  RK(k)
p
N max

⇢

Dx,
2D⌘p
�
2

h
min

�

. (7.4)

In (7.4), R 2 [0, 1) is the convergence rate specified below, Dx := kxi(0)�x?k is the initial distance to the

(primal) solution2; and 2) D⌘ :=

⇣

1

N

PN
i=1

krfi(x?)k
⌘

2

.

With the randomized methods, we show the rate in the expected error norm:

E [ kxi(k)� x?k ]  RE[K(k) ]
p
N max

⇢

Dx,
2D⌘p
�
2

h
min

�

, (7.5)

where E [K(k) ] is the expected number of elapsed per-node communications up to iteration k.

Table 7.1 shows the communication rates R for the four algorithm variants. (See ahead paragraph with

heading Notation for the meaning of symbol ⌦.) The quantity � := h
max

/h
min

is the condition number

of the fi’s. We comment on the established rates. For example, for the deterministic NJ method, we can

see that the rate R (the smaller the better) is jointly negatively affected by the condition number � and the

network “connectivity,” measured by �
2

. For a poorly connected chain network of N nodes, �
2

= ⇥(1/N2

),

and hence the rate is 1 � ⌦
⇣

1

(1+�)N2

⌘

. In contrast, for well-connected expander networks, �
2

= ⌦(1),

i.e., it stays bounded away from zero, and so the rate essentially does not deteriorate with the increase of

1The spectral gap �
2

is the second smallest eigenvalue of the weighted Laplacian matrix L := I �W.
2We assume throughout that all nodes start with the same initial point xi(0), say xi(0) = 0.
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Convergence Rate R
Deterministic, NJ: 1� ⌦

⇣

�
2

1+�

⌘

Deterministic, Gradient: 1� ⌦
 

�
2

1+�

log

⇣
1+

1

1+�

⌘

log(1+�)+ log

(

��1

2

)

!

Randomized, NGS: 1� ⌦
✓

�
2

1+�
1

log(1+�)+ log

(

��1

2

)

◆

Randomized, Gradient: 1� ⌦
✓

�
2

(1+�)2
1

log(1+�)+ log

(

��1

2

)

◆

Table 7.1: Convergence rates R in (7.4) (deterministic methods) and (7.5) (randomized methods) for the
four variants of (7.1)–(7.2).

N . Further, comparing the communication rates R of the deterministic NJ and the deterministic gradient

methods, we can see that the NJ variant has a slightly better dependence on the underlying network. This is

natural, as the gradient method usually has a much smaller computational cost per-communication that the

NJ method. Finally, we can see that deterministic NJ has a slightly better rate than the randomized NGS (a

natural randomized counterpart), while the rates of the deterministic and randomized gradient methods are

very similar, at least for a large �.

It is worth noting that, with our deterministic and randomized gradient methods of type (7.1)–(7.2),

both inner (primal) and outer (dual) iterations involve only calculations of the gradientsrfi’s and weighted

averaging of certain quantities across nodes’ neighborhoods, just like the distributed methods in, e.g., [2, 12],

and our Nesterov-based methods in Chapters 2 and 3. Although the methods in [9] achieve close-to-optimal

convergence rates when the costs fi’s are not strongly convex, they do not converge linearly in the presence

of strong convexity. In contrast, we show that the AL methods with gradient updates here achieve linear

convergence, both in terms of the number of per-node communications and per-node gradient evaluations.

Our final comment is on the quantity D⌘ :=

⇣

PN
i=1

krfi(x?)k
⌘

1/2
in (7.4) and (7.5) that arises from

our analysis. This quantity measures, in a sense, the difficulty of (1.1) when solved by distributed methods

like (7.1)–(7.2). The larger it is, the more difficult the problem is. If, in an extreme, the fi’s all have the

same minimizer, say y?, then y? is also the minimizer of (1.1) (We have y? = x?.) Such problem instance

is “easy,” because nodes do not need communication with other nodes to obtain the global solution to (1.1).

Note that the “easyness” of the problem is in agreement with the value D⌘ = 0. On the other hand, if the

nodes’ local minimizers (of the fi’s), say y?i ’s, are very different, then y?i of a node i may be very different

from x?. Hence, node i needs communication with other nodes to recover x?. This is in agreement with a

large D⌘ in such scenarios. (See ahead Lemma 7.5 for the relation of D⌘ with the dual optimum.)

Brief comment on the literature. Augmented Lagrangian (AL) and alternating direction method of
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multipliers (ADMM) methods have been studied for a long time; e.g., references [31, 32, 33] show locally

linear or superlinear convergence rates of AL methods. Recently, there has been a strong renewed interest

and progress in the convergence rate analysis of the classical AL and ADMM methods. References [34, 35]

show that the ADMM method converges globally linearly, for certain more general convex costs than ours.

These works are not concerned with distributed optimization over a generic network (1.1) that we consider

here, but their results may imply linear convergence of the D-Lasso and related methods in, e.g., [8, 5].

Thus, the results in [34, 35] may imply linear convergence only for a sub-class of methods considered here.

Further, our analysis is technically different from those in [34, 35]. Reference [36] analyzes the AL methods

under more general costs than ours and is again not concerned with distributed optimization (1.1). The

work [36] is related to ours in the sense that it analyzes the AL methods when the primal problems are

solved inexactly, but, under their setup, the AL methods converge to a solution neighborhood. By contrast,

in our setup, distributed AL methods converge linearly to the exact solution, in spite of the inexact solutions

of the (inner) primal problems.

Reference [44] considers distributed optimization problem (1.1) over generic networks as we do here,

under a wider class of functions than what we study. The reference shows O (1/K) rate of convergence in

the number of per-node communications for a distributed ADMM method. Hence, with respect to our work,

[44] studies a wider class of problems but establishes much slower rates. Reference [45] considers both the

resource allocation problems and (1.1) and develops accelerated dual gradient methods. For problems (1.1),

this reference gives the methods’ local rates as 1�⌦
⇣

q

�
min

(AA>
)

� �
max

(AA>
)

⌘

, where A is the edge-node incidence

matrix and �
min

(·) and �
max

(·) denote the minimal and maximal eigenvalues, respectively. Also, [45]

considers ordinary dual problems, with the AL parameter ⇢ = 0; in contrast, we consider both the cases

⇢ = 0 and ⇢ > 0.

The works [28, 101, 102, 103] are related to our deterministic gradient AL variant. These references

study distributed primal-dual methods that resemble our methods when the number of inner iterations ⌧

is set to one (but are not the same.) These works do not establish convergence rates of their algorithms.

Reference [104] studies a similar primal-dual method, based on the Arrow-Hurwitz-Uzawa method, in a

centralized setting, and under more general costs than assumed here. The reference shows convergence to

saddle point neighborhoods at rate O(1/
p
k) – a much slower rate than ours due to the assumed different

(wider) function class.

Chapter organization. Section 7.2 details the network and optimization models that we assume,

presents our deterministic AL distributed methods, and states our results on their convergence rates. Sec-

tion 7.3 proves these results. Section 7.4 presents our randomized distributed AL methods and their rates,
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while Section 7.5 proves these rates. Section 7.6 provides a simulation example with l
2

-regularized logistic

losses. Finally, we conclude in Section 7.7.

Notation. We denote by Rd the d-dimensional real coordinate space. Further, we denote by: al the

l-th entry of vector a; Alm or [A]lm the entry in the l-th row and m-th column of a matrix A; A> the

transpose of a matrix A; I , 0, 1, and ei, respectively, the identity matrix, the zero matrix, the column vector

with unit entries, and the i-th column of I; J the N ⇥ N ideal consensus matrix J := (1/N)1 1

>; k · kl
the vector (respectively, matrix) l-norm of its vector (respectively, matrix) argument; k · k = k · k

2

the

Euclidean (respectively, spectral) norm of its vector (respectively, matrix) argument; �i(·) the i-th smallest

eigenvalue; A � 0 means that the Hermitian matrix A is positive definite; bac the integer part of a real

scalar a; r�(x) and r2�(x) the gradient and Hessian at x of a twice differentiable function � : Rd ! R,

d � 1; P(·) and E[·] the probability and expectation, respectively; and I(A) the indicator of event A. For

two positive sequences ⌘n and �n, ⌘n = O(�n) means that lim supn!1
⌘n
�n

<1; ⌘n = ⌦(�n) means that

lim infn!1
⌘n
�n

> 0; and ⌘n = ⇥(�n) means that ⌘n = O(�n) and ⌘n = ⌦(�n).

The results in this Chapter are to be submitted in [48].

7.2 Deterministic Distributed Augmented Lagrangian Methods

Subsection 7.2.1 introduces the network and optimization models that we assume; Subsection 7.2.2 presents

our two deterministic distributed AL methods, namely the method with the NGS primal updates, and the

method with gradient-type primal updates. Subsection 7.2.3 states and interprets our convergence rates

results.

7.2.1 Optimization and network models

Optimization model. We consider a distributed optimization problem where N nodes solve the uncon-

strained problem (1.1). The function fi : Rd ! R is known only by node i. We impose the following

structure on the fi’s.

Assumption 7.1 (Optimization model) The functions fi : Rd 7! R are convex, twice continuously differen-

tiable, and have bounded Hessian, i.e., there exist 0 < h
min

< h
max

<1, such that, for all i:

h
min

I � r2fi(x) � h
max

I, 8x 2 Rd. (7.6)
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Under Assumption 7.1, problem (1.1) is solvable and has the unique solution x?. Denote by f?
=

infx2Rd f(x) = f(x?) the optimal value. Further, Assumption 7.1 implies Lipschitz continuity of therfi’s

and strong convexity of the fi’s, i.e., for all i:

krfi(x)�rfi(y)k  h
max

kx� yk, 8x, y 2 Rd

fi(y) � fi(x) +rfi(x)> (y � x) +
h
min

2

kx� yk2, 8x, y 2 Rd.

Communication model. We associate with problem (1.1) a network V of N nodes, described by the

graph G = (V, E), where E ⇢ V ⇥ V is the set of edges.

Assumption 7.2 (Network model) The graph G is connected, undirected, and simple (no self/multiple links.)

Weight matrix and weighted Laplacian. Assign to graph G a symmetric, stochastic (rows sum to one

and all the entries are non-negative), N ⇥ N weight matrix W , with, for i 6= j, Wij > 0 if and only if,

{i, j} 2 E, and Wii = 1�
P

j 6=iWij . Denote also fW := W � J. (See (7.3) for the role of W .) We require

that W is positive definite and that �N�1

(W ) < 1. These requirements on the matrix W can be fulfilled by

nodes without knowledge of any global network parameters; see Chapter 2. Also, denote by L := I �W

the weighted graph Laplacian matrix. The quantity �
2

(L) = 1 � µ 2 [0, 1) (the larger it is, the better) is

the network spectral gap and measures, in a sense, how well connected the network is. For example, for a

chain N -node network, �
2

(L) = ⇥

�

1

N2

�

, while, for expander graphs, it stays bounded away from zero as

N grows.

7.2.2 Deterministic Distributed Augmented Lagrangian Methods

We present two variants of deterministic distributed AL algorithms of type (7.1)–(7.2). Section 7.3 explains

how we derive these methods. They mutually differ in step (7.1). Both methods solve (7.1) through the inner

iterations, indexed by s, and perform (7.2) in the outer iterations, indexed by k. With the first variant, nodes

update their primal variables via a nonlinear Jacobi (NJ) method on La(· ; ⌘(k)) in (7.3); with the second

variant, they use a gradient descent method on La(· ; ⌘(k)). At outer iterations k, with both variants, nodes

update the dual variables via the dual gradient ascent method (while the primal variables ar fixed).

The distributed AL algorithm with nonlinear Jacobi primal updates. We proceed with detailing

the first algorithm variant. Later, to present the second variant, we only indicate the differences of the two

methods. Denote by: xi(k, s) the node i’s primal variable at the inner iteration s and outer iteration k; and

⌘i(k) the node i’s dual variable at the outer iteration k. Further, as in (7.1)–(7.2), denote by xi(k + 1)
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the node i’s primal variable at the end of k-th outer iteration. We make the following relation between the

primal variables at the inner and outer iterations: xi(k, s = 0) := xi(k), and xi(k + 1) := xi(k, s = ⌧).In

addition, nodes maintain a weighted average of their own and the neighbors’ primal variables xi(k, s) :=

P

j2Oi
Wij xj(k, s). Recall that Oi = {j 2 {1, ..., N} : Wij > 0} is the neighborhood set of node i,

including node i.

The algorithm has, as the tuning parameters, the weight matrix W , the number of inner iterations per

outer iteration ⌧ , the AL penalty parameter ⇢ � 0, and the dual step-size ↵ > 0. The algorithm is given

in Algorithm 7. Its operation is summarized as follows. At each inner iteration s, s = 0, ..., ⌧ � 1, each

Algorithm 7 Distributed deterministic AL with nonlinear Jacobi updates
1: (Initialization) Node i sets k = 0, xi(k = 0) 2 Rd, xi(k = 0) = xi(0), and ⌘i(k = 0) = 0.
2: (Inner iterations) Node cooperatively run the nonlinear Jacobi method for s = 0, 1, ..., ⌧ � 1, with xi(k, s =

0) := xi(k) and xi(k, s = 0) := xi(k):

xi(k, s+ 1) = argmin x
i

2Rd

✓

fi(xi) + (⌘i(k)� ⇢xi(k, s))
> xi +

⇢ kxik2

2

◆

(7.7)

xi(k, s+ 1) =

X

j2O
i

Wij xj(k, s+ 1), (7.8)

and set xi(k + 1) := xi(k, s = ⌧), xi(k + 1) = xi(k, s = ⌧).
3: (Outer iteration) Node i updates the dual variable ⌘i(k) via:

⌘i(k + 1) = ⌘i(k) + ↵ (xi(k + 1)� xi(k + 1)) . (7.9)

4: Set k 7! k + 1 and go to step 2.

node i solves the local optimization problem (7.7), to obtain xi(k, s+1); then, node i broadcasts xi(k, s+1)

to all its neighbors j 2 Oi � {i}, as well as receives xj(k, s + 1), for all j 2 Oi � {i}; upon reception

of the xj(k, s + 1)’s, node i computes xi(k, s + 1) via (7.8). At outer iteration k, node i updates ⌘i(k)

via (7.9). (Note that (7.9) is equivalent to (7.2).) Note that each inner iteration requires one (d-dimensional)

broadcast transmission per node, while the outer (dual) iterations do not require communication. Overall,

node i performs ⌧ broadcast transmissions per k.

To avoid notational clutter, we assume throughout, with all proposed algorithms, that all nodes use the

same initial primal variable xi(0) = xj(0), 8i, j; for example, nodes can set xi(0) = 0, 8i.

The distributed AL algorithm with gradient-type primal updates. As noted, this algorithm variant

is very similar to its alternative. The only difference is the following. In Algorithm 7, replace the nonlinear

Jacobi update (7.7) with the gradient descent update on La(;̇⌘(k)) in (7.3). After algebraic manipulations,
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one obtains the following update at each node i:

xi(k, s+ 1) = (1� � ⇢) xi(k, s) + � ⇢xi(k, s)� � ( ⌘i(k) +rfi(xi(k, s)) ) , (7.10)

where � > 0 is the (primal) step-size parameter. Hence, in addition to W , ↵, and ⇢, current algorithm has

an additional tuning parameter �.

7.2.3 Linear convergence: Statements of results

We are now ready to state our Theorem on the linear convergence of Algorithm 7 (deterministic NJ). 3

Recall the weighted Laplacian matrix L = I � W , and its second largest eigenvalue �
2

= �
2

(L) > 0.

Recall Dx := kx
1

(0)� x?k, and D⌘ :=

⇣

1

N

PN
i=1

krfi(x?)k2
⌘

1/2
.

Theorem 7.3 (Convergence rate: Deterministic nonlinear Jacobi) Consider Algorithm 7 under Assumptions 7.1

and 7.2, and suppose that the algorithm and network parameters satisfy the following:

↵  h
min

(7.11)
✓

⇢

⇢+ h
min

◆⌧

<
1

3

�
2

(L)h
min

⇢+ h
max

. (7.12)

Then, at any node i, xi(k) generated by Algorithm 7 converges linearly (in the outer iterations k) to the

solution x?, with rate:

r
det,nj := max

⇢

1

2

+

3

2

✓

⇢

⇢+ h
min

◆⌧

,

✓

1� ↵�
2

(L)
⇢+ h

max

◆

+

3↵

h
min

✓

⇢

⇢+ h
min

◆⌧ �

< 1, (7.13)

and there holds:

kxi(k)� x?k  (r
det,nj)

k
p
N max

(

Dx,
2D⌘

p

�
2

(L)h
min

)

. (7.14)

Condition 7.12 holds, for example, if ⇢  h
min

, ↵ = h
min

, and:

⌧ �

2

6

6

6

log

⇣

3(1+�)
�
2

(L)

⌘

log(2)

3

7

7

7

, (7.15)

where � = h
max

/h
min

is the condition number of the fi’s. Thus, ⌧ needs to grow only moderately with

N . For a N -node chain network, �
2

(L) = ⇥(1/N2

), and hence it suffices to take ⌧ = ⇥(logN). The

3We shall state the Theorems on the rates for our four methods in terms of the outer iterations k, and subsequently we derive the
communication rates in Table 7.1.
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logarithmic growth of ⌧ also suffices with any other type of a N -node connected network. For expander

graphs, one can take ⌧ = ⇥(1).

We make several remarks with respect to Theorem 7.3. First, the algorithm converges linearly in the

inner iterations (number of per-node communications) as well, with the rate R := r1/⌧ = (r
det,nj)

1/⌧ .

Taking:

⌧ =

2

6

6

6

log

⇣

6(1+�)
�
2

(L)

⌘

log(2)

3

7

7

7

, ↵ = ⇢ = h
min

,

and using Taylor expansions, one obtains the communication rate R in Table 7.1. Second, for a fixed h
min

,

h
max

, L, and ⇢ > 0, there is a tradeoff with respect to the choice of ⌧ . Increasing ⌧ decreases (improves)

the convergence rate r at the outer iteration level, but increases (deteriorates) the convergence rate at the

inner iteration level (as r1/⌧ .) Finally, it is worth noting that, although ⇢ = 0 gives the best upper bound

in (7.75), it may not correspond to the optimal actual rate. Indeed, reference [105] considers the special

case of consensus problem, where each fi(x) : R ! R, is of the form fi(x) =

1

2

(x � ai)2, ai 2 R, and

a distributed ADMM method, which corresponds to a positive ⇢ and ⌧ = 1 in our setting. The reference

shows that it is optimal to take the (nonzero) ⇢ = ⇥

⇣

1

�
2

(L)

⌘

, in which case the rate r is 1� ⌦
⇣

p

�
2

(L)
⌘

;

in contrast, for ⇢ = 0, the rate r is poorer and is 1 � ⌦ (�
2

(L)). An interesting research direction is to

address the optimal tuning of the parameters ⌧ and ⇢ for the generic fi’s.

We now consider the variant with gradient primal updates and establish its linear convergence rate.

Theorem 7.4 (Convergence rate: Deterministic gradient updates) Consider Algorithm 7 where step (7.7) is

replaced with (7.10), and let Assumptions 7.1 and 7.2 hold. Further, suppose that the algorithm and network

parameters satisfy the following:

↵  h
min

(7.16)

�  1

h
max

+ ⇢
(7.17)

(1� � h
min

)

⌧ <
1

3

�
2

h
min

⇢+ h
max

. (7.18)

Then, at any node i, xi(k) converges linearly (in the outer iterations k) to the solution x?, with rate:

r
det,grad := max

⇢

1

2

+

3

2

(1� � h
min

)

⌧ ,

✓

1� ↵�
2

(L)
⇢+ h

max

◆

+

3↵

h
min

(1� � h
min

)

⌧
�

< 1, (7.19)
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and there holds:

kxi(k)� x?k  (r
det,grad)

k
p
N max

(

Dx,
2D⌘

p

�
2

(L)h
min

)

. (7.20)

Condition 7.18 holds, for example, if ⇢  h
min

, � =

1

h
max

+⇢ , and: and:

⌧ �

2

6

6

6

log

⇣

3(1+�)
�
2

(L)

⌘

log

⇣

�+1

�

⌘

3

7

7

7

. (7.21)

We comment on Theorem 7.4. First, the Theorem assures a linear convergence in the inner iterations (num-

ber of per-node communications) as well, with rate R
det,grad = (r

det,grad)
1/⌧ . Taking:

⌧ =

2

6

6

6

log

⇣

6(�+1)

�
2

(L)

⌘

log

⇣

�+1

�

⌘

3

7

7

7

, ↵ = ⇢ = h
min

, � =

1

⇢+ h
max

,

and using Taylor expansions, one obtains the communication rate in Table 7.1. The method has computation-

ally simple (inner and outer) iterations, involving only gradient calculations and certain weighted averaging

across nodes’ neighborhoods. To our best knowledge, this is the first linear convergence rate result estab-

lished for problems of type (1.1) (and the costs as general as given by Assumption 7.1), for the methods

that involve only simple calculations (as opposed to the methods that involve local optimizations at each

node, as, e.g., Algorithm 7.) Indeed, the gradient based methods in, e.g., [2], [9], as well as our methods in

Chapters 2 and 3, require diminishing step-sizes for convergence to the exact solution. As a consequence,

they do not achieve linear convergence rates on the functions class defined by Assumption 7.1. The AL

method with gradient updates studied here converges to the exact solution under constant step-sizes ↵ and

�, which enables a linear convergence.

7.3 Convergence rate analysis: Proofs of Theorems 7.3 and 7.4

The goal of the current Section is to prove Theorems 7.3 and 7.4. The section is organized as follows. Sub-

section 7.3.1 sets up the analysis by introducing certain helpful objects and giving an alternative, compact

representation of Algorithm 7 (see ahead Algorithm 8). Subsection 7.3.2 states and proves certain auxiliary

Lemmas and finally proves Theorem 7.3.
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7.3.1 Setting up analysis

For notational simplicity (to avoid extensive use of Kronecker products) we assume d = 1 (scalar optimiza-

tion variable), but our analysis extends to a generic d > 1. We base our analysis on the following nonlinear

saddle point system of equations:

rF (x) + ⌘ + ⇢Lx = 0 (7.22)

Lx = 0 (7.23)

1

>⌘ = 0. (7.24)

In (7.22), ⇢ � 0 is the AL penalty parameter, and F : RN 7! R is defined by F (x) = F (x
1

, ..., xN ) =

f
1

(x
1

)+f
2

(x
2

)+ ...+fN (xN ). In (7.22), x 2 RN is the primal variable, while ⌘ 2 RN is the dual variable;

the i-th coordinate of x and ⌘ correspond to node i’s primal and dual variables, respectively. The following

Lemma demonstrates that solving (7.22) actually provides the solution to (1.1) at each node i.

Lemma 7.5 Consider (1.1), let Assumptions 7.1 and 7.2 hold, and consider the nonlinear system (7.22).

Then, there exists a unique (x•, ⌘•) 2 RN ⇥RN that satisfies (7.22)–(7.24), with x• = x?1, where x? is the

solution to (1.1), and ⌘• = �rF (x? 1).

We first show that x• = x?1 and ⌘• = �rF (x?1) is a solution to (7.22)–(7.24). Consider (7.23). We

have Lx• = x? L1 = 0 (by the property of the Laplacian matrix on a connected network that zero is an

eigenvalue with multiplicity one, and the corresponding eigenvector is 1.) Next, consider (7.24). We have:

1

>⌘• = �
N
X

i=1

rfi(x?) = 0,

where the right equality holds because x? is the solution to (1.1). Finally, consider (7.22). The equality holds

because Lx• = 0 (already shown), and rF (x•) = rF (x?1) = �⌘•. Thus, (x• = x?1, ⌘• = �rF (x?1))

satisfy (7.22)–(7.24).

Now, we show uniqueness. Suppose that (x0, ⌘0) satisfy (7.22)–(7.24). We show that there has to hold:

x0 = x?, and ⌘0 = �rF (x?1). By (7.23) and Assumption 7.2, x0 is of the form x0 = � 1, � 2 R. (This is a

standard result on the Laplacian matrix of a connected network, e.g., [106].) Next, multiplying (7.22) from

the left by 1

>, using (7.24), and 1

>L = 0, the following has to hold:

1

>rF (x0) =
N
X

i=1

rfi(�) = rf(�) = 0.
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Thus, � = x?, because (1.1) has the unique solution by Assumption 7.1. Thus, x0 = x? 1. Finally, by (7.22),

we have ⌘0 = �rF (x0) = �rF (x? 1). Thus, (x• = x? 1, ⌘• = �rF (x?1)) is the unique point that

satisfies (7.22)–(7.24). Next, introduce the following two maps � : RN 7! RN , and  : RN 7! RN :

�(x) := rF (x) + ⇢ I x (7.25)

 (x) := rF (x) + ⇢Lx. (7.26)

Further, define the maps: ��1

: RN ! RN and  �1

: RN ! RN by:

�

�1

(⌘) := argmin y2RN

⇣

F (y)� ⌘>y + ⇢

2

kyk2
⌘

(7.27)

 

�1

(⌘) := argmin y2RN

⇣

F (y)� ⌘>y + ⇢

2

y>Ly
⌘

. (7.28)

The cost function in (7.28) is precisely La in (7.3). For any ⌘ 2 RN , the above maps are well-defined

by Assumption 7.1 (The latter assumption ensures that there exists a unique solution in the minimizations

in (7.27) and (7.28), as the costs in (7.27) and (7.28) are strongly convex.) Next, we have:

rF (�

�1

(⌘)) + ⇢ I��1

(⌘) = ⌘ = �(�

�1

(⌘)),

where the left equality is by the first order optimality conditions, from (7.27), and the right equality is by

definition of � in (7.25). Thus, the map ��1 is the inverse of �. Likewise, the map  �1 is the inverse of

 . By the inverse function theorem, e.g., [107], the maps ��1

: RN ! RN and  �1

: RN ! RN are

continuously differentiable, with the derivatives:

r��1

(⌘) =

�

r2F (�

�1

(⌘)) + ⇢ I
��1 (7.29)

r �1

(⌘) =

�

r2F ( 

�1

(⌘)) + ⇢L
��1

. (7.30)

Using the following identity for a continuously differentiable map h : RN ! RN :

h(u)� h(v) =



Z

1

z=0

rh(v + z(u� v))dz

�

(u� v), 8u, v 2 RN , (7.31)
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we obtain the following useful relations:

�

�1

(⌘
1

)� ��1

(⌘
2

) = R
�

(⌘
1

, ⌘
2

) (⌘
1

� ⌘
2

) (7.32)

R
�

(⌘
1

, ⌘
2

) :=

Z

1

z=0

r��1

(⌘
1

+ z(⌘
2

� ⌘
1

)) dz (2 RN⇥N
)

 

�1

(⌘
1

)� �1

(⌘
2

) = R
 

(⌘
1

, ⌘
2

)(⌘
1

� ⌘
2

) (7.33)

R
 

(⌘
1

, ⌘
2

) :=

Z

1

z=0

r �1

(⌘
1

+ z(⌘
2

� ⌘
1

)) dz (2 RN⇥N
).

By Assumption 7.1, we have that: h
min

I � r2F (x) � h
max

I , 8x 2 RN . Using the latter, (7.29), (7.30),

and (7.31), and L = I �W , 0 � L � I (W � 0 by assumption and W is symmetric, stochastic), we obtain

the following properties of the N ⇥N matrices R
�

(⌘
1

, ⌘
2

) and R
 

(⌘
1

, ⌘
2

):

1

h
max

+ ⇢
I � R

�

(⌘
1

, ⌘
2

) � 1

h
min

+ ⇢
I, 8⌘

1

, ⌘
2

2 RN (7.34)

1

h
max

+ ⇢
I � R

 

(⌘
1

, ⌘
2

) � 1

h
min

I, 8⌘
1

, ⌘
2

2 RN . (7.35)

We now introduce a compact representation of Algorithm 8. Denote by x(k) := (x
1

(k), ..., xN (k))> 2

RN the vector that stacks the primal variables at outer iteration k at all nodes. Similarly, let x(k, s) :=

(x
1

(k, s), ..., xN (k, s))>, and ⌘(k) := (⌘
1

(k), ..., ⌘N (k))>. Then, using the definition of maps ��1 and

 

�1 in (7.25) and (7.26), we obtain in Algorithm 8 an equivalent representation. Note that the variables

Algorithm 8 Distributed AL algorithm with NJ updates: Compact representation
1: Initialization: Set k = 0, x(k = 0) = 0, and ⌘(k = 0) = 0.
2: (Inner iterations) Set x(k, s = 0) := x(k); for s = 0, 1, ..., ⌧ � 1, perform the following:

x(k, s+ 1) = �

�1
( ⇢W x(k, s)� ⌘(k) ) ; (7.36)

and set x(k + 1) := x(k, s = ⌧).
3: (Outer iteration) Update the dual variable ⌘(k) via:

⌘(k + 1) = ⌘(k) + ↵Lx(k + 1). (7.37)

4: Set k 7! k + 1 and go to step 2.

xi(k, s) and xi(k) are redundant, and we can eliminate them from Algorithm 8. This is due to the fact that

all nodes use the same initial xi(0) = x
1

(0), 8i, and so they know xj(k = 0, s = 0), j 2 Oi, to implement

step (7.36) at k = 0, s = 0.
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7.3.2 Auxiliary Lemmas and proof of Theorem 7.3

We outline current subsection. We view Algorithm 8 as an inexact version of (7.1)–(7.2). Lemma 7.6 gives

a bound on this inexactness. Further, Lemma 7.7 upper bounds the primal error, while Lemma 7.8 gives

an upper bound on the dual error. We close the subsection by proving Theorems 7.3 and 7.4 using the

established Lemmas.

Denote by ex(k) := x(k) � x• and e⌘(k) := ⌘(k) � ⌘• the primal and dual errors, respectively. (Recall

the primal and dual solutions x• and ⌘• in Lemma 7.5.)

For the purpose of convergence rate analysis, we introduce an auxiliary sequence x0(k) 2 RN , k =

1, 2, ..., defined by:

x0(k + 1) =  

�1

(⌘(k)) , (7.38)

where ⌘(k) is the dual variable generated by Algorithm 8. Note that x0(k+1) is precisely the exact solution

in (7.1). If, for a fixed ⌘(k), we performed an infinite number of inner iterations in (7.36), then x(k, s)

would converge to x0(k + 1) as s ! 1. However, we terminate the inner algorithm after a finite number

of ⌧ inner iterations, and hence x(k + 1) = x(k, ⌧) differs from x0(k + 1). An important quantity in our

analysis is the size of kx0(k + 1)� x(k + 1)k. Next Lemma establishes a bound on this quantity.

Lemma 7.6 (Primal inexactness: Deterministic NJ) Consider Algorithm 8 under Assumptions 7.1 and 7.2.

Then, for all k = 0, 1, ...:

�

�x(k + 1)� x0(k + 1)

�

� 
✓

⇢

⇢+ h
min

◆⌧

kex(k)k+
✓

⇢

⇢+ h
min

◆⌧ ke⌘(k)k
h
min

.

Proof: Note from (7.38) that x0(k + 1) obeys rF (x0(k + 1)) + ⇢Lx0(k + 1) = �⌘(k). Hence, using

L = I �W and the definition of � in (7.25):

x0(k + 1) = �

�1

�

⇢Wx0(k + 1)� ⌘(k)
�

. (7.39)

Next, fix some s, 0  s  ⌧ � 1, and consider (7.36). Subtracting x0(k + 1) from both sides of (7.36), and

using (7.39) and (7.32):

x(k, s+ 1)� x0(k + 1) = R
�

(s) ⇢W (x(k, s)� x0(k + 1)),

where we introduce a simplified notation: R
�

(s) := R
�

(⇢Wx(k, s)� ⌘(k), ⇢Wx0(k + 1)� ⌘(k)) . Next,
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using (7.34), and kWk = 1, obtain:

kx(k, s+ 1)� x0(k + 1)k 
✓

⇢

⇢+ h
min

◆

kx(k, s)� x0(k + 1)k.

Applying the latter successively for s = 0, 1, ..., ⌧ � 1, and using x(k, ⌧) = x(k + 1), x(k, 0) = x(k),

obtain:

kx(k + 1)� x0(k + 1)k 
✓

⇢

⇢+ h
min

◆⌧

kx(k)� x0(k + 1)k


✓

⇢

⇢+ h
min

◆⌧
�

kex(k)k+ kx• � x0(k + 1)k
�

, (7.40)

where we used kx(k)�x0(k+1)k = k(x(k)�x•)+(x•�x0(k+1))k  kx(k)�x•k+kx•�x0(k+1)k =

kex(k)k+ kx• � x0(k+1)k. We next upper bound kx0(k+1)� x•k. Note that x• =  �1

(�⌘•). Using the

latter, (7.38), and (7.33), we obtain:

x0(k + 1)� x• =  �1

(�⌘(k))� �1

(⌘•) = �R
 

(k) (⌘(k)� ⌘•), (7.41)

with R
 

(k) := R
 

(�⌘(k),�⌘•). This, together with (7.35), and e⌘(k) = ⌘(k)� ⌘•, gives:

kx0(k + 1)� x•k  1

h
min

ke⌘(k)k. (7.42)

Substituting the latter in (7.40) completes the proof of the Lemma. 2

We next upper bound the primal error kex(k + 1)k.

Lemma 7.7 (Primal error: Deterministic NJ) Let Assumptions 7.1 and 7.2 hold. Then, for all k = 0, 1, ...:

kex(k + 1)k 
✓

⇢

⇢+ h
min

◆⌧

kex(k)k+ 1

h
min

✓

1 +

✓

⇢

⇢+ h
min

◆⌧◆

ke⌘(k)k.

Proof: Write ex(k+1) = (x(k+1)� x0(k+1))+ (x0(k+1)� x•). Then, kex(k+1)k  kx(k+1)�

x0(k + 1)k+ kx0(k + 1)� x•k. The result now follows by applying Lemma 7.6 and (7.42).

We proceed with bounding the dual error. For our final goal (bounding the primal error), rather than

studying directly e⌘(k) = ⌘(k)� ⌘•, it is more useful to consider a certain transformed quantity. Represent

the weighted Laplacian matrix L as L = Qb

⇤Q>
=

PN
i=2

�i qiq>i . Here, �i is the i-th smallest eigenvalue

of L (�i > 0, for all i = 2, ..., N ); Q = [q
2

, ..., qN ] is the N ⇥ (N � 1) matrix, and its column qi is the

unit-norm eigenvector of L that corresponds to �i; and b

⇤ is the (N � 1) ⇥ (N � 1) diagonal matrix with
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diagonal (�
2

, ...,�N ). Next, introduce:

e⌘0(k) := Q>
e⌘(k) 2 RN�1

and e⌘00(k) := b

⇤

�1/2
e⌘0(k) 2 RN�1. (7.43)

We next bound the norm of e⌘00(k + 1).

Lemma 7.8 (Dual error: Deterministic NJ) Let Assumptions 7.1 and 7.2 hold, and suppose that ↵  h
min

.

Then, for all k = 0, 1, ...:

ke⌘00(k + 1)k 
✓

1� ↵�
2

(L)
h
max

+ ⇢

◆

+

↵

h
min

✓

⇢

⇢+ h
min

◆⌧ �

ke⌘00(k)k+ ↵

✓

⇢

⇢+ h
min

◆⌧

kex(k)k.

Consider (7.37). Because Lx• = Lx? 1 = 0, we have:

Lx(k + 1) = L(x(k + 1)� x0(k + 1)) + L(x0(k + 1)� x•).

Using the latter, and subtracting ⌘• from both sides of (7.37), obtain:

e⌘(k + 1) = e⌘(k) + ↵L(x0(k + 1)� x•) + ↵L(x(k + 1)� x0(k + 1)). (7.44)

Further, using (7.41), we get:

e⌘(k + 1) = ( I � ↵LR
 

(k) ) e⌘(k) + ↵L (x(k + 1)� x0(k + 1)). (7.45)

Now, recall e⌘0(k) in (7.43). It is easy to see that:

ke⌘0(k)k = ke⌘(k)k, QQ>
e⌘(k) = e⌘(k). (7.46)

Indeed, note that 1>⌘(k) = 1

>⌘(k�1)+↵1>Lx(k) = 1

>⌘(k�1) = ... = 1

>⌘(0) = 0, because ⌘(0) = 0

(by assumption.) Also, 1>⌘• = 0 (see Lemma 7.5.) Therefore, 1>e⌘(k) = 0, 8k. Now, as q
1

=

1p
N
1, we

have QQ>
e⌘(k) =

PN
i=2

qiq>i e⌘(k) =
PN

i=1

qiq>i e⌘(k) = e⌘(k); thus, the second equality in (7.46). For the

first equality in (7.46), observe that: ke⌘0(k)k2 = (e⌘0(k))>e⌘0(k) = e⌘(k)>QQ>
e⌘(k) = ke⌘(k)k2.

Next, multiplying (7.45) from the left by Q>, expressing L = Qb

⇤Q>, and using (7.46), obtain:

e⌘0(k + 1) =

⇣

I � ↵ b⇤Q>R
 

(k)Q
⌘

⌘0(k) + ↵ b⇤Q>
(x(k + 1)� x0(k + 1)). (7.47)
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Further, recall e⌘00(k) in (7.43). Multiplying (7.47) from the left by b

⇤

�1/2, we obtain:

e⌘00(k + 1) =

⇣

I � ↵ b⇤1/2Q>R
 

(k)Qb

⇤

1/2
⌘

e⌘00(k) + ↵ b⇤1/2Q>
(x(k + 1)� x0(k + 1)). (7.48)

Next, using variational characterizations of minimal and maximal eigenvalues, it is easy to verify that:

�
2

h
max

+ ⇢
I � b

⇤

1/2Q>R
 

(k)Qb

⇤

1/2 � 1

h
min

I. (7.49)

By Assumption, ↵  h
min

, and so:

kI � ↵ b⇤1/2Q>R
 

(k)Qb

⇤

1/2k  1� ↵�
2

h
max

+ ⇢
. (7.50)

Using the latter, kb⇤1/2k  1 (as 0 � L � I), kQk = 1, and Lemma 7.6, we get:

ke⌘00(k + 1)k 
✓

1� ↵�
2

h
max

+ ⇢

◆

ke⌘00(k)k+ ↵

✓

⇢

⇢+ h
min

◆⌧

kex(k)k+ ↵

✓

⇢

⇢+ h
min

◆⌧ ke⌘(k)k
h
min

. (7.51)

Finally, using ke⌘(k)k = ke⌘0(k)k = kb⇤1/2
e⌘00(k)k  ke⌘00(k)k, we obtain the desired result. 2

We are now ready to prove Theorem 7.3.

[Proof of Theorem 7.3] Introduce ⌫(k) := 2

h
min

ke⌘(k)k. Further, denote by c
11

:=

⇣

⇢
⇢+h

min

⌘⌧
, c

12

:=

1

2

h

1 +

⇣

⇢
⇢+h

min

⌘⌧ i

; c
21

:=

2↵
h
min

⇣

⇢
⇢+h

min

⌘⌧
, and c

22

:=

⇣

1� ↵�
2

h
max

+⇢

⌘

+

↵
h
min

⇣

⇢
⇢+h

min

⌘⌧
. Using ke⌘(k)k 

ke⌘00(k)k, Lemma 7.7 and Lemma 7.8, we obtain:

max {kex(k + 1)k, ⌫(k + 1)}  r max {kex(k)k, ⌫(k)} ,

with r = max {c
11

+ c
12

, c
21

+ c
22

} . Unwinding the above recursion, using:

kex(k)k  max{kex(k)k, ⌫(k)},

and using ⌫(0) =

2

h
min

kb⇤�1/2Q>
e⌘(0)k =

2

h
min

kb⇤�1/2Q>
(�rF (x? 1))k  2

h
min

p
�
2

p
ND⌘, we ob-

tain (7.20).

It remains to show that that r < 1 if conditions (7.11) and (7.12) hold. Note that:

c
11

+ c
12

=

1

2

+

3

2

✓

⇢

⇢+ h
min

◆⌧

,
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and so c
11

+ c
12

< 1 if:
✓

⇢

⇢+ h
min

◆⌧

<
1

3

. (7.52)

Next, note that:

c
21

+ c
22

=

✓

1� ↵�
2

⇢+ h
max

◆

+

3↵

h
min

✓

⇢

⇢+ h
min

◆⌧

,

and so c
21

+ c
22

< 1 if:
✓

⇢

⇢+ h
min

◆⌧

<
1

3

✓

h
min

�
2

⇢+ h
max

◆

. (7.53)

Combining (7.52) and (7.53), we obtain that r < 1 if conditions (7.11) and (7.12) hold. The proof is

complete. 2

7.3.3 Auxiliary lemmas and proof of Theorem 7.4

We now perform the convergence analysis of the deterministic algorithm variant with gradient primal vari-

able updates (Algorithm 7 where (7.7) is replaced with (7.10)), and our goal is to prove Theorem 7.4. The

difference with respect to deterministic nonlinear Jacobi variant is only in the primal (inner) updates. Hence,

much of the analysis in Subsection 7.3.2 continues to hold here. The key difference is in Lemma 7.6. We

now state and prove a counterpart of Lemma 7.6 with the gradient primal updates.

Lemma 7.9 (Primal inexactness: Deterministic gradient updates) Consider Algorithm 7 where step (7.7) is

replaced with (7.10), and let Assumptions 7.1 and 7.2 hold. Further, suppose that �  1

⇢+h
max

. Then, for all

k = 0, 1, ...:

�

�x(k + 1)� x0(k + 1)

�

�  (1� � h
min

)

⌧ kex(k)k+ (1� � h
min

)

⌧ ke⌘(k)k
h
min

.

With Lemma 7.9 in force, the rest of the analysis follows from the analysis in Subsection 7.3.2. It can be

easily verified that all the results (Lemma 7.7, Lemma 7.8, and Theorem 7.3) continue to hold, with the

quantity ⇢
⇢+h

min

replaced with 1� � h
min

. Henceforth, our task of proving Theorem 7.4 is completed once

we prove Lemma 7.9. Introduce again the same compact notation x(k), x(k, s), and ⌘(k), as with the

deterministic NJ variant. We also make use of the quantity x0(k+1) in (7.38). Finally, use the same notation

– ex(k) and e⌘(k) – for the primal and dual errors.

Proof: In compact notation, using L = I �W , the update (7.10) is rewritten as:

x(k, s+ 1) = x(k, s)� � (⇢Lx(k, s) + ⌘(k) +rF (x(k, s))) . (7.54)
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This is precisely the gradient descent on La(·; ⌘(k)) in (7.3). Further, recall x0(k+1) in (7.38). As x0(k+1)

satisfies ⇢Lx0(k + 1) + ⌘(k) +rF (x(k + 1)) = 0, we have:

x0(k + 1) = x0(k + 1)� �
�

⇢Lx0(k + 1) + ⌘(k) +rF (x0(k + 1))

�

. (7.55)

Further, by Assumption 7.1, we have thatrF : RN ! RN is continuously differentiable, and there holds:

rF (x(k, s))�rF (x0(k + 1)) =



Z

1

z=0

r2F
�

x0(k + 1) + z(x(k, s)� x0(k + 1))

�

dz

�

⇥ (x(k, s)� x0(k + 1))

=: HF (s) (x(k, s)� x0(k + 1)). (7.56)

Further, by Assumption 7.1, the matrix HF (s) satisfies:

h
min

I � HF (s) � h
max

I. (7.57)

Using (7.56), and subtracting (7.55) from (7.54), we obtain:

x(k, s+ 1)� x0(k + 1) = (I � � ⇢L� �HF (s)) (x(k, s)� x0(k + 1)). (7.58)

Consider the matrix (I � � ⇢L� �HF (s)). As �  1

⇢+h
max

(by assumption), using (7.57) and 0 � L � I ,

we have that: (I � � ⇢L� �HF (s)) ⌫ 0. Thus, kI � � ⇢L � �HF (s)k  1 � �
1

(� ⇢L+ �HF (s)) 

1� � h
min

. Applying the latter bound to (7.58), we obtain the following important inequality:

kx(k, s+ 1)� x0(k + 1)k  (1� � h
min

) kx(k, s)� x0(k + 1)k. (7.59)

Applying (7.59) successively for s = 0, ..., ⌧ � 1, using x(k, s = 0) = x(k), and x(k, s = ⌧) = x(k + 1),

we get:

kx(k + 1)� x0(k + 1)k  (1� � h
min

)

⌧ kx(k)� x0(k + 1)k. (7.60)

The proof now proceeds analogously to the proof of Lemma 7.6. 2
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7.4 Randomized Distributed Augmented Lagrangian Methods

This section studies randomized distributed AL methods. Subsection 7.4.1 explains the asynchronous com-

munication model and the two algorithm variants (with the NGS updates and the gradient updates.) Subsec-

tion 7.4.2 states the results on their convergence rates and gives interpretations.

7.4.1 Model and algorithms

We continue to consider: 1) the optimization model defined by Assumption 7.1; and 2) a N -node connected

network G (Assumption 7.2 holds), with the associated matrices W and L. We consider two variants of

the randomized distributed AL methods of type (7.1)–(7.2). Both utilize the same communication protocol,

but they mutually differ in the way primal variables are updated. Like the deterministic counterparts, they

both update the dual variables at the outer iterations k, and they update the primal variables at the inner

iterations s. At each inner iteration s, one node, say i, is selected uniformly at random from the set of nodes

{1, 2, ..., N}. Upon selection, node i updates its primal variable and broadcasts it to all its neighbors. We

now detail the time and communication models. The outer iterations occur at discrete time steps of the

physical time; k-th outer iteration occurs at time ⌧ k, k = 1, 2, ..., i.e., every ⌧ time units. We assume that

all nodes have synchronized clocks for the dual variable updates (dual variable clocks). Each node i has

another clock (primal variable clock) that ticks according to a rate 1 Poisson process; on average, there is

one tick of node i in the time interval of width 1. Whenever node i’s Poisson clock ticks, node i updates

its primal variable and broadcasts it to neighbors. Further, the Poisson process clocks of different nodes are

independent. Consider the Poisson process clock that ticks whenever one of the nodes’ clocks ticks. This

process is a rate-N Poisson process. Hence, in the time interval of length ⌧ , there are, on average, ⌧ N ticks

(primal updates), out of which ⌧ (on average) are done by i.4

More formally, let (⇥,F ,P) be a probability space. Further, let {Ti(a, b]}
0ab<1 be a Poisson process

with rate 1, i = 1, ..., N . (This is the node i’s clock for primal variables.) Thus, for a fixed a, b, Ti(a, b] :

⇥ ! R, Ti(a, b] = Ti((a, b] ;!), ! 2 ⇥, is a Poisson random variable with mean (b � a). We assume that

the processes Ti are independent. Further, let T be a Poisson process defined by T (a, b] :=
PN

i=1

Ti(a, b].

Define the random variable ⌧(k) := T (k⌧, (k+1)⌧ ] (the number of ticks across all nodes in the k-the outer

iteration.) Next, consider the events Ak,j , j = 0, 1, 2, ..., defined by Ak,j := {! 2 ⇥ : ⌧(k;!) = j}. For

j � 1, we also define the maps: bı(k, s) : Ak,j ! {1, 2, ..., N}, s = 0, ..., j � 1, as follows: bı(k, s;!) = i,

if the (s+ 1)-th tick of T in the interval (k⌧, (k + 1)⌧ ] comes from node i’s clock Ti.
4Note that one primal update here corresponds to an update of a single node. Thus, roughly, N updates (ticks) here correspond

to one update (inner) iteration of the deterministic algorithm.
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We now present the two variants of the randomized distributed AL algorithm. The first updates the

primal variables via a NGS method; the alternative variant replaces the NGS updates by the gradient type

updates. We next detail the NGS variant.

NGS updates. We observe the primal and dual variables at times k⌧ , k = 0, 1, ... These are the time

instances when the dual variables are updated (We assume that the dual variables are updated instantaneously

at the moments k⌧ .) We denote by xi(k) := xi(k⌧) the node i’s primal variable at time k⌧ , k = 0, 1, ...

Further, consider ! 2 Ak,j : the total number of ticks ⌧(k) of T in the interval (k⌧, (k + 1)⌧ ] equals j, and

hence we have j inner iterations (ticks) at the outer iteration k. For any ! 2 Ak,j , we denote by xi(k, s) the

node i’s variable after the s-th inner iteration, s = 1, ..., j, j � 1. Also, we denote by xi(k, 0) := xi(k), and,

for ! 2 Ak,j , xi(k, ⌧(k) = j) := xi(k + 1). Each node maintains: 1) the primal variable xi(k); 2) the dual

variable ⌘i(k) := ⌘i(k⌧); the (weighted) sum of the neighbors’ variables xi(k) :=
P

j2Oi
Wijxj(k), as well

as the analogous intermediate variables xi(k, s) and xi(k, s) during the inner iterations s. The algorithm is

Summarized in Algorithm 9.

Algorithm 9 Randomized distributed AL algorithm with NGS updates
1: (Initialization) Node i sets k = 0, xi(k = 0) 2 Rd, xi(k = 0) = xi(k = 0), and ⌘i(k = 0) = 0.
2: (Inner iterations) Set xi(k, s = 0) := xi(k), xi(k, s = 0) := xi(k), and s = 0. If ! 2 ⇥ is such that
⌧(k) = ⌧(k;!) > 0, then, for s = 0, 1, ..., ⌧(k)� 1, do (else, if ⌧(k;!) = 0, then go to step 3):

Update the inner variables xj(k, s), j = 1, ..., N, by :

xj(k, s+ 1) =

(

argmin x
j

2Rd

⇣

fj(xj) + (⌘j(k)� ⇢xj(k, s))
> xj +

⇢ kx
j

k2

2

⌘

for j = bı(k, s)

xj(k, s+ 1) = xj(k, s) else.
(7.61)

Update the variables xj(k, s), j = 1, ..., N, by :

xj(k, s+ 1) =

⇢

P

l2⌦
j

Wjl xl(k, s+ 1) for j 2 Oi : i = bı(k, s)

xj(k, s+ 1) = xj(k, s) else;
(7.62)

and all nodes j = 1, ..., N set xj(k + 1) := xj(k, s = ⌧(k)), xj(k + 1) = xj(k, s = ⌧(k)).
3: (Outer iteration) All nodes j update the dual variables ⌘j(k) via:

⌘j(k + 1) = ⌘j(k) + ↵ (xj(k + 1)� xj(k + 1)) . (7.63)

4: Set k 7! k + 1 and go to step 2.

Gradient primal updates. This algorithm variant is the same as given in Algorithm 9, except that

step (7.61) is replaced with the following:

xj(k, s+ 1) =

8

<

:

(1� � ⇢) xj(k, s) + � ⇢xj(k, s)� � ( ⌘j(k) +rfj(xj(k, s)) ) for j = bı(k, s)

xj(k, s+ 1) = xj(k, s) else.
(7.64)

Here, � > 0 is the (primal) step-size parameter.
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7.4.2 Convergence rate: Statements of results

We now state the convergence rate result for the randomized AL method with NGS updates.

Theorem 7.10 (Convergence rate: Randomized NGS) Consider Algorithm 9 under Assumptions 7.1 and 7.2,

and suppose that the algorithm and network parameters satisfy the following:

↵  h
min

(7.65)

e�� ⌧ <
1

3

�
2

(L)h
min

⇢+ h
max

, (7.66)

where

� := N

(

1�


1� 1

N

✓

1� ⇢2

(⇢+ h
min

)

2

◆�

1/2
)

. (7.67)

Then, at any node i, E [ kxi(k)� x?k ] generated by Algorithm 9 converges linearly (in the outer iterations

k) to zero, with rate:

r
rand,ngs := max

⇢

1

2

+

3

2

e�� ⌧ ,

✓

1� ↵�
2

(L)
⇢+ h

max

◆

+

3↵

h
min

e�� ⌧

�

< 1, (7.68)

and there holds:

E [ kxi(k)� x?k ]  (r
rand,ngs)

k
p
N max

(

Dx,
2D⌘

p

�
2

(L)h
min

)

. (7.69)

For a large N , � is approximated as:

� ⇡ 1

2

✓

1� ⇢2

(⇢+ h
min

)

2

◆

2

.

Condition (7.66) is satisfied, for example, if ⇢  h
min

, and:

⌧ �

2

6

6

6

�

�

�

log

⇣

3(1+�)
�
2

(L)

⌘

�

�

�

N
�

1� (1� 3/(4N))

1/2
�

3

7

7

7

. (7.70)

The communication rate in Table 7.1 is obtained by taking:

↵ = ⇢ = h
min

, � =

1

⇢+ h
max

, ⌧ =

2

6

6

6

log

⇣

6(1+�)
�
2

(L)

⌘

N
�

1� (1� 3/(4N))

1/2
�

3

7

7

7

.
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We now present a similar result for the randomized AL method with gradient-type updates.

Theorem 7.11 (Convergence rate: Randomized gradient updates) Consider Algorithm 9 where step (7.61)

is replaced with (7.64), and let Assumptions 7.1 and 7.2 hold. Further, suppose that the algorithm and

network parameters satisfy the following:

↵  h
min

(7.71)

�  1

⇢+ h
max

(7.72)

e��0 ⌧ <
1

3

�
2

h
min

⇢+ h
max

. (7.73)

where

�0 := N

(

1�


1� 1

N
� h

min

(1� � h
min

)

�

1/2
)

. (7.74)

Then, at any node i, E [ kxi(k)� x?k ] generated by Algorithm 9 converges linearly (in the outer iterations

k) to zero, with rate:

r
rand,grad := max

⇢

1

2

+

3

2

e��0 ⌧ ,

✓

1� ↵�
2

(L)
⇢+ h

max

◆

+

3↵

h
min

e��0 ⌧

�

< 1, (7.75)

and there holds:

E [ kxi(k)� x?k ]  (r
rand,grad)

k
p
N max

(

Dx,
2D⌘

p

�
2

(L)h
min

)

. (7.76)

For a large N , �0 is approximated as:

�0 ⇡ 1

2

�h
min

(1� � h
min

).

Condition (7.73) is satisfied, for example, if ⇢  h
min

, � =

1

⇢+h
max

, and:

⌧ �

2

6

6

6

6

6

�

�

�

log

⇣

3(1+�)
�
2

(L)

⌘

�

�

�

N

✓

1�
⇣

1� �
N(1+�)2

⌘

1/2
◆

3

7

7

7

7

7

. (7.77)

We can see that, with respect to the randomized NGS variant, the ⌧ that ensures linear convergence grows

faster with �. The communication rate in Table 7.1 is obtained with ⌧ twice larger than in (7.77), ↵ = ⇢ =

h
min

, and � =

1

⇢+h
max

.
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7.5 Convergence rate analysis: Proofs of Theorems 7.10 and 7.11

The goal of this Section is to prove Theorems 7.10 and 7.11. Subsection 7.5.1 sets up the analysis by

introducing certain maps akin to the map � in Section 7.3. Subsection 7.5.2 establishes the desired results.

7.5.1 Setting up analysis

For sake of a clean notation, as in Section 7.3, we assume that d = 1, but the analysis extends to a generic

d > 1 as well. For each i = 1, ..., N , we introduce the following map: �i : R 7! R:

�i(x) := rfi(x) + ⇢x. (7.78)

Next, define the map: ��1

i : R! R by:

�

�1

i (⌘) := argmin y2R

⇣

fi(y)� ⌘i y +
⇢

2

y2
⌘

. (7.79)

For any ⌘ 2 R, the above map is well-defined by Assumption 7.1 (The cost in (7.79) is strongly convex.)

Similarly to Subsection 7.3.1, it can be shown that: 1) ��1 is the inverse of �; 2) ��1

: R ! R is

continuously differentiable; and 3) the derivative is:

r��1

i (⌘) =

�

r2fi(�
�1

i (⌘)) + ⇢
��1

. (7.80)

Again, similarly to Subsection 7.3.1, it can be shown that:

�

�1

i (⌘
1

)� ��1

i (⌘
2

) = R
�,i(⌘1, ⌘2) (⌘1 � ⌘2) (7.81)

R
�,i(⌘1, ⌘2) :=

Z

1

z=0

r��1

i (⌘
1

+ z(⌘
2

� ⌘
1

)) dz (2 R) (7.82)

1

h
max

+ ⇢
 R

�,i(⌘1, ⌘2) 
1

h
min

+ ⇢
, 8⌘

1

, ⌘
2

2 R. (7.83)

7.5.2 Auxiliary Lemmas and proofs of Theorems 7.10 and 7.11

We mimic the structure of Subsection 7.3.2. We first establish the primal inexactness bound, proceed with

primal and dual error bounds, and finalize by proving Theorems 7.10 and 7.11. When the proofs are similar

to that of the already established results, we curtail repetitive arguments. Consider x0(k + 1) in (7.38).

Lemma 7.12 (Primal inexactness: Randomized NGS) Consider Algorithm 9 under Assumptions 7.1 and 7.2.
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Then, for all k = 0, 1, ...:

E
⇥

�

�x(k + 1)� x0(k + 1)

�

�

⇤

 e�� ⌧ E [ kex(k)k ] + e�� ⌧ 1

h
min

E [ ke⌘(k)k ] ,

where � is given in (7.67).

Proof: Fix some k, fix some j = 1, 2, ..., and take ! 2 Ak,j . Thus, ⌧(k) = ⌧(k;!) = j and there are

j inner iterations. Fix some s, s 2 {0, 1, ..., j � 1}, and suppose that bı(k, s) = i (node i is activated.) We

have that xi(k, s+ 1) satisfies the following:

xi(k, s+ 1) = �

�1

i

0

@⇢
X

j2Oi

Wij xj(k, s)� ⌘i(k)

1

A .

On the other hand, we know that x0i(k + 1) satisfies:

x0i(k + 1) = �

�1

i

0

@⇢
X

j2Oi

Wij x
0
j(k + 1)� ⌘i(k)

1

A .

Subtracting the above equalities, and using (7.82)–(7.83), letting

R
�,i(s) := R

�,i

0

@⇢
X

j2Oi

Wij xj(k, s)� ⌘i(k) , ⇢
X

j2Oi

Wij x
0
j(k + 1)� ⌘i(k)

1

A ,

and squaring the equality, we obtain:

�

xi(k, s+ 1)� x0i(k + 1)

�

2

= (R
�,i(s))

2 ⇢2

0

@

X

j2Oi

Wij (xj(k, s)� x0j(k + 1))

1

A

2


✓

⇢

⇢+ h
min

◆

2

X

j2Oi

Wij (xj(k, s)� x0j(k + 1))

2 (7.84)

= �2
N
X

j=1

Wij (xj(k, s)� x0j(k + 1))

2. (7.85)

Here, (7.84) further uses: 1) convexity of the quadratic function u 7! u2; 2) the fact that
P

j2Oi
Wij = 1;

and 3) the fact that the Wij’s are nonnegative. Also, (7.85) introduces notation: � :=

⇢
⇢+h

min

, and uses the

fact that Wij = 0 if {i, j} /2 E and i 6= j. As node i is selected, the remaining quantities xj(k, s), j 6= i,

remain unchanged; i.e., xj(k, s+1)�x0j(k+1) = xj(k, s)�x0j(k+1), j 6= i. Squaring the latter equalities,
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adding them up for all j 6= i, and finally adding them to (7.85), we obtain:

kx(k, s+ 1)� x0(k + 1)k2  kx(k, s)� x0(k)k2 + �2
N
X

j=1

Wij (xj(k, s)� x0j(k + 1))

2

� (xi(k, s)� x0i(k + 1))

2, (7.86)

for any ! 2 Ak,j such thatbı(k, s) = i.

We now compute conditional expectation of kx(k, s + 1) � x0(k + 1)k2, conditioned on ⌧(k) = j,

x(k) = x(k, 0), ⌘(k), and x(k, 1), ..., x(k, s), s  j � 1. Conditioned on the latter random variables, each

node i updates equally likely, with conditional probability 1/N , and therefore:

E
⇥

kx(k, s+ 1)� x0(k + 1)k2 |x(k), ⌘(k), ⌧(k) = j, x(k, 1), ..., x(k, s)
⇤

(7.87)

 kx(k, s)� x0(k + 1)k2 + 1

N
�2

N
X

i=1

N
X

j=1

Wij (xj(k, s)� x0j(k + 1))

2 (7.88)

� 1

N

N
X

i=1

(xi(k, s)� x0i(k + 1))

2 (7.89)

= kx(k, s)� x0(k + 1)k2 + 1

N
�2

N
X

i=1

Wij

N
X

j=1

(xj(k, s)� x0j(k + 1))

2

� 1

N
kx(k, s)� x0(k + 1)k2 (7.90)

= kx(k, s)� x0(k + 1)k2 + 1

N
�2 kx(k, s)� x0(k + 1)k2

� 1

N
kx(k, s)� x0(k + 1)k2, 8! 2 Ak,j . (7.91)

Here, inequality (7.91) uses the fact that
PN

i=1

Wij = 1, 8j. Rewriting (7.91), we get:

E
⇥

kx(k, s+ 1)� x0(k + 1)k2 |x(k), ⌘(k), ⌧(k) = j, x(k, 1), ..., x(k, s� 1)

⇤


✓

1� 1

N
(1� �2)

◆

�

�x(k, s)� x0(k + 1)

�

�

2

, 8! 2 Ak,j .

Denote by �0 :=

�

1� 1

N (1� �2)
�

1/2. Using the Jensen inequality for quadratic convex functions, we

obtain:

E
⇥

kx(k, s+ 1)� x0(k + 1)k |x(k), ⌘(k), ⌧(k) = j, x(k, 1), ..., x(k, s� 1)

⇤

 �0
�

�x(k, s)� x0(k + 1)

�

� , 8! 2 Ak,j .
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Integrating with respect to x(k, 1), ..., x(k, s):

E
⇥

kx(k, s+ 1)� x0(k + 1)k |x(k), ⌘(k), ⌧(k) = j
⇤

 �0 E
⇥

�

�x(k, s)� x0(k + 1)

�

� |x(k), ⌘(k), ⌧(k) = j
⇤

, 8! 2 Ak,j .

Applying the above inequality for s = 0, 1, ..., j�1, using x(k, s = ⌧(k) = j) = x(k+1), and considering

all the values of j = 0, 1, ..., we obtain:

E
⇥

kx(k + 1)� x0(k + 1)k |x(k), ⌘(k), ⌧(k)
⇤

 (�0)⌧(k) E
⇥

�

�x(k)� x0(k + 1)

�

� |x(k), ⌘(k), ⌧(k)
⇤

, almost surely (a.s.)

Integrating with respect to x(k), ⌘(k):

E
⇥

kx(k + 1)� x0(k + 1)k | ⌧(k) = j
⇤

 (�0)j E
⇥

�

�x(k)� x0(k + 1)

�

� | ⌧(k) = j
⇤

= (�0)⌧(k) E
⇥

�

�x(k)� x0(k + 1)

�

�

⇤

, a.s.,

where we used independence of ⌧(k) and x(k), ⌘(k). Taking expectation, we obtain:

E
⇥

kx(k + 1)� x0(k + 1)k
⇤

 E[ (�0)⌧(k) ] E
⇥

�

�x(k)� x0(k + 1)

�

�

⇤

.

Because ⌧(k) is distributed according to the Poisson distribution with parameter N ⌧ , we have: E
⇥

(�0)⌧(k)
⇤

=

P1
l=0

(�0)l e
�N⌧

(N⌧)l

l = e�(1��0)N ⌧ . We get:

E
⇥

kx(k + 1)� x0(k + 1)k
⇤

 e�(1��0)N ⌧ E
⇥

�

�x(k)� x0(k + 1)

�

�

⇤

. (7.92)

Next, we use x(k) � x0(k + 1) = (x(k) � x•) + (x• � x0(k + 1)) = ex(k) + (x• � x0(k + 1)), and so

kx(k) � x0(k + 1)k  kex(k)k + kx• � x0(k + 1)k. Further, we use the relation in (7.41), which gives

kx0(k + 1) � x•k  1

h
min

ke⌘(k)k. Thus, E [kx(k)� x0(k + 1)k]  E[kex(k)k] + 1

h
min

E[ke⌘(k)k]. Plugging

the latter inequality in (7.92), and substituting �0 =
⇣

1� 1

N

⇣

1� ⇢2

(⇢+h
min

)

2

⌘⌘

1/2
, we obtain the desired

result. We now state and prove a Lemma on the primal error ex(k + 1).

Lemma 7.13 (Primal error: Randomized NGS) Consider Algorithm 9 under Assumptions 7.1 and 7.2. Then,
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for all k = 0, 1, ...:

E [ kex(k + 1)k ]  e�� ⌧ E [ kex(k)k ] + 1

h
min

e�� ⌧ E [ ke⌘(k)k] ,

where � is given in (7.67).

We have that ex(k+1) = x(k+1)�x• = (x(k+1)�x0(k+1))+(x0(k+1)�x•), a.s., and so: kex(k+1)k 

kx(k+1)�x0(k+1)k+kx0(k+1)�x•k, a.s. Further, by (7.41), we have that kx0(k+1)�x•k  1

h
min

ke⌘(k)k,

a.s. The Lemma now follows by taking expectation and applying Lemma 7.12. Introduce the (random)

transformed dual error e⌘00(k) as in (7.43).

Lemma 7.14 (Dual error: Randomized NGS) Consider Algorithm 9 under Assumptions 7.1 and 7.2, and

suppose that ↵  h
min

. Then, for all k = 0, 1, ...:

E
⇥

ke⌘00(k + 1)k
⇤


✓

1� ↵�
2

(L)
h
max

+ ⇢

◆

+

↵

h
min

e�� ⌧

�

E
⇥

ke⌘00(k)k
⇤

+ ↵ e�� ⌧ E [ kex(k)k] ,

where � is given in (7.67).

We rely much on the proof of Lemma 7.14. It is easy to verify that (7.48) and (7.50) hold here as well; thus,

we obtain:

ke⌘00(k + 1)k 
✓

1� ↵�
2

(L)
h
max

+ ⇢

◆

ke⌘00(k)k+ ↵ kx(k + 1)� x0(k + 1)k, a.s.;

after taking expectation:

E
⇥

ke⌘00(k + 1)k
⇤


✓

1� ↵�
2

(L)
h
max

+ ⇢

◆

E
⇥

ke⌘00(k)k
⇤

+ ↵E
⇥

kx(k + 1)� x0(k + 1)k
⇤

. (7.93)

Further, there holds that: ke⌘(k)k  ke⌘00(k)k, a.s., and so E [ke⌘(k)k]  E [ke⌘00(k)k]. Using the latter

and (7.93), and applying Lemma 7.12, we obtain the desired result. Proof of Theorem 7.10 mimics the

proof of Theorem 7.3, and is hence omitted.

We now consider the randomized algorithm variant with gradient updates (Algorithm 9 where step (7.61)

is replaced with (7.64).) We start with the following Lemma.

Lemma 7.15 (Primal inexactness: Randomized gradient updates) Consider Algorithm 9 where step (7.61)
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is replaced with (7.64), and let Assumptions 7.1 and 7.2 hold. Then, for all k = 0, 1, ...:

E
⇥

�

�x(k + 1)� x0(k + 1)

�

�

⇤

 e��0 ⌧ E [ kex(k)k ] + e��0 ⌧ 1

h
min

E [ ke⌘(k)k ] ,

where �0 is given in (7.74).

Proof of Lemma 7.15 is very similar to the proof of Lemma 7.12. One can easily verify that, with the

randomized algorithm and gradient updates, (7.84)–(7.85) hold here with ⇢2

(⇢+h
min

)

2

replaced with (1 �

� h
min

)

2. The proof then proceeds analogously to the proof of Lemma 7.12. Further, just by replacing ⌘

with ⌘0, we obtain the Lemmas equivalent to Lemmas 7.13 and 7.14, which ultimately confirms the validity

of Theorem 7.11.

7.6 Simulation studies

This Section provides a simulation example with the l
2

-regularized logistic losses. We summarize our find-

ings from the example. First, simulations corroborate a globally linear convergence of the proposed methods

– both deterministic and randomized distributed AL methods. Further, it is usually advantageous to take a

small number of inner iterations ⌧ . We also compare: 1) the deterministic AL method with gradient type

updates and: 2) the D–NG method in [9], as both methods have computationally inexpensive iterations.

Simulations indicate that the AL method is better for smaller (better) condition numbers, while D–NG is

better for larger (poorer) condition numbers. (The D–NG method is less sensitive to the condition num-

ber �.) Finally, we compare the D–NG method with the deterministic AL method with NJ updates, which

is similar to the D–Lasso method proposed in [8] and show that the two methods trade-off communication

and computational costs, irrespective of the condition number. (Al with NJ has a lower communication cost

and a larger computational cost.)

Optimization problem. We consider distributed learning via the l
2

-regularized logistic loss; see,

e.g., [78] for further details. Nodes minimize the logistic loss:

N
X

i=1

fi(x) =
N
X

i=1

✓

log

⇣

1 + e�bi(a>i x
1

+x
0

)

⌘

+

P kxk2

2N

◆

,

where P > 0 is the regularization parameter, x = (x>
1

, x
0

)

> 2 R15, ai 2 R14 is the node i’s feature

vector, and bi 2 {�1,+1} is its class label. The hessian r2fi(x) =

P
N I +

e�c>i x

(1+e�c>
i

x
)

2

cic>i , where ci =

(bia>i , bi)
> 2 R15. We take node i’s constants h

min,i and h
max,i as: h

min,i =

P
N and h

max,i =

P
N +
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1

4

kci c>i k. (Note that e�c>i y

(1+e�c>
i

y
)

2

 1/4 for all y.) Further, we let h
min

= mini=1,...,N h
min,i and h

max

=

maxi=1,...,N h
max,i. For the specific problem instance here, the condition number � = h

max

/h
min

= 49.55.

Data. We generate the ai’s independently over i; each entry is drawn from the standard normal distribu-

tion. We generate the “true” vector x? = (x?
1

>, x?
0

)

> by drawing its entries independently from the standard

normal distribution. The class labels are generated as bi = sign

⇣

x?
1

>ai + x?
0

+ ✏i
⌘

, where the ✏i’s are

drawn independently from a normal distribution with zero mean and standard deviation 0.001.

Network. The network is a geometric network: nodes are placed uniformly randomly on a unit square

and the nodes whose distance is less than a radius are connected by an edge. There are N = 12 nodes and

28 links.

Algorithm parameters, metrics, and implementation. We set the weight matrix W =

1.1
2

I + 0.9
2

Wm,

where Wm is the Metropolis weight matrix. (Note that W � 0.) Further, we set ↵ = ⇢ = h
min

, with all

algorithm variants, and � =

1

⇢+h
max

=

1

(�+1)h
min

, with the methods that use the gradient primal updates. We

set the number of inner iterations ⌧ as follows. For the deterministic variant and NJ updates, we set ⌧ as in the

right hand side (rhs) of (7.15); with deterministic+gradient – as in the rhs of (7.21); with randomized+NGS

– as in the rhs of (7.70); and with randomized+gradient – as in the rhs of (7.77). We also simulate the

methods with ⌧ = 1 (although our theory does not guarantee linear convergence in such case.) We initialize

the primal and dual variables with all methods to equal zero. We consider the relative error in the cost

function, averaged across nodes, i.e., we estimate 1

N

PN
i=1

f(xi)�f?

f(0)�f? . We compare the methods in terms of:

1) the total number of transmissions (across all nodes), and 2) the total computational time. We implement

the methods via a serial implementation – one processor works the jobs of all nodes. We count the CPU

time for the overall jobs across all nodes. With the methods that use the NGS and NJ updates in (7.7), we

solve the local problems via the fast Nesterov gradient method for strongly convex functions. At the inner

iteration s and outer iteration k, to solve (7.7), we initialize the Nesterov gradient method by xi(k, s). We

stop the algorithm after:
2

6

6

6

�

�

�

�

�

�

log

⇣

2✏
(R0

)

2L0

⌘

log(1�
p
�0)

�

�

�

�

�

�

3

7

7

7

iterations, with ✏ = 10

�5.5 This guarantees that the optimality gap in the cost function upon termination

is below ✏ = 10

�5. Here, L0 is a Lipschitz constant for the cost function in (7.7), that (at node i) we

take as h
max,i + ⇢ +

R
N . Further, �0 = L0/⌫ 0 is the cost condition number, where ⌫ 0 =

R
N + ⇢ is the

Hessian lower bound. Finally, R0 is an estimate of the distance to solution, which we take as: R0
=

1

⇢+R/N krfi(xi(k, s)) + (R/N + ⇢)xi(k, s) + (⌘i(k)� ⇢xi(k, s)) k. All our Figures below are in a semi-

5We implicitly assume that the physical time allocated for each inner iteration s suffices to perform optimization (7.7).
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log scale.

Figure 7.1 (top left) plots the relative error in the cost function for the deterministic variants versus the

number of communications, while Figure 7.1 (top right) plots the same quantity versus the CPU time (This

is the cumulative CPU time across all nodes.) We simulate the NJ method with ⌧ in (7.15) and ⌧ = 1, and

the gradient method with ⌧ in (7.21) and ⌧ = 1. The Figures indicate the linear convergence of the proposed

methods. We report that the gradient method with ⌧ in (7.21) also shows a linear convergence in the number

of communications, but it converges slowly due to the large value of ⌧ . We can see that the NJ variant is

better in terms of the communication cost but is worse in terms of the computational cost. Figures 7.1
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Figure 7.1: Average relative error in the cost function 1

N

PN
i=1

f(xi)�f?

f(0)�f? for the proposed deterministic
methods (top) and randomized methods (bottom). The two left Figures show the communication cost (total
number of communications across all nodes); the two right figures show the computational cost (totol CPU
time across all nodes.)
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Figure 7.2: Average relative error in the cost function 1

N

PN
i=1

f(xi)�f?

f(0)�f? for the deterministic AL with NJ
updates method and the D–NG method. Top Figures show the scenario of a smaller condition number
� ⇡ 49.55, while bottom Figures show the scenario of a larger condition number � ⇡ 4856. The two
left Figures show the communication cost (total number of communications across all nodes); the two right
figures show the computational cost (total CPU time across all nodes.)
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Figure 7.3: Average relative error in the cost function 1

N

PN
i=1

f(xi)�f?

f(0)�f? for the deterministic AL method
with gradient updates and the D–NG method versus the total number of communications (The methods have
a smilar computational cost per communication.) The left Figure shows the scenario of a smaller condition
number � ⇡ 49.55, while the right Figure shows the scenario of a larger condition number � ⇡ 4856.

(bottom left and right) make the same plots for the randomized NGS and gradient methods. We observe a

similar behavior to that of the deterministic variants. Again, the theoretical value for ⌧ of the randomized

gradient method in (7.77) is very large, and, consequently, the algorithm shows slow convergence for the

latter choice of ⌧ .

Comparison of deterministic AL with NJ updates and D–NG. In the next experiment, we compare

the D–NG method in [9] with the deterministic variant and NJ updates; We consider two scenarios: 1)

smaller (better) condition number � =

h
max

h
min

= 49.55; and 2) larger (worse) condition number � ⇡ 4856.

The data and network are the same as in the previous example. With the second scenario, we increase the

condition number by taking a smaller value of the regularization parameter P . With the AL NJ method,

we take ↵ = ⇢ 2 {0.01, 0.1, 1, 10}, as the optimal choice of ↵ is not known a priori. Figure 7.2 (top left)

plots the relative error in the cost function versus the total number of communications, while Figure 7.2 (top

right) plots the relative error versus the total CPU time. First, observe that the D–NG method converges

sub-linearly in the number of communications. Second, we can see that, in this implementation example,

the D–NG has a lower computational cost, while the AL with NJ has a lower communication cost. Further,

we can see that D–NG is not very sensitive to the condition number, neither in terms of communication

nor in terms of computational costs. Regarding the AL with NJ, it is not very sensitive in terms of the

communication cost, but it is sensitive in terms of the computational cost. The reason is that, for a large

(poor) condition number �, the condition number �0 to solve local nodes’ problems (7.7) is also poor, and
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thus the computational cost increases when � increases.

Comparison of deterministic AL with gradient updates and D–NG. Our final simulation compares

the D–NG method and the deterministic AL with gradient updates. We use the same two scenarios from

the previous simulation (with a small and a large condition number �.) The two methods have a similar

(small) computational cost per one communication of each node, and so we only focus on the comparison

in terms of the communication cost. With the AL method, we set � = 1/(⇢ + h
max

), and we vary ↵ =

⇢ 2 {0.01, 0.1, 1, 10}. With the AL method, we set the number of inner iterations ⌧ = 1. Figure 7.3

left plots the relative error in the cost function versus the total number of communications for the smaller

condition number � = 49.55, while Figure 7.3 right repeats the plot for the larger (poorer) condition number

� = 4856. We can se that the D–NG method is much less sensitive to the condition number �. The AL

method with gradient updates is very sensitive to �, differently from the AL with NJ updates. We can

see that, for a small condition number, the AL gradient method converges faster than D–NG; for a large

condition number, D–NG is faster, at least for the accuracies up to 10

�5.

7.7 Conclusion

We considered a wide class of both deterministic and randomized distributed augmented Lagrangian (AL)

methods, which mutually differ in the primal variable updates. Specifically, we consider: 1) deterministic

AL with nonlinear Jacobi updates; 2) deterministic AL with gradient descent; 3) randomized AL with

nonlinear Gauss-Seidel; and 4) randomized AL with gradient descent updates. Assuming twice continuously

differentiable costs with bounded Hessian, we establish globally linear (geometric) convergence rates of all

methods, and we give explicit dependence of the rates on the underlying network parameters. For example,

for the deterministic variant with nonlinear Jacobi updates, we establish rate R = 1 � ⌦
⇣

�
2

(�+1)

⌘

in the

number of per-node communications, where � is the Hessian condition number of the fi’s, and �
2

is the

network spectral gap. Simulation examples demonstrate linear convergence of our methods.
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Chapter 8

Conclusion

This thesis develops and analyzes distributed optimization algorithms for networked systems, where N

nodes in a network minimize the sum
PN

i=1

fi(x) of their locally known, convex costs, subject to a global

variable of common interest. This problem formulation encompasses very relevant applications in net-

worked systems, including distributed estimation and source localization in sensor networks, and distributed

machine learning.

The main goals of the thesis are the following: 1) to develop novel distributed optimization algorithms;

and 2) to establish convergence rate analysis of both newly proposed and existing methods.

Current literature offers two types of distributed methods to solve the above distributed optimization

problem, namely distributed (consensus-based) gradient methods, and distributed augmented Lagrangian

dual methods. This thesis contributes to both types of methods, mainly in the following.

Distributed gradient-type methods:

• We develop novel distributed gradient methods that converge significantly faster than existing dis-

tributed gradient methods;

• We establish global convergence rates of our methods, in terms of the cost function parameters (e.g.,

Lipschitz constant of the gradient) and the underlying network parameters; remarkably, acceleration

techniques guarantee convergence rates (in expectation) on random networks;

• We show that existing distributed gradient methods cannot achieve the rates of our methods under

equal network and cost functions conditions.

Distributed augmented Lagrangian (AL) methods:
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• We develop novel distributed AL algorithms that operate with asynchronous inter-node communica-

tion;

• We establish globally linear convergence rates of a wide class of distributed AL methods under con-

vex twice continuously differentiable costs with bounded Hessian, in terms of the overall per-node

communications at any stage of the algorithm.

We recapitulate the main contributions of the thesis on distributed gradient methods, distributed AL

methods, and distributed consensus and averaging.

Chapters 2–4: Distributed Nesterov-like gradient methods

We propose distributed Nesterov-like gradient methods, and we establish their convergence rate guarantees

for both static and random networks, thus handling random packet dropouts with wireless sensor networks

and asynchronous communication protocols. In Chapters 2 and 3, we achieve this on the class F of con-

vex, differentiable costs fi’s that have Lipschitz continuous and bounded gradients. Chapter 4 establishes

convergence rates for alternative function classes, hence further broadening the applications scope.

In Chapter 2, we consider static networks and the class F and propose two distributed Nesterov-like

methods. Our first method, termed Distributed Nesterov Gradient method (D–NG), achieves at any node i

the following convergence rates in the optimality gap at the cost function 1

N ( f(xi)� f?
):

O

✓

1

(1� µ)1+⇠

log k

k

◆

and O

✓

1

(1� µ)1+⇠

logK
K

◆

,

in the number of per-node communications K and per-node gradient evaluations k. Here, (1 � µ) 2 (0, 1]

is the network’s spectral gap, and ⇠ > 0 is arbitrarily small.

Our second method, termed Distributed Nesterov gradient with Consensus iterations (D–NC), achieves

convergence rates:

O

✓

1

(1� µ)2
1

K2�⇠

◆

and O

✓

1

k2

◆

.

Both distributed gradient methods D–NG and D–NC show significant gains over existing, standard dis-

tributed gradient methods [2], for which we show they cannot perform better than ⌦
⇣

1

k2/3

⌘

and ⌦
⇣

1

K2/3

⌘

.

In Chapter 3, we modify our D–NG and D–NC methods to handle random networks, modeled by a

sequence of independent, identically distributed matrices W (k), drawn from the set of symmetric, stochastic

matrices with positive diagonals.
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We refer to our modified methods as mD–NG and mD–NC, respectively. With both methods, we estab-

lish convergence rates in terms of the expected normalized optimality gap 1

N (E [f(xi)]� f?
), at arbitrary

node i, as a function of k, K, the number of nodes N , and the quantity 1�µ – a generalization of the spectral

gap 1� µ for random networks.

The mD–NG algorithm achieves rates

O

✓

N

(1� µ)4/3
log k

k

◆

and O

✓

N

(1� µ)4/3
logK
K

◆

,

while mD–NC achieves:

O

✓

N ⇠

(1� µ)2
1

K2�⇠

◆

and O

✓

1

k2

◆

.

Hence, we show that the acceleration ideas of Nesterov apply also to random networks and allow for much

faster algorithms than offered by the existing literature.

In Chapter 4, we establish convergence and convergence rate guarantees for our distributed gradient

methods under problem classes different than F . We do not explicitly require that the gradients be bounded,

and we allow for constrained optimization, where each node i has the same closed, convex constraint set

X . For our proposed methods, naturally adapted to constrained optimization, we establish the same rates as

under class F , in terms of per-node communications K and per-node gradient evaluations k.

Chapter 5: Weight Optimization for Consensus in Random Networks

We address the problem of the optimal weight design for consensus averaging algorithms, allowing for

random networks with spatially correlated link failures. Our weight design applies both to 1) consensus and

distributed averaging; and 2) distributed optimization methods, where the convergence constant depends on

the underlying consensus dynamics.

We address the weight design for both symmetric and asymmetric random links. With symmetric ran-

dom links, we use as the optimization criterion the mean squared consensus convergence rate that equals µ2.

We express the rate as a function of the link occurrence probabilities, their correlations, and the weights. We

prove that µ2 is a convex, nonsmooth function of the weights, enabling global optimization of the weights.

We provide insights how the optimal weights depend on the number of nodes, the link occurrence probabil-

ities, and their correlations. We extend our results to asymmetric random links, adopting as an optimization

criterion the mean squared deviation (from the current average state) rate, and show that this metric is a con-

vex function of the weights. Simulation examples demonstrate the gains with our weight design compared

with existing weight assignment choices, both in distributed averaging and in distributed optimization.
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Chapters 6 and 7: Distributed augmented Lagrangian (AL) methods

We propose novel distributed AL methods that utilize asynchronous inter-node communication. For well-

structured convex costs fi’s, we establish globally linear convergence rates of wide class of distributed AL

methods. We now recapitulate our contributions in more detail.

In Chapter 6, we propose a randomized distributed AL method, termed Augmented Lagrangian algo-

rithm with Gossip communication (AL–G). The algorithm handles very general, nondifferentiable costs fi’s,

private constraint sets, and utilizes asynchronous, unidirectional, gossip communication. With respect to the

literature, our AL–G method uses a novel, asynchronous algorithm to update the primal variables. When

translated into optimization terminology, this is the nonlinear Gauss-Seidel method with the randomized

order of updates. We prove convergence of this inner primal algorithm, when the number of inner iterations

goes to infinity. This establishes convergence of the nonlinear Gauss-Seidel method with random order of

minimizations, while existing literature previously showed convergence only under the cyclic or the essen-

tially cyclic rules, [14, 15]. We illustrate the performance of our AL–G method with relevant applications in

l
1

–regularized logistic regression for classification and cooperative spectrum sensing for cognitive radios.

In Chapter 7, with respect to Chapter 6, we assume a restricted class of functions of convex, twice differ-

entiable fi’s with a bounded Hessian, and unconstrained problems. We establish globally linear convergence

rates for a wide class of distributed AL methods, in the overall number of per-node communications K at any

algorithm stage. Furthermore, we give explicit dependence of the convergence rate on the network spectral

gap 1� µ.

Specifically, we analyze a wide class of both deterministic and randomized methods that update their

dual variables at slow time scale and their primal variables iteratively, at a fast time scale. With the deter-

ministic variants, primal variables are updated via either: 1) the nonlinear Jacobi (NJ) method, or 2) the

gradient descent. With the randomized methods, primal variables are updated via either: 1) a randomized

nonlinear Gauss-Seidel (NGS) method; or a randomized coordinate gradient descent. Hence, we consider

the total of four algorithm variants: 1) deterministic NJ; 2) deterministic gradient; 3) randomized NGS; and

4) randomized gradient. With all four variants, we establish globally linear convergence rates in the total

number of elapsed per-node communications K(k) after k outer iterations. The distance to the solution x?

of (1.1), at any node i and any outer iteration k decays as:

kxi(k)� x?k = O
⇣

RK(k)
⌘

,

where R 2 [0, 1) is the communication rate. We explicitly express the rate R in terms of the fi’s condition
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number � and the network spectral gap. For example, for the deterministic NJ method, the rate is:

R = 1� ⌦
✓

1� µ

�

◆

which is 1 � ⌦(1/N2

) (poor) for chain networks and is bounded away from one (good) for expander net-

works.

The thesis develops new technical tools that are of general interest in classical and distributed optimiza-

tion, linear random time varying systems, and random consensus dynamics.

Future work

Directions for future work include the following. 1) Explore convergence rates of distributed Nesterov-like

methods with composite, nondifferentiable costs; 2) Explore convergence rates of distributed augmented

Lagrangian methods for more general costs (than the costs with bounded Hessian). 3) Consider distributed

optimization formulations with costs different than the sum of nodes’ local costs.

Portions of this thesis have been published in journal papers [46, 38], submitted to journals [9, 47], and

are to be submitted to a journal [48]; and published in conference proceedings [49, 50].

During the course of this thesis, we also published journal [3, 51, 52] and conference [53, 54, 55, 56, 57,

58] papers.
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Appendix A

Technical Proofs for Chapter 2

A.1 Proof of Lemma 2.5

Step 1. We first prove the following auxiliary equality:

�k�1

v(k) = x(k)� (1� �k�1

)x(k � 1). (A.1)

Using the definition of v(k) in Lemma 2.5, �k = 2/(k + 2), �k�1

= (k � 1)/(k + 2), and (4.51):

v(k) =
k + 2

2

✓

x(k) +
k � 1

k + 2

x(k)� k � 1

k + 2

x(k � 1)� k

k + 2

◆

=

k + 1

2

x(k)� k � 1

2

x(k � 1).

Multiplying the right hand side of the last equality by �k�1

= 2/(k + 1), the result follows.

Step 2. We prove the following relation:

f(x(k))  f(z)+Lk�1

(x(k)�y(k�1))

>
(z�x(k))+

Lk�1

2

kx(k)�y(k�1)k2+�k�1

, 8z 2 Rd. (A.2)

Using the inexact oracle property (4.49):

f(x(k))  bfk�1

+ bg>k�1

(x(k)� y(k � 1)) +

Lk�1

2

kx(k)� y(k � 1)k2 + �k�1

. (A.3)

Further, 8z 2 Rd: 0 = 0

>
(z � x(k)) =

⇣

x(k)� y(k � 1) +

1

Lk�1

bgk�1

⌘>
(z � x(k)) , and so:

bg>k�1

(z � x(k)) + Lk�1

(x(k)� y(k � 1))

>
(z � x(k)) = 0. (A.4)

202



From property (4.49): f(z) � bfk�1

+ bg>k�1

(z � y(k� 1)), and so, using the last equation and adding (A.3)

and (A.4), the claim (A.2) follows.

Step 3. We finally prove (4.53). We start by using relation (A.2). Namely: 1) setting z = x(k � 1) in

(A.2) and multiplying inequality (A.2) by 1 � �k�1

; 2) setting z = x• in (A.2) and multiplying inequality

(A.2) by �k�1

; and 3) adding the corresponding two inequalities:

�k�1 {f(x(k))� f(x•
)}+ (1� �k�1) {f(x(k))� f(x(k � 1))}

= {f(x(k))� f(x•
)}� (1� �k�1) {f(x(k � 1))� f(x•

)}

 �k�1Lk�1 (x(k)� y(k � 1))

>
(x• � x(k)) + (1� �k�1)Lk�1 (x(k)� y(k � 1))

>
(x(k � 1)� x(k))

+

Lk�1

2

kx(k)� y(k � 1)k2 + �k�1

= Lk�1(x(k)� y(k � 1))

>
(�k�1x

•
+ (1� �k�1)x(k � 1)� x(k)) +

Lk�1

2

kx(k)� y(k � 1)k2 + �k�1

=

Lk�1

2

(2(x(k)� y(k � 1))

>
(�k�1x

•
+ (1� �k�1)x(k � 1)� x(k)) + kx(k)� y(k � 1)k2) + �k�1.(A.5)

Denote by:

Mk�1

= (2(x(k)� y(k � 1))

>
(�k�1

x• + (1� �k�1

)x(k � 1)� x(k)) + kx(k)� y(k � 1)k2).

Then, inequality (A.5) is written simply as:

{f(x(k))� f(x•)}� (1� �k�1

) {f(x(k � 1))� f(x•)}  Lk�1

2

Mk�1

+ �k�1

. (A.6)

Now, we simplify the expression for Mk�1

as follows. Using the identity:

kx(k)� y(k � 1)k2 = 2(x(k)� y(k � 1))

>x(k) + ky(k � 1)k2 � kx(k)k2,

we have:

Mk�1 = 2(x(k)� y(k � 1))

>
(�k�1x

•
+ (1� �k�1)x(k � 1))� kx(k)k2 + ky(k � 1)k2

= ky(k � 1)� ((1� �k�1)x(k � 1) + �k�1x
•
)k2 � kx(k)� ((1� �k�1)x(k � 1) + �k�1x

•
)k2

= �2k�1kv(k � 1)� x•k2 � �2k�1kv(k)� x•k2, (A.7)

where the last equality follows by the definition of v(k � 1) in Lemma 2.5 and by the identity (A.1). Now,
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combining (A.6) and (A.7):

(f(x(k))� f(x•)) � (1� �k�1

)(f(x(k � 1))� f(x•))


Lk�1

�2k�1

2

�

kv(k � 1)� x•k2 � kv(k)� x•k2
�

+ �k�1

.

Finally, multiplying the last equation by 4

�2

k�1

, and using �k�1

= 2/(k + 1), we get the result.

A.2 Proof of Theorem 2.8 (b)

Suppose c > 1

2L and denote by k0 = 2cL. We show that Theorem 5 (b) holds with:

C0
= k0L

0

@

 

3

k0 � 1

3� 1

!

2

4c2G2

+R2

1

A

+

2

c

0

@

2(2k0 + 1)

2

 

3

k0 � 1

3� 1

!

2

4c2G2

+ 2R2

1

A

+ 16c2LC2

cons

G2

+ cC
cons

G2. (A.8)

Progress equation (2.24) still holds if L0
k =

N(k+1)

c � 2NL, i.e., if k � k0 := 2cL. Telescoping (2.24)

backwards from k > k0 until k0:

(k + 1)

2 � 1

k + 1

(f(x(k))� f?
)

 (k0)2 � 1

k0
�

f(x(k0 � 1))� f?
�

+

2N

c
kv(k0 � 1)� x?k2 + L

k
X

t=k0

key(t� 1)k2 (t+ 1)

2

t

 k0
�

f(x(k0 � 1))� f?
�

+

2N

c
(2kv(k0 � 1)k2 + 2kx?k2) + L

k
X

t=1

key(t� 1)k2 (t+ 1)

2

t
. (A.9)

Theorem 2.7 holds unchanged if c > 1/(2L), and so:

L
k
X

t=1

key(t� 1)k2 (t+ 1)

2

t
 16N c2

k
LC2

cons

G2

 

k
X

t=2

(t+ 2)

2

t(t� 1)

2

!

. (A.10)

Upper bound kv(k0 � 1)k, where we recall v(k) = 1

�k
y(k)� 1��k

�k
x(k), and �k =

2

k+2

:

kv(k � 1)k  k + 1

2

ky(k � 1)k+ kkx(k � 1)k  (2k + 1)Mk�1

, (A.11)

where Mk�1

:= max {ky(k � 1)k, kx(k � 1)k} . By (31), ↵k�1

= c/k, �k�1

 1, k
PN

i=1

rfi(yi(k �
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1))k  NG, kWk = 1:

kx(k)k  ky(k � 1)k+ cG

k
Mk�1

+

cG

k

ky(k)k  2kx(k)k+ kx(k � 1)k  2ky(k � 1)k+ kx(k � 1)k+ 2cG

k
 3Mk�1

+

2cG

k
,

and so: Mk  3Mk�1

+

2cG
k , k = 1, 2, ..., M

0

= 0. By unwinding the above recursion from k = k0 � 1

to k = 1, we get:

Mk0�1


 

3

k0 � 1

3� 1

!

2cG. (A.12)

Further, combining the last equation with (A.11), and squaring the resulting inequality:

kv(k0 � 1)k2  (2k0 + 1)

2

 

3

k0 � 1

3� 1

!

2

4c2G2. (A.13)

Using the Lipschitz continuity of f (with constant LN ), and using rf(x?) = 0:

f(x(k0 � 1))� f?  rf(x?)>(x(k0 � 1)� x?) +
LN

2

kx(k0 � 1)� x?k2

 (LN)

�

kx(k0 � 1)k2 + kx?k2
�

 (LN)

0

@

 

3

k0 � 1

3� 1

!

2

4c2G2

+ kx?k2
1

A ,

where we used (A.12) to upper bound kx(k0�1)k. Finally, combine the last equation with (A.9), (A.10), (A.13),

use
Pk

t=1

(t+1)

2

t3 � 1, 8k, kx?k  R (as x(0) = y(0) = 0), repeat the same argument as in (2.26). We

obtain:
1

N
(f(xi(k))� f?

)  C0

 

1

k

k
X

t=2

(t+ 2)

2

t(t� 1)

2

!

, k > k0,

where C0 is given in (A.8).

A.3 Auxiliary steps for the proof of the lower bound (2.34)

Proof of Step 1: Properties of the f✓
i ’s. We now show that the f✓

i ’s are convex, have Lipschitz continuous

gradient with constant L =

p
2, and bounded gradients krf✓

i (x)k  10, for all x, i = 1, 2. Thus, the f✓
i ’s

in (2.35) belong to the class F = F(L =

p
2, G = 10), for any ✓ 2 [0, 1].

To show that the function x 7! f✓
1

(x) is convex, note that it can be represented as the following concate-

nation: x 7! y = (

p
✓(x(1) � 1), (x(2) � 1))

> 7! z = kyk 7! w = fh(z) = f✓
1

(x), where fh : R
+

! R
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is the Huber loss: fh(z) =

1

2

z2, if kzk  �, and fh(z) = �(kzk � �/2), else. Hence, x 7! f✓
1

(x) is a

concatenation of an affine function, a convex function, and a convex non-decreasing function, and hence it

is convex. Analogously, we can show that x 7! f✓
2

(x) is convex.

We show the Lipschitz continuity and the boundedness of the gradient of f✓
1

:

rf✓
1 (x) =

✓

@f✓
1

@x(1)
(x),

@f✓
1

@x(2)
(x)

◆>

=

8

>

<

>

:

(✓(x(1) � 1), (x(2) � 1))

> if x 2 R1

�

[

✓(x(1)�1)2+(x(2)�1)2
]

1/2 (✓(x
(1) � 1), (x(2) � 1))

> else.

(A.14)

The first coordinate of the gradient x 7! @f✓
1

@x(1)

(x) can be expressed as the following concatenation of

the functions: x 7! y = (x(1) � 1, x(2) � 1)

> 7! z = (

p
✓y(1), y(2)) 7! w = ProjB

0,�
(z) 7! v =

@f✓
1

@x(1)

(x) =
p
✓w(1), where ProjB

0,�
(z) is the projection of z on the ball centered at zero with radius �. All

the functions � in the concatenation above are Lipschitz continuous with constant one, and so x 7! @f✓
1

@x(1)

is also Lipschitz continuous with constant one. (Given the function �m(�m�1

(...(�
1

(x)))), where the �i’s

are Lipschitz continuous of constant one, we have k�m(�m�1

(...(�
1

(u)))) � �m(�m�1

(...(�
1

(v))))k 

k�m�1

(...(�
1

(u)))� �m�1

(...(�
1

(v)))k  ...ku� vk.) Similarly, we can show that x 7! @f✓
1

@x(2)

is Lipschitz

continuous with constant one. This implies that the gradient x 7! rf✓
1

(x) is Lipschitz continuous with

constant
p
2. Also, k @f✓

1

@x(1)

(x)k 
p
✓�  6, for all x. (Recall the concatenation representation x 7! y =

(x(1) � 1, x(2) � 1)

> 7! z = (

p
✓y(1), y(2)) 7! w = ProjB

0,�
(z) 7! v =

@f✓
1

@x(1)

(x) =

p
✓w(1); then, for

any x 2 R2, k @f✓
1

@x(1)

(x)k 
p
✓kProjB

0,�
(z)k, for some z 2 R2, and so k @f✓

1

@x(1)

(x)k 
p
✓�.) Similarly,

k @f✓
1

@x(2)

(x)k  �  6. Thus, for the gradient, we have: krf✓
1

(x)k  6

p
2 < 10, for all x. We can

analogously show that krf✓
2

(x)k  6

p
2 < 10, for all x.

Proof of (2.53). We fist prove that, if kxI(k)k  2

p
2, and kxIIk  2

p
2, then xi(k) 2 Ri, i = 1, 2.

Consider node 1’s estimate x
1

(k). If kxI(k)k  2

p
2, and kxIIk  2

p
2, then kx(l)

1

(k)k  2

p
2, l = 1, 2,

and:

✓(x(1)
1

(k)� 1)

2

+ (x(2)
1

(k)� 1)

2  2(2

p
2 + 1)

2 < 2(2

3

2

+ 1)

2 < 32 < �2

= 36,

which means x
1

(k) 2 R
1

. (Analogously, we can show x
2

(k) 2 R
2

.)

We next prove that kxl(k)k  2

p
2, l = 1, 2, for all k; we do this by induction. For k = 0, kxl(0)k 

2

p
2, l = 1, 2. Now, suppose that, for some k � 1, kxl(k � 1)k  2

p
2, l = 1, 2. Then, the update

equations (2.52) to get xI(k) and xII(k), using the derivatives of the f✓
i ’s in the quadratic region in (A.14) are

given by (2.54). From (2.54), the sub-additive and sub-multiplicative properties of norms, and using ↵k�1

=
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c/(k⌧ ):

kxI(k)k 
✓

1� c✓

k⌧

◆

kxI(k � 1)k+ c✓

k⌧
p
2 = kxI(k � 1)k � ✓c

k⌧

⇣

kxI(k � 1)k �
p
2

⌘

.

Now, distinguish two cases: 1) kxI(k � 1)k 2 [0,
p
2]; and 2) kxI(k � 1)k 2 (

p
2, 2
p
2]. In case 1:

kxI(k)k  kxI(k � 1)k +
p
2✓c
k⌧  2

p
2, where we used 0  c  1/(2

p
2) = 1/(2L) and 0  ✓  1. In

case 2: kxI(k)k < kxI(k� 1)k  2

p
2. Thus, we have shown that kxI(k)k  2

p
2. Similarly, we can show

that kxII(k)k  2

p
2. Thus, by induction, kxl(k)k  2

p
2, l = 1, 2, for all k, and so xi(k) 2 Ri, i = 1, 2,

for all k.

Proof of an inequality on sk(⌧). Consider function sk : [0, 1] ! R, sk(⌧) =

Pk�1

t=0

(t + 1)

�⌧ .

We prove that sk(⌧)  3(log k)k1�⌧ , ⌧ 2 [0, 1], k � 3. The function is convex on [0, 1]. By convexity,

sk(1) � sk(⌧) +rsk(⌧)(1� ⌧), and so:

sk(⌧)  sk(1) + (⌧ � 1)rsk(⌧) = sk(1) + (⌧ � 1)

 

�
k
X

t=2

(log t)t�⌧

!

 sk(1) + (1� ⌧)(log k)
 

k
X

t=2

t�⌧

!

 sk(1) + (1� ⌧)(log k)(k + 1)

1�⌧

1� ⌧  (3 log k)(k + 1)

1�⌧ , (A.15)

for all k � 3. In the left ineuality in (A.15), we use
Pk

t=2

t�⌧  (k+1)

1�⌧

1�⌧ , while in the right inequality we

use sk(1)  log k + 1 and log k � 1 for k � 3.

Finding the infima over ⌧ 2 [0, 3/4], ⌧ 2 [3/4, 1], and ⌧ 2 [1,1) in (2.60). First, upper bound

inf

[3/4,1] ek(⌧). Using sk(⌧)  3(log k)(k + 1)

1�⌧ , 8k � 3, 8⌧ 2 [0, 1], and (2.59): ek(⌧) � e0k(⌧) =

(1�c
max

)

2

6(log k)(k+1)

1�⌧ +

c2
min

2(log k)(k+1)

2⌧ , 8k � 3, 8⌧ 2 [3/4, 1]. Thus:

inf

[3/4,1]
ek(⌧) = ⌦

✓

1

(log k)(k + 1)

1/4

◆

, (A.16)

after setting ⌧ = 3/4. Next, consider ⌧ 2 [0, 3/4]: upper bound ek(⌧) using sk(⌧)  1 +

(k+1)

⌧

1�⌧ 

1 + 4(k + 1)

⌧ , ⌧ 2 [0, 3/4] and (2.59): ek(⌧) � e00k(⌧) :=
(1�c

max

)

2

2+8 (k+1)

1�⌧ +

c2
min

2(k+1)

2⌧ , 8k � 1, 8⌧ 2 [0, 3/4],

and thus we obtain:

inf

[0,3/4]
ek(⌧) = ⌦(1/k

2/3
). (A.17)

Finally, consider ⌧ 2 [1,1); we have ek(⌧) � (1�c
max

)

2

2sk(⌧)
� (1�c

max

)

2

6 log k , 8⌧ 2 [1,1), where we used
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sk(⌧)  3 log k, 8k � 3, 8⌧ > 1. Thus, inf
[1,1)

ek(⌧) = ⌦(1/ log k).

A.4 Relaxing bounded gradients: Proof of (2.36) for D–NG

Consider the candidate weight choice W
12

= W
21

= 1�W
11

= 1�W
22

=

1

2

(1� 10

�6

). The eigenvalues

of W are �
1

= 10

�6 and �
2

= 1,and so W obeys Assumption 2.1 (b). For the proof of (2.36), start similarly

as with D–NC: 1) find the recursion for x(k), y(k) from (2.9)–(2.10) and taking the derivatives of the fi’s

in (2.37), with x(0) = y(0) = (0, 0)>; 2) define z(k) := Q>x(k), w(k) := Q>y(k); and 3) write the

recursion for the first coordinate z(1)(k), w(1)

(k), using ↵k = c/(k + 1):

z(1)(k) =
⇣

�
1

� c

k

⌘

w(1)

(k � 1) +

p
2 c ✓

k
, w(1)

(k) = z(1)(k) + �k�1

(z(1)(k)� z(1)(k � 1)), (A.18)

k = 1, 2, ... and z(1)(0) = w(1)

(0) = 0. The update for (z(1)(k), z(1)(k � 1))

> is:

(z(1)(k), z(1)(k � 1))

>
= ⌃

0
1

(k � 1) (z(1)(k � 1), z(1)(k � 2))

>
+

c

k
(

p
2✓, 0)>, (A.19)

k = 1, 2, ..., with (z(1)(0), z(1)(�1))> = (0, 0)> and [⌃

0
(k�1)]

11

= (1+�k�2

)(�
1

�c/k), [⌃0
(k�1)]

12

=

��k�2

(�
1

� c/k), [⌃0
(k � 1)]

21

= 1, and [⌃

0
(k � 1)]

22

= 0. (Recall �k = k/(k + 3) for k = 0, 1, ...

and ��1

:= 0.) Now, take c = �
1

/4. Then, for t � 0, ⌃0
1

(t) =

b

⌃

0
1

� a0t�
0
1

, with 1) [

b

⌃

0
1

]

11

= 2�
1

,

[

b

⌃

0
1

]

12

= ��
1

, [b⌃0
1

]

21

= 1, [b⌃0
1

]

22

= 0; 2) [�0
1

]

11

= �[�0
1

]

12

= �
1

, and [�

0
1

]

21

= [�

0
1

]

22

= 0; and 3)

a0t =
3

t+2

+

1

2(t+1)

� 3

4(t+2)(t+1)

. Recall ⌃i(t) in (2.41) and its representation in the paragraph below (2.43);

⌃

0
1

(t) has a very similar structure to ⌃i(t) – the only difference is that at is replaced with a0t. However, there

still holds that k⇧k�t+2

s=2

⌃

0
1

(k � s)k  8p
�
1

(1��
1

)

(

p
�
1

)

k�t, (just as with ⌃i(t)). This is because the key

inequality (2.45) holds for all a := at 2 [0, 2], and so it holds for all a0t, t = 0, 1, ... Therefore, we can apply

Theorem 2.7 to kw(1)

(k)k using the following identification: ex(k) ⌘ z(1)(k), ey(k) ⌘ w(1)

(k), N ⌘ 1, G ⌘
p
2✓, ⌘ ⌘ �

1

, µ(W ) ⌘ �
1

. Also, using log(z+1)  z, z > 0, upper bound B(r) = supz�1/2 zr
z
log(z+1)

as:

B(r)  sup

z�1/2
z2rz  4

e2(� log r)2
 4

e2(1� r)2
(1 + r)2

(1 + r)2
 16

e2(1� r2)2
, r 2 (0, 1).

Applying Theorem 2.7 to kw(1)

(k � 1)k with the above identifications and the bound on B(r):

kw(1)

(k � 1)k 
⇣

363

p
2 c ✓

⌘

 

1

p

�
1

(1� �
1

)

1

(1� �
1

)

2

!

1

k � 1

, k � 2. (A.20)
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From (A.19) and (A.20):

kz(1)(k)k �
p
2 c ✓

k

✓

1� 331 k
p
�
1

(k � 1)(1� �
1

)

5/2

◆

�
p
2 c ✓

2 k
,

for k � 5, and �
1

= 10

�6. Now, from (2.63), and squaring the last inequality, we get that, for fixed k � 5,

M > 0, maxi=1,2(f(xi(k))� f?
) �M for ✓(k,M) =

2 k
p
M

c = 8⇥ 10

6 k
p
M. Thus, the result.

Remark on the distance to consensus. Consider ex(k) = (I �J)x(k), ey(k) = (I �J)y(k), and define

ez(k) = Q>z(k), ew(k) = Q>w(k); ew(1)

(k) and ez(1)(k) obey exactly the same equations (81) (replace

in (81) z(1)(k) with ez(1)(k) and w(1)

(k) = ew(1)

(k).) Thus, there holds that kex(k)k �
p
2c✓/(2k).

A.5 Relaxing bounded gradients: Proof of (2.36) for the algorithm in [2]

We show that distributed gradient method in [2] has an arbitrarily slow worst case convergence rate when

Assumption 2.3 is relaxed, while Assumptions 2.1 and 2.2 hold. We consider: the connected network

with N = 2 nodes; the weight matrix with W
11

= W
22

= 3/4, W
12

= W
21

= 1/4; the candidate

functions f✓
i : R ! R, i = 1, 2, as in (2.37), for ✓ > 0; the initialization x

1

(0) = x
2

(0) = 0; and the

algorithm step size ↵k =

c
(k+1)

⌧ , c 2 (0, 1/2], ⌧ � 0, k = 0, 1, ... By evaluating the gradients of the f✓
i ’s,

and using the values of the entries of W , it is straightforward to show (by induction) that, 8k = 0, 1, ...,

x
1

(k) = �x
2

(k) � 0, with the update equation:

x
1

(k) = (W
11

�W
12

� ↵k�1

)x
1

(k � 1) + ↵k�1

✓ =

✓

1

2

� ↵k�1

◆

x
1

(k � 1) + ↵k�1

✓,

and so kx
1

(k)k = x
1

(k) � ↵k�1

✓, 8k � 1. Using the latter and (2.63), we obtain that the optimality

gap maxi=1,2 (f(xi(k))� f?
) � ↵2

k�1

✓2

2

. Now, it is clear that, for a fixed k, and any fixed step-size choice

c 2 (0, 1/2], ⌧ � 0, the optimality gap maxi=1,2 (f(xi(k))� f?
) � ↵2

k�1

✓2

2

=

c2 ✓2

2 k2 ⌧ can be made arbitrarily

large by choosing a sufficiently large ✓.

209



Appendix B

Tecnical Proofs for Chapter 3

B.1 Proofs of Lemmas 3.3 and 3.13

Proof: [Proof of Lemma 3.3] We first prove (3.3). For t = k � 1, e�(k, t) = I and (3.3) holds. Next, fix

some t, 0  t  k � 2. We use the following inequality for a N ⇥N matrix A: kAk2  N
PN

i=1

kAeik2,

where ei is the i-th canonical vector (Aei is the i-th column of A.) Using the latter with A ⌘ e

�(k, t), and

taking expectation:

E
h

�

�

�

e

�(k, t)>e�(k, t)
�

�

�

i

= E


�

�

�

e

�(k, t)
�

�

�

2

�

 N
N
X

i=1

E


�

�

�

e

�(k, t) ei
�

�

�

2

�

. (B.1)

Denote by �i(s + 1) :=

e

�(s, t) = fW (s + t + 2)...fW (t + 2) ei, s = 0, ..., k � t � 2, and �i(0) = ei. The

vectors �i(s) are recursively expressed as:

�i(s+ 1) =

fW (s+ t+ 2)�i(s), s = 0, ..., k � t� 2, �i(0) = ei.

Using the above, independence of the matrices fW (k)’s, and nesting expectations:

E
⇥

k�i(k � t� 1)k2
⇤

= E
h

E
h

�i(k � t� 2)

>
fW (k)2�i(k � t� 2) |fW (k � 1), ...,fW (t+ 2)

i i

= E
h

�i(k � t� 2)

> E
h

fW (k)2
i

�i(k � t� 2)

i

 E
h

�

�

�

E
h

fW (k)2
i

�

�

�

k�i(k � t� 2)k2
i

 µ2 E
h

k�i(k � t� 2)k2
i

.
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Applying the same argument to E
h

k�i(k � t� 2)k2
i

, and continuing successively, obtain, for all i:

E
h

ke�(k, t) eik2
i

= E
⇥

k�i(k � t� 1)k2
⇤

 (µ2

)

k�t�1 keik2 = (µ2

)

k�t�1.

Plugging the latter bound in (B.1), the result in (3.3) follows. Next, (3.2) follows from (3.3) and Jensen’s

inequality. It remains to prove (3.4). We first consider 0  s < t  k � 2. (The case t < s is symmetric.)

Using the independence of the fW (k)’s, the sub-multiplicative property of norms, and taking expectation,

obtain:

E
h

�

�

�

e

�(k, s)>e�(k, t)
�

�

�

i

 E
h

kfW (t+ 1)...fW (s+ 2)k
i

E


�

�

�

e

�(k, t)
�

�

�

2

�


�

N µt�s
�

⇣

N2

(µ2

)

k�t�2

⌘

= N3 µ(k�t�1)+(k�s�1). (B.2)

Inequality (B.2), we applied (3.2) and (3.3). thus, the result in (3.4) for s, t 2 {0, ..., k � 2}. Now, if

s = k � 1, t < k � 1, e�(k, s)>e�(k, t) =

e

�(k, t) and the result reduces to (3.3). The case s < k � 1,

t = k � 1 is symmetric. Finally, if s = k � 1, t = k � 1, the result is trivial. The proof is complete. 2

Proof: [Proof of Lemma 3.13] We first prove (3.43). By definition of W(k) in (3.42), it is the product

of ⌧k i.i.d. matrices W (t) that obey Assumptions 3.1 and 3.2. Hence, by (3.3), we have:

E
h

kW(k)k2
i

 (µ2

)

⌧k
= N2 e2⌧k log(µ)  N2 e�2(3 log k+logN)

=

1

k6
,

and we obtain (3.43).

We now prove (3.45). Consider e

 (k, t) :=

fW(k), ..., fW(t + 1), k � t + 1. We use the following

inequality for square matrices A and B: kB>A>ABk  kA>Ak kB>Bk = kBk2 kAk2. Applying the

latter successively k � t times, we obtain:

�

�

�

e

 (k, t)>e (k, t)
�

�

�


�

�

�

fW(k)
�

�

�

2

...
�

�

�

fW(t+ 1)

�

�

�

2

.

Using the independence, taking expectation, and applying (3.43), we obtain (3.45). Now, (3.44) follows

by Jensen’s inequality from (3.45); relation (3.46) can be proved similarly and the details are omitted for

brevity. 2
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B.2 Proof of (3.61)–(3.62)

Recall the random graph G(k). Further, recall that we impose here, for a certain connected graph G
0

,

that G(k) = G
0

with a positive probability pG. The latter Assumption, together with the fact that w in

Assumption 3.1 is bounded away from zero, implies that there exists a scalar µ
4

2 [0, 1), such that:

E


�

�

�

fW (k)
�

�

�

4

�

 (µ
4

)

4.

In particular, µ
4

can be taken as:

µ
4

= (1� pG) + pG
�

1� w2 �
F

(G
0

)

�

2

< 1,

where �
F

(G
0

) is the second largest eigenvalue (algebraic connectivity) of the (unweighted) Laplacian ma-

trix of the graph G
0

. Next, consider (3.38). Denote by efk :=

1

N (f(x(k)) � f?
). Squaring (3.38), taking

expectation, and using the Cauchi-Schwarz inequality, obtain:

E
h

(

efk)
2

i

 4R2

c2 k2
+

4RL

N c

1

k2

k
X

t=1

(t+ 1)

2

t
E
⇥

key(t� 1)k2
⇤

(B.3)

+

L2

N2 k2

k
X

t=1

k
X

s=1

(t+ 1)

2

t

(s+ 1)

2

s

�

E
⇥

key(t� 1)k4
⇤�

1/2 �E
⇥

key(s� 1)k4
⇤�

1/2
,

where we recall R := kx(0)� x?k. The first term in (B.3) is clearly O(1/k2); the second term is, applying

Theorem 3.7, O(log k/k2). It remains to upper bound the third term, which requires an upper bound on the

fourth moment of key(t)k, for all t = 0, 1, ..., k� 1. Recall (3.32), and denote by Uk := kfW (k)k. Fix s < t,

s, t 2 {0, 1, ..., k � 1}. By the sub-multiplicative property of norms:

�

�

�

e

�(k, t)>e�(k, s)
�

�

�


�

U2

k U2

k�1

...U2

t+2

�

(Ut+1

...Us+2

) .

Similarly, for t = s:
�

�

�

e

�(k, t)>e�(k, t)
�

�

�

 U2

k U2

k�1

...U2

t+2

.

Denote by:

bU(t, s) := Ut Ut�1

...Us+1

,
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for t > s, and bU(t, t) = I. Further, squaring (3.32):

kez(k)k4  (9c4N2G4

)

k�1

X

t
1

=0

k�1

X

t
2

=0

k�1

X

t
3

=0

k�1

X

t
4

=0

bb(k, t
1

)

bb(k, t
2

)

bb(k, t
3

)

bb(k, t
4

) (B.4)

⇥
⇣

bU(k, t
1

+ 1)

⌘

4

⇣

bU(t
1

+ 1, t
2

+ 1)

⌘

3

⇣

bU(t
2

+ 1, t
3

+ 1)

⌘

2

⇣

bU(t
3

+ 1, t
4

+ 1)

⌘

4

⇥ 1

(t
1

+ 1)(t
2

+ 1)(t
3

+ 1)(t
4

+ 1)

,

where bb(k, t) := 8(k�t�1)(t+1)

k + 5. Fix ti 2 {0, 1, ..., k � 1}, i = 1, ..., 4, with t
1

� t
2

� t
3

� t
4

. Using

independence of the Uk’s, and the following inequality:
⇣

E
h

U j
k

i⌘

4/j
 E

⇥

U4

k

⇤

, j = 1, 2, 3, we obtain:

E
h

(

bU(k, t
1

+ 1))

4

(

bU(t
1

+ 1, t
2

+ 1))

3

(

bU(t
2

+ 1, t
3

+ 1))

2

(

bU(t
3

+ 1, t
4

+ 2))

i

(B.5)

 (µ4

4

)

k�t
1

�1

(µ3

4

)

t
1

�t
2

(µ2

4

)

t
2

�t
3

(µ
4

)

t
3

�t
4

= (µ
4

)

P
4

i=1

(k�ti)�1.

Taking expectation in (B.4), and applying (B.5), we get:

E
⇥

kez(k)k4
⇤

 (9c4N2G4

)

 

k�1

X

t=0

bb(k, t)µk�t
4

(t+ 1)

�1

!

4

= O(1/k4), (B.6)

where the last equality uses Lemma 3.9. Applying the last bound to (B.3), we conclude that the third

term in (B.3) is O(log

2 k/k2). Thus, overall, E
h

(

efk)2
i

= O(log

2 k/k2). Next, express f(xi(k)) � f?
=

N efk + (f(xi(k)) � f(x(k))), and use (f(xi(k)) � f?
)

2  2(N efk)2 + 2(f(xi(k)) � f?
)

2  2(N efk)2 +

2GNkex(k)k2. Taking expectation in the last inequality, applying Theorem 3.7, and using (B.6), the result

(3.61) follows.

Consider now mD–NC. We modify the value ⌧k here to equal ⌧k = d 3 log k
� log µ

4

e. Now, result (3.62) can be

proved similarly to (3.61), and details are omitted for brevity.
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Appendix C

Proofs and Technical Details for Chapter 5

C.1 Proof of Lemma 5.1 (a sketch)

Eqn. (5.18) follows from the expectation of (5.3). To prove the remaining of the Lemma, we find W 2, W
2

,

and the expectation W 2. We obtain successively:

W 2

= ( C �A+ I � diag(CA) )

2

= (C �A )

2

+ diag

2

(CA) + I + 2C �A� 2 diag(CA)� (C �A ) diag(CA)

� diag(CA) (C �A )

W
2

= (C � P )

2

+ diag

2

(C P ) + I + 2C � P � 2 diag (C P )

� [(C � P ) diag (C P ) + diag (C P ) (C � P )]

E
⇥

W 2

⇤

= E
⇥

(C �A )

2

⇤

+ E
⇥

diag

2

(CA)

⇤

+ I + 2C � P

�2 diag (C P )� E[ (C �A ) diag(CA) + diag(CA) (C �A ) ]

We will next show the following three equalities:

E
⇥

(C �A)

2

⇤

=(C � P )

2

+

bCT
�

RA � (11

T ⌦ I)
 

bC (C.1)

E
⇥

diag

2

(CA)

⇤

=diag

2

(C P ) +

bCT
�

RA � (I ⌦ 11

T
)

 

bC (C.2)

E [(C �A)diag (CA) + diag (CA) (C �A)]= (C.3)

(C � P )diag (CP )+diag (CP ) (C � P )� bCT {RA �B} bC
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First, consider (C.1) and find E
h

(C �A )

2

i

. Algebraic manipulations allow to write (C�A )

2 as follows:

(C �A )

2

=

bCT
�

A
2

� ( 11

T ⌦ I )
 

bC, A
2

= Vec(A )Vec

T
(A ) (C.4)

To compute the expectation of (C.4), we need E [A
2

] that can be written as

E [A
2

] = P
2

+RA, with P
2

= Vec(P ) Vec

T
(P ).

Equation (C.1) follows, realizing that

bCT
�

P
2

� ( 11

T ⌦ I )
 

bC = (C � P )

2.

Now consider (C.2) and (C.3). After algebraic manipulations, it can be shown that

diag

2

(CA) =

bCT
�

A
2

� ( I ⌦ 11

T
)

 

bC

(C �A ) diag (CA) + diag (CA) (C �A ) =

bCT {A
2

�B} bC

Computing the expectations in the last two equations leads to eqn. (C.2) and eqn. (C.3).

Using equalities (C.1), (C.2), and (C.3) and comparing the expressions for W
2

and E[W 2

] leads to:

RC = E[W 2

]�W
2

=

bCT { RA � (I ⌦ 11

T
+ 11

T ⌦ I �B)} bC (C.5)

This completes the proof of Lemma 5.1.

C.2 Subgradient step calculation for the case of spatially correlated links

To compute the subgradient H , from eqns. (5.44) and (5.45) we consider the computation of E
⇥

W 2 � J
⇤

=

W
2

� J +RC . Matrix W
2

� J is computed in the same way as for the uncorrelated case. To compute RC ,

from (C.5), partition the matrix RA into N ⇥N blocks:

RA =

0

B

B

B

B

B

B

@

R11 R12 . . . R1N

R21 R22 . . . R2N

... . . . . . .
...

RN1 RN2 . . . RNN

1

C

C

C

C

C

C

A
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Denote by dij , by clij , and by rlij the diagonal, the l-th column, and the l-th row of the block Rij . It can be

shown that the matrix RC can be computed as follows:

[RC ]ij = W T
i (dij �Wj)�Wij

⇣

W T
i ciij +W T

j rjij

⌘

, i 6= j

[RC ]ii = W T
i (dii �Wi) +W T

i RiiWi

Denote by RA(:, k) the k-th column of the matrix RA and by

k
1

=

�

eTj ⌦ IN
�

RA(:, (i� 1)N + j), k
2

=

�

eTi ⌦ IN
�

RA(:, (j � 1)N + i),

k
3

=

�

eTi ⌦ IN
�

RA(:, (i� 1)N + j), k
4

=

�

eTj ⌦ IN
�

RA(:, (j � 1)N + i).

Quantities k
1

, k
2

, k
3

and k
4

depend on (i, j) but for the sake of the notation simplicity indexes are omitted.

It can be shown that the computation of Hij , (i, j) 2 E boils down to:

Hij = 2u2i W
T
i cjii + 2u2j W

T
j cijj + 2uiW

T
j (u� k

1

) + 2uj W
T
i (u� k

2

) � 2ui uj W
T
j cjji�

2ui uj W
T
i ciij � 2uiW

T
i (u� k

3

) � 2uj W
T
j (u� k

4

) + 2Pij (ui � uj)u
T
⇣

W j � W i

⌘

C.3 Numerical optimization for the broadcast gossip algorithm

With broadcast gossip, the matrix W (k) can take N different realizations, corresponding to the broadcast

cycles of each of the N sensors. We denote these realizations by W (i), where i indexes the broadcasting

node. We can write the random realization of the broadcast gossip matrix W (i), i = 1, ..., N , as follows:

W (i)
(k) = C �A(i)

(k) + I � diag

⇣

CA(i)
(k)

⌘

, (C.6)

where A(i)
li (k) = 1, if l 2 ⌦i. Other entries of A(i)

(k) are zero.

Similarly in Appendix A, we can arrive at the expressions for E
⇥

W TW
⇤

:= E
⇥

W T
(k)W (k)

⇤

and for

E
⇥

W TJW
⇤

:= E
⇥

W T
(k)JW (k)

⇤

, for all k. We remark that the matrix W needs not to be symmetric for
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the broadcast gossip and that Wij = 0, if (i, j) /2 E.

E
⇥�

W TW
�

ii

⇤

=

1

N

N
X

l=1,l 6=i

W 2

li +
1

N

N
X

l=1,l 6=i

(1�Wil)
2

E
h

�

W TW
�

ij

i

=

1

N
Wij(1�Wij) +

1

N
Wji(1�Wji), i 6= j

E
⇥�

W TJW
�

ii

⇤

=

1

N2

0

@

1 +

X

l 6=i

Wli

1

A

2

+

1

N2

N
X

l=1,l 6=i

(1�Wil)
2

h

E
⇥

W TJW
�

ij

i

=

1

N2

(1�Wji)(1 +

N
X

l=1,l 6=i

Wli) +
1

N2

(1�Wij)(1 +

N
X

l=1,l 6=j

Wlj)

+

1

N2

N
X

l=1,l 6=i,l 6=j

(1�Wil)(1�Wjl), i 6= j

Denote by WBG

:= E
⇥

W TW
⇤

�E
⇥

W TJW
⇤

and recall the definition of the MSdev rate  (W ) (5.47).

We have that  (W ) = �
max

�

WBG

�

. We proceed with the calculation of a subgradient of  (W ). The

partial derivative of the cost function  (W ) with respect to weight Wi,j is given by:

@

@Wi,j
�
max

�

WBG

�

= qT
✓

@

@Wi,j
WBG

◆

q

where q is eigenvector associated with the maximal eigenvalue of the matrix WBG. Finally, partial deriva-

tives of the entries of the matrix WBG with respect to weight Wi,j are given by the following set of equations:

@

@Wi,j
WBG

i,i = �2N � 1

N
(1�Wi,j)

@

@Wi,j
WBG

j,j =

2

N
Wi,j �

2

N
(1�

N
X

l=1,l 6=j

Wl,j)

@

@Wi,j
WBG

i,j =

1

N
(1� 2Wi,j)�

1

N2

(�1�
N
X

l=1,l 6=j

Wl,j �Wi,j)

@

@Wi,j
WBG

i,l =

1

N2

(1�Wl,j), l 6= i, l 6= j

@

@Wi,j
WBG

i,j = � 1

N2

(1�Wl,j), l 6= i, l 6= j

@

@Wl,m
WBG

i,j = 0, otherwise.
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Appendix D

Technical Proofs for Chapter 6

D.1 Proof of Lemma 6.8

We first need a standard result from topology (proof omitted for brevity.)

Lemma D.1 Let X and Y be topological spaces, where Y is compact. Suppose the function:  : X⇥Y ! R

is continuous (with respect to the product topology on X ⇥ Y and the usual topology on R; ⇥ denotes

Cartesian product.) Then, the function � : X ! R, �(a) := inf{(a, b) : b 2 Y} is continuous.

Proof: [Proof of Lemma 6.8] Denote by Pi : Rm(N+2M) ! Rm the projection map Pi(z) = zi,

i = 1, ..., N + 2M . Further, denote by Pi(�(✏)) :={zi 2 Rm
: zi = Pi(z), for some z 2 �(✏)}. The

set Pi(�(✏)) is compact, for all i = 1, ..., N + 2M , because the set �(✏) is compact. Consider now the

set Rm(N+2M) � C✏ := P
1

(�(✏)) ⇥ P
2

(�(✏)) ⇥ ... ⇥ PN+2M (�(✏)), where the symbol ⇥ denotes the

Cartesian product of the sets. Clearly, C✏ � �✏(B). We will show that Li is continuous on C✏, i.e., that

Li
: C✏ ! R is continuous, which will imply the claim of Lemma 6.8. Recall the definition of Li in

eqn. (6.18). It is easy to see that the minimum in eqn. (6.18) is attained on the set Pi (�(✏)), i.e., that

Li
(z) = minwi2Pi(�(✏)) L (z

1

, z
2

, ..., zi�1

, wi, zi+1

, ..., zN+2M ) . Thus, by Lemma 6.12, and because the

function L : Rm(N+2M) ! R is continuous, the function Li
: P

1

(�(✏))⇥ ... ⇥Pi�1

(�(✏))⇥Pi+1

(�(✏))⇥

...⇥ PN+2M (�(✏))! R is continuous. But this means that Li
: C✏ ! R is also continuous. 2

D.2 Convergence proof of the P–AL–MG algorithm

We first introduce an abstract model of the P–AL–MG algorithm. First, we impose an additional assumptions

that the link failures are spatially independent, i.e., the Bernoulli states Aij(k) and Alm(k) of different
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links at time slot k are independent. Define the sets Y (⌦i) := {yji : j 2 ⌦i} and the class Y (Oi) :=

{yji : j 2 Oi}, where Oi ⇢ ⌦i. One distinct set Y (Oi) is assigned to each distinct subset Oi of ⌦i.

(Clearly, Y (⌦i) belongs to a class of sets Y (Oi), as ⌦i is a subset of itself.) With P–AL–MG, at iteration k,

minimization is performed either with respect to xi, i 2 {1, ..., N}, or with respect to some Y (Oi). If none

of the neighbors of node i receives successfully a message, then iteration k is void. Define the following

collection of the subsets of primal variables: ⇧ := {{x
1

}, ..., {xN}, Y (⌦

1

), ..., Y (⌦N )}. Collection ⇧

constitutes a partition of the set of primal variables; that is, different subsets in ⇧ are disjoint and their union

contains all primal variables. Further, denote each of the subsets {xi}, Y (Oi), Y (⌦i), with appropriately

indexed Zs, s = 1, ..., S. Then, with P–AL–MG, at time slot k, L(z) is optimized with respect to one Zs,

s = 1, ..., S. Define ⇠(k), k = 1, 2, ..., as follows: ⇠(k) = s, if, at time slot k, L(z) is optimized with respect

to Zs; ⇠(k) = 0, if, at k, no variable gets updated–when all transmissions at time slot k are unsuccessful.

Denote by P (Zs) = Prob (⇠(k) = s). Under spatial independence of link failures, P (Zs) can be shown

to be strictly positive for all s. It can be shown that ⇠(k) are i.i.d. Consider now (6.16) and P–AL–MG.

All results for P–AL–G remain valid for P–AL–MG also–only the expressions for the expected decrease of

L(·) per iteration,  (z), (Lemma 6.7), and the proof of Lemma 6.8 change. Denote by L(Zs)
(z) the optimal

value after minimizing L(·) with respect to Zs at point z (with the other blocks zj , zj /2 Zs, fixed.) Then:

 (z) =
PS

s=1

P (Zs)
�

L(Zs) � L(z)
�

. Recall �(z) = � (z) and the set �(✏), for some ✏ > 0. Lemma 6.8

remains valid for P–AL–MG. To see this, first remark that �(z) � 0, for all z 2 F . We want to show

that �(z) > 0, for all z 2 �(✏). Suppose not. Then, L(z) = L(Zs)
(z), for all Zs, s = 1, ..., S. Then, in

particular, L(z) = L(Zs)
(z), for all Zs in the partition⇧. Because P (Zs) > 0, 8s, this implies that the point

z is block-optimal (where now, in view of Definition 6.2, Zs is considered a single block). By Assumption 3,

z is also optimal, which contradicts z 2 �(✏). Thus, �(z) > 0 for all z 2 �(✏). The proof now proceeds as

with the proof of Lemma 6.8 for algorithm P–AL–G.

D.3 Convergence proof of the P–AL–BG algorithm

P–AL–BG is completely equivalent to P–AL–G, from the optimization point of view. P–AL–BG can be

modeled in the same way as in Alg. 2, with a difference that, with P–AL–BG: 1) there is a smaller number

(= N ) of primal variables: zi := xi, i = 1, ..., N ; and 2) Prob(⇣(k) = 0) = 0. Thus, the analysis in

section V is also valid for P–AL–BG.
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