
Discriminative Optimization:
Theory and Applications to Computer Vision

Submitted in partial fulfillment of the requirements for
the degree of

Doctor of Philosophy
in

Department of Electrical and Computer Engineering

Jayakorn Vongkulbhisal

B.Eng. Information and Communication Engineering,
Chulalongkorn University, Bangkok, Thailand

M.S. Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, PA, USA

Carnegie Mellon University
Pittsburgh, PA

January, 2018

c© Jayakorn Vongkulbhisal, 2018

All Right Reserved

Acknowledgments
This thesis would not be possible without my two advisors. I would like to thank

Fernando De la Torre for his constant support and advice on my research, and also
for his encouragements when it did not go as well as expected. I am also indebted to
João Paulo Costeira for his guidance and dedication on issues both inside and outside
academia. I will always remember the care he had given me when my health was
poor. Both of them provided me a great PhD experience, and I appreciate everything
they have done for me.

Besides my advisors, I would like to express my gratitude to my thesis com-
mittee, José Moura, Carlo Tomasi, and Marko Stošić, for their interest in my work.
Their feedback and suggestions were invaluable to the completion of this work.

I wish to thank the CMU|Portugal Program and Fundação para a Ciência e a
Tecnologia [UID/EEA/50009/2013] for providing me this PhD opportunity. I also
appreciate CMU|Portugal staffs who made sure every transition across the Atlantic
was a smooth one. I give my special thanks to Ana Mateus, who helped me navigate
all the complex paperwork during my study and ensure everything was in order.

Throughout the years, I have had the chance to collaborate and share memorable
moments with many awesome people. From the Portugal side (incl. CMU|Portugal):
Ricardo Cabral, Manuel Marques, Qiwei Han, João Carvalho, Susana Brandão, Zita
Marinho, Shaolong Liu, Sabina Zejnilovic, João Xavier, Shanghang Zhang, and
Senbo Fu. From the CMU side: Dong Huang, Wen-Sheng Chu, Yi Wang, Zehua
Huang, Shitong Yao, Beñat Irastorza Ugalde, Francisco Vincente, Yasuhide Hy-
odo, Ada Zhang, Stanislav Panev, Dingwen Zhang, Kaili Zhao, Feng Zhou, Xue-
han Xiong, Chieko Asakawa, Kris Kitani, and Tatsuya Ishihara. I appreciate all the
stimulating discussions and the assistance I received from them.

Outside of my academic circle, many friends–Rathapon Saruthirathanaworakun,
Pralom Boonrusssamee, Nat Suriyabantoeng, Pongsthorn Tangnaikuntham, Bencha-
rassamee Rujraweehiran, Phakajira Sricharoen, Tomin Liu, Korapat Pruekchaikul,
Nunthanuth Jiaramanytwesin, Rajitha Navarathna–have made my life both in Lis-
bon and Pittsburgh much more enjoyable. I also would like to thank the staffs at the
Royal Thai Embassy in Lisbon for looking after our small community and making
us feel more like home.

Lastly, I wish to thank my parents, without whose love and support I would not
be able to push through many difficult times and complete this thesis.

iii

iv

Abstract
Many computer vision problems are formulated as the optimization of a cost

function. This approach faces two main challenges: (i) designing a cost function
with a local optimum at an acceptable solution, and (ii) developing an efficient nu-
merical method to search for one (or multiple) of these local optima. While design-
ing such functions is feasible in the noiseless case, the stability and location of local
optima are mostly unknown under noise, occlusion, or missing data. In practice, this
can result in undesirable local optima or not having a local optimum in the expected
solution. On the other hand, numerical optimization algorithms in high-dimensional
spaces are typically local and often rely on expensive first or second order informa-
tion to guide the search.

To overcome these limitations, we propose Discriminative Optimization (DO),
a method that learns search directions from data without the need of a cost func-
tion. Specifically, DO explicitly learns a sequence of updates in the search space
that leads to stationary points that correspond to the desired solutions. Using train-
ing data, DO can find solutions that are more robust to perturbation in real data,
unlike conventional optimization which may fail if there is a mismatch between the
cost function and the noise distribution. We provide a formal analysis of DO, prov-
ing its convergence in the training phase. We also explore the relation between DO
and generalized convexity and monotonicity, and show that the conditions for the
convergence of DO are broader than those required by convexity. In terms of appli-
cations, we illustrate DO’s potential in the problems of 3D point cloud registration,
camera pose estimation, and image denoising. We show that DO can perform com-
parably to or outperform state-of-the-art algorithms in terms of accuracy, robustness
to perturbations, and computational efficiency.

v

vi

Contents

1 Learning-Based Optimization 1
1.1 Motivation . 1

1.2 Thesis contributions . 5

1.3 Organization . 6

2 Related Works 7
2.1 Optimization in computer vision . 7

2.2 Learning cost functions . 8

2.3 Learning search directions . 9

2.3.1 Supervised sequential update (SSU) . 9

2.3.2 Gradient boosting . 12

2.3.3 Deep neural networks . 13

3 Discriminative Optimization 15
3.1 Learning to search for stationary points . 16

3.1.1 Motivation from fixed point iteration . 16

3.1.2 DO search algorithm . 16

3.1.3 Numerical example: Finding the zero of 1D functions 19

3.1.4 Section summary . 21

3.2 Deriving feature function h . 22

3.2.1 Example: Deriving h for Can you guess the number? 23

3.2.2 Deriving h for general residual functions 26

3.2.3 Numerical example: Can you guess the number? 28

3.2.4 Section summary . 31

4 Theoretical Analysis: Convergence and Relations to Monotonicity and Convexity 33
4.1 Definitions . 34

vii

4.1.1 Monotonicity at a point . 34

4.1.2 Relaxed Lipschitz at a point (RL) . 37

4.2 Convergence of the training error . 38

4.2.1 Analytical examples . 39

4.3 Relation to generalized monotonicity and generalized convexity 41

4.3.1 Single-valued case . 41

4.3.2 Multi-valued case . 45

4.4 Convergence of training error with task-specific feature function h 47

4.5 Chapter summary . 48

5 Applications to Computer Vision 49
5.1 Shape-specific point cloud registration . 49

5.1.1 DO parametrization and training . 51

5.1.2 Experiments and results . 53

5.2 Camera Pose Estimation . 57

5.2.1 DO parametrization and training . 58

5.2.2 Experiments and results . 59

5.3 Image Denoising . 64

5.3.1 DO parametrization and training . 65

5.3.2 Experiments and results . 66

6 Generalizing DO 69
6.1 Inverse Composition Discriminative Optimization (ICDO) for registration tasks . 70

6.1.1 A general formulation for registration tasks 70

6.1.2 Forward Composition (FC) and Inverse Composition (IC) 72

6.1.3 Learning IC update with DO . 73

6.1.4 Application: Shape-independent point cloud registration 74

6.1.5 Section summary . 81

6.2 Representing feature function h as a combination of basis functions 81

6.2.1 Learning with basis functions . 82

6.2.2 Discretization as basis functions . 83

6.2.3 Experiments . 83

6.2.4 Concluding remarks and discussions . 88

6.3 Accelerating DO with momentum . 90

6.3.1 Incorporating momentum into DO . 90

6.3.2 Experiments . 91

viii

6.4 Incorporating constraints into DO . 92
6.4.1 Projected penalty DO (PPDO) . 93
6.4.2 Experiments . 95

6.5 Chapter summary . 96

7 Conclusions and Future Works 99
7.1 Contributions . 99
7.2 Future work . 100

A Proofs for Theoretical Results 103
A.1 Proof of Thm. 1 . 103
A.2 Proof of Prop. 2 . 106
A.3 Proof of Prop. 4 . 107
A.4 Proof of Prop. 5 . 107
A.5 Proof of Prop. 6 . 108

B Details and Analysis of ICDO for PCReg 111
B.1 Deriving the feature function . 111
B.2 Computational complexity . 113
B.3 Analyzing the maps . 114

Bibliography 115

ix

x

List of Tables

2.1 A summary of SSUs in the literature . 11

3.1 MAE for solving unknown cost functions . 31

6.1 Successful registration on Stanford’s dragon. 80

xi

xii

List of Figures

1.1 2D point alignment using ICP and DO. 4

3.1 Comparison between optimization and discriminative optimization (DO) 17

3.2 1D synthetic example (example function) . 20

3.3 1D synthetic example (training errors, norms of the maps, and test errors) 21

3.4 Approximating the inner product of functions as the inner product of vectors by
discretization. 25

3.5 Learning to solve unknown cost functions . 29

4.1 Monotonicity at a point . 35

4.2 An (H,L)-relaxed-Lipschitz-at-0 function . 37

4.3 Relation between gradients, minimizers, generalized monotonicity, generalized
convexity, and monotonicity at a point . 42

5.1 Point cloud registration problem . 50

5.2 Feature h for point cloud registration . 52

5.3 Results of 3D registration with synthetic data 54

5.4 Results of 3D registration with range scan data 55

5.5 Result for object tracking in 3D point cloud . 56

5.6 Results for PnP with synthetic data . 60

5.7 Results for camera pose estimation on real image 61

5.8 Results for camera pose estimation on real image 61

5.9 Results on the Oxford dataset . 63

5.10 Results for camera pose estimation on real image 63

5.11 Results for camera pose estimation on real image 64

5.12 Results for image denoising . 67

5.13 Examples of image denoising results . 68

6.1 Results for ICDO synthetic data experiment over different modifications. 79

xiii

6.2 Real data examples for ICDO experiments. 79
6.3 Results of ICDO on ETH laser registration dataset. 80
6.4 DO with basis (ϕ`2) . 86
6.5 DO with basis (φ`1) . 87
6.6 DO with basis (φIG) . 89
6.7 DO with momentum (ϕ`2) . 91
6.8 DO with momentum (ϕ`1) . 91
6.9 DO with momentum (ϕIG) . 92
6.10 Constrained DO (ϕ`2) . 96
6.11 Constrained DO (ϕ`1) . 96
6.12 Constrained DO (ϕIG) . 96

B.1 A visualization of ICDO’s learned maps. 114

xiv

Chapter 1

Learning-Based Optimization

Mathematical optimization plays an important role for solving many computer vision tasks. For
instance, optical flow, camera calibration, homography estimation, and structure from motion
are tasks which are solved as optimization. Formulating computer vision tasks as optimization
problems faces two main challenges: (i) Designing a cost function that has a local optimum that
corresponds to a suitable solution. (ii) Selecting an efficient and accurate algorithm for searching
the parameter space. Conventionally, these two steps have been treated independently, leading to
different cost functions and search algorithms. However, in the presence of noise, missing data,
or inaccuracies of the model, this conventional approach can lead to undesirable local optima or
even not having an optimum in the correct solution. In this work, we propose a different view on
how to model and solve these types of tasks. By exploiting the availability of data and ground
truth, we propose Discriminative Optimization (DO), a learning-based approach that searches
for a solution of a task instead of designing a cost function and searching for its optimum. The
following section provides the motivation and examples for our learning-based approach.

1.1 Motivation

Many computer vision tasks involve finding the parameter x ∈ Rp that solves a set of equations

gj(x) = 0d, j = 1, . . . , J, (1.1)

where gj : Rp → Rd model the tasks of interest. For example, in the camera resection or homog-
raphy estimation [57], the vector x may represent the camera parameters while gj may represent
the reprojection residual of the jth feature correspondence. In most cases, noise, outliers, and
other perturbations prevent the existence of an x that satisfies (1.1). As a result, we have to resort

1

to finding an x that minimizes the deviation of gj from 0d, i.e., the residuals. This generally
leads to an optimization problem of the form

minimize
x

J∑
j=1

ϕ(gj(x)), (1.2)

where ϕ : Rd → R is a penalty function, e.g., `2 or `1 norms. Note that, since gj(x) represents
the residual to be penalized, we will refer to gj as the residual functions.

Many techniques have been devised to solve (1.2). In the case when (1.2) is differentiable, a
conventional approach is to search for a stationary point x∗ using a fixed point iteration scheme,
e.g., gradient descent, and return x∗ as the solution [18]. However, in order to use such approach,
we need to consider a very important question: How should we select or design a ϕ that would
lead to a desirable solution? Depending on the form of ϕ, the same iterative scheme could lead
to different solutions for the same set of gj . This is problematic since it may be difficult to
determine which solution is more preferable.

Instead of relying on the mentioned approach, our work considers a different setting. Suppose
we are given a collection D = {({g(i)

j }J
(i)

j=1,x
(i)
∗)}ni=1, where x

(i)
∗ is our preferred solution to the

set of equations g(i)
j (x

(i)
∗) ≈ 0d, j = 1, . . . , J (i). Our question is: Can we leverage the data D to

infer our preferred solution to a new set of equations gj(x) ≈ 0d, j = 1, . . . , J without having
to define what ϕ is? We provide the following two example problems as a motivation.

Example 1: Can you guess the number?

Let us consider the following ‘Can you guess the number’ game: Suppose we are given three
sets of input numbers with three outputs, can we guess the output for the fourth set?

Input set Output
{ 1, 2, 3 } 2

{ 2, 4, 4, 5, 6 } 4

{ −2, 1, 1 } 1

{ 1, 3, 4 } ?

(1.3)

The answer is 3. We can see that the output is the middle number, i.e., the median, of each set.

2

We can try this again, but with a new set of outputs:

Input set Output
{ 1, 2, 3 } 2

{ 2, 4, 4, 5, 6 } 4.2

{ −2, 1, 1 } 0

{ 1, 3, 4 } ?

(1.4)

The answer this time is 2.6̇: the mean.

We may start to see the pattern of this game. In each case, the output is the solution of the
optimization problem:

x∗ = arg min
x

n∑
i=1

ϕ(x− xi), (1.5)

where xi, i = 1, . . . , n are the elements in the input set, ϕ is some penalty function, and x∗ is
the output. In the above games, the explicit forms of ϕ are the absolute function and the squared
function, resp.

Now that we find the pattern, let us try again with the following set of outputs:

Input set Output
{ 1, 2, 3 } 2

{ 2, 4, 4, 5, 6 } 4.0774

{ −2, 1, 1 } −0.2301

{ 1, 3, 4 } ?

(1.6)

Now the answer is not so obvious, even though we know the pattern. This is because the ϕ is not
so simple:

ϕ(x) = |x|3.21 + |x|1.25. (1.7)

As can be seen, the form of ϕ may be hard to decipher from the given input sets, and we may not
be able to figure what ϕ is in order to compute the output. Motivated by this ‘Can you guess the

number’ game, we ask the question: Can we solve for the output without knowing the penalty
function that generates it? In particular, how can we use DO to obtain such output, and what is
the class of functions that DO can handle? (Note: The solution to the above game is 2.5646, and
DO got 2.5969.)

3

Ground truth Pt.Local min. / Stationary Pt. Initial Pt. Update path

Find θ,t

tx

θ

(a) Data (b) ICP's cost (c) DO's update dir. (d) DO's contour

C
le

an
 D

at
a

O
u

tl
ie

rs

O
u

tl
ie

r
&

 I

n
co

m
p

l.
D

at
a

Figure 1.1: 2D point alignment using ICP and DO. (a) Data. (b) Level sets of the cost function
for ICP. (c) The update direction of DO. (d) Inferred level sets of DO.

Example 2: Point cloud registration

Consider the task of 2D rigid point cloud registration (See Figure 1.1a). Given a model shape
in green and the scene shape in black, we wish to solve for the rotation matrix R ∈ SO(2) and
translation vector t ∈ R2 that register the shapes together. The residual function for this task is
given by

gi,j(R, t) = si −Rmj − t, for appropriate pair (i, j), (1.8)

where mj = (xtj, y
t
j) ∈ R2, j = 1, . . . , n, is the coordinate of the jth point of model shape, and

si ∈ R2, i = 1, . . . ,m, is that of the scene shape. With this residual function, we can formulate
a combinatorial optimization problem

minimize
R ∈ SO(2), t ∈ R2

P ∈ {0, 1}m×n,P1n = 1m

m∑
i=1

n∑
j=1

pij‖si −Rmj − t‖2
2, (1.9)

where P is the matching matrix. Figure 1.1b-top shows the level sets of the cost function (1.9)

4

under an ideal condition (i.e., no noise, outliers, missing data)1. Observe that there is a well-
defined optimum and it coincides with the ground truth (red diamond). Given this cost function,
the next step is to find a suitable algorithm that searches for a local optimum. For this partic-
ular initialization (green square), the Iterative Closest Point (ICP) [16] algorithm converges to
the ground truth (red diamond). However, in realistic scenarios with perturbations, there is no
guarantee that there will be a good local optimum in the expected solution, and the number of
bad local optima is also likely to increase. Figure 1.1b-middle and Figure 1.1b-bottom show
the level set representation for the ICP cost function in the case of corrupted data. We can see
that the shape of the cost functions have changed dramatically: there are more local optima, and
the ground truth may not corresponds to any of them. In this case, the ICP algorithm with an
initialization in the green square will converge to wrong optima. It is important to observe that
the cost function is only designed to have an optimum at the correct solution in the ideal case,
but little is known about the behavior of this cost function in the surroundings of the optimum
and how it will change with noise.

1.2 Thesis contributions

In this thesis, we address the following question: Given a mathematical model (i.e., a residual
function) that characterizes a task of interest, how can we leverage the training samples
to derive a robust algorithm for solving new instances of the same task? To address this
question, we propose Discriminative Optimization (DO). DO exploits the fact that we often have
the training data with the desired solutions. Whereas conventional approaches find their solution
by following a descent direction of a cost function, DO directly learns a sequence of update
directions leading to a stationary point that is placed by design in the training data.

Compared with conventional approaches, DO has two main advantages. First, since DO’s
directions are learned from training data, they take into account the perturbations in the neigh-

borhood of the ground truth, resulting in more robustness. As can be seen in Figure 1.1c, the
update paths of DO change little despite strong perturbations in the data, and more importantly,
the stationary points still coincide with the ground truth. Second, because DO does not optimize
an explicit function (e.g., `2 registration error), it is less sensitive to model misfit and more robust
to different types of perturbations. Figure 1.1d illustrates the contour level inferred2 from the
update directions learned by DO. It can be seen that the curve levels have a local optimum on the

1We used the optimal matching at each parameter value to compute the cost.
2The contour level is approximately reconstructed using the surface reconstruction algorithm [56] from the up-

date directions of DO for visualization purpose.

5

ground truth and fewer bad local optima than the cost surfaces in Figure 1.1b.
We named our approach ‘Discriminative Optimization’ to reflect the idea of learning to find

a stationary point directly rather than optimizing a ‘generative’ cost function.
We provide theoretical analysis of DO. Specifically, we provide the conditions for the training

error of DO to strictly decrease or converge to zero. We also explore the connection between DO
and generalized convexity and generalized monotocity, which are important theoretical prop-
erties used to guarantee the convergence of many optimization algorithms [18, 94]. Through
this connection, we show that the conditions for the convergence of DO are broader that those
required by convexity. In terms of applications, we apply DO to the tasks of point cloud regis-
tration, camera pose estimation, and image denoising. We demonstrate that DO is computation-
ally efficient, and the results are often superior to those of state-of-the-art algorithms for each
problem. Finally, we propose four generalizations to handle the deficiencies and improves the
capabilities of the original DO.

1.3 Organization

This thesis is organized as follows. Chapter 2 reviews related works, including the use of opti-
mization for solving computer vision problems, previous works on learning cost functions and
search algorithms, and comparison with deep learning. Chapter 3 describes the main algorithm.
In Chapter 4, we provide a theoretical analysis on the convergence of the DO algorithm and its
relation to generalized convexity and generalized monotonicity. Applications of the algorithm
to point cloud registration, camera pose estimation, and image denoising are described in Chap-
ter 5. In Chapter 6, we propose four generalizations of DO: using inverse composition operations
for updating the parameter vectors, representing the update as a combination of basis functions,
accelerating DO with momentum, and constrained DO. Chapter 7 concludes the thesis and dis-
cusses future research directions.

6

Chapter 2

Related Works

In this chapter, we review previous works which are related to DO. In the first part, we discuss
optimization problems in computer vision. In the second part, we review learning-based ap-
proaches that learn a suitable cost function for a given task. In the final part, we look at learning-
based algorithms that directly learn to search for the solution without relying on an explicit cost
function.

2.1 Optimization in computer vision

As mentioned in Section 1.1, many tasks in computer vision involve estimating a set of parame-
ters x ∈ Rp that satisfies a set of equations

gj(x) = 0d, j = 1, . . . , J, (2.1)

where gj : Rp → Rd models the task of interest. One common approach to tackle these problems
is to formulating an optimization problem of the form

minimizex
∑J

j=1 φ(gj(x))

subject to x ∈ S,
(2.2)

where φ is a function that penalizes the values of the residual functions gj , and S is the con-
straint set. The residual functions typically measures the difference between the observed data
and the expected value of the task model. Examples of gj are the reprojection residual in cam-
era resection tasks; the difference between the pixel intensity of the template and the image in
template tracking tasks; the difference between the pixel intensity of the observed image and the
reconstructed image in denoising tasks; etc. After formulating the optimization in (2.2), it is then

7

solved by searching for the parameters x∗ that optimize its cost function.

Depending on the assumptions on the data nuisance (e.g., noise and outliers), it is important
to select an appropriate penalty function for the task. Due to the existence of its derivative,
squared `2 function is typically the first choice for many computer vision applications [1, 6, 119].
However, it is known that `2 penalty is not robust to outliers. This leads to multiple research
works on the properties of different penalty functions and estimation methods [7, 8, 76, 98].
Robust continuous functions, such as `1 function and Huber loss, are typically use for a moderate
amount of noise and outliers [64]. To deal with more severe nuisances, several works [67, 117]
proposed to use discontinuous functions, such as `0 or inlier count. Instead of using a single
function, many works propose to use continuation method to deform the cost function as the
optimization progresses in order to increase robustness and reduce the chance of getting caught
in bad local minima [17, 79]. In practice, however, it is a challenge to decide which penalty
function is suitable for the problem at hand. This challenge is further complicated by the fact
that many computer vision tasks, e.g., estimating optical flow and surface reconstruction, are
ill-posed [15] and require regularization terms. This leads to a combination of different penalty
functions and the selection of hyperparameters to weight different terms. Due to a large variety
of choices, it is not trivial to identify a suitable cost function for solving a problem.

2.2 Learning cost functions

Instead of manually selecting a cost function, several works proposed to use machine learning
techniques to learn a cost function from available training data. In [4], Avidan proposed to use
kernel SVM classification score as the cost function for image-based object tracking. Similarly,
Liu [71] and Nguyen and De la Torre [84] proposed to use, respectively, boosting and metric
learning for face alignment. For these approaches, since the learned cost function is differentiable
w.r.t the parameters, they use Gauss-Newton method, similar to that in Lucas-Kanade [6], to
optimize the learned cost for the unseen data. In [87], Paliouras and Argyros used nonlinear
regressors and random forests with various features to learn the cost function for hand pose
estimation in RGBD images, where the learned cost function was optimized using particle swarm
optimization.

A major downside of these approaches is that they need to impose the form of the cost func-
tion, e.g., [84] requires the cost function to be quadratic. This restricts the class of problems that
they can solve. Another problem with these approaches is that they work with image patches or
their features, thus it is not clear how to extend these approaches to other problems where the
inputs are not structured.

8

Besides computer vision, learning cost functions have also been used in planning and control,
where the problem is called inverse optimal control (IOC) or inverse reinforcement learning [82].
IOC involves learning unknown reward functions for a Markov decision process from a set of
demonstrations of expert [5]. By assuming the actions of the experts are near-optimal, IOC trains
the learning agents so that they imitate the decision making of the expert. However, the problem
setting of IOC differs from that of cost function learning in computer vision: the training set in
IOC typically comprises sequences of actions where the goals may not be obvious in each step,
while in computer vision the training set provides the goals but not the trajectories leading to the
goals. We do not focus on IOC in our work.

2.3 Learning search directions

Instead of using search directions from a cost function, recent works proposed to use learning
techniques to directly compute such directions. This is done by learning a sequence of regressors
that maps a feature vector to an update vector that points to the desired parameters. We refer to
these algorithms as supervised sequential update (SSU). Since DO extends the work of SSU, we
will first review previous works on SSUs in the literature. Then, we will review compare SSUs
with similar classes of algorithms, namely gradient boosting and deep neural networks.

2.3.1 Supervised sequential update (SSU)

Supervised sequential update (SSU) algorithms are a class of supervised learning algorithms
that predicts a set of parameters by sequentially refining previously estimated parameters. The
refinement or update is performed using the following expression:

xt+1 = C(xt,Ft+1 ◦ h(xt)), (2.3)

where xt ∈ Rp is the estimated parameters at time t, h : Rp → Rf extracts some feature from the
input data, and Ft+1 : Rp → Rd is a regressor that regress the feature h(xt) to an update vector,
and C : Rp × Rd → Rp composes xt with the regressed update to get xt+1. Given a training set
{(x(i)

0 ,x
(i)
∗ ,h(i))}ni=1, where i denotes problem instanct i, x(i)

0 is the initial parameter estimates,
x

(i)
∗ is the ground truth parameters, and h(i) extracts some feature, e.g., from image i, the training

is performed sequentially from t = 1, . . . , by

Ft+1 = argmin
F∈F

N∑
i=1

L(x(i)
∗ ,C(x

(i)
t ,F ◦ h(i)(x

(i)
t))) +R(F), (2.4)

9

where L : Rp × Rp → R is a loss function, and R : (Rp → Rd) → R is a regularizer. After a
map is learned, all x(i)

t is updates to x
(i)
t+1 using (2.3) before learning the next regressor. Next, we

review the research work in SSUs. A summary of the review is provided in Table. 2.1.

First, we review the works that use a single map to perform the update. Cootes et al. [31]
introduced active appearance model (AAM) for facial and nonrigid object alignment in images.
AAM uses orthogonal bases to model variations in shapes and appearances. In order to fit a
template shape to the image, the difference between intensities of the template shape and current
shape is mapped to an update vector that updates the current shape’s parameters to fit the image.
The map used in the paper was a single linear map, which is learned from a set of training data,
and the update is performed only once by summing the update vector to the current shape pa-
rameters1. Jurie and Dhome [62] proposed hyperplane approximation as an approximation to the
Jacobian matrix. Similar to AAM, they use a single linear map to map from image difference to
an update vector. Instead of working with image points, they perform update to rigid, homog-
raphy, and other linear transformations’ parameters for template tracking application. In [34],
Cristinacce and Cootes proposed to use GentleBoost with Haar wavelets to regress image inten-
sity to an update vector. Instead of performing update once, they proposed to iteratively perform
the update until convergence. Bayro-Corrochano and Ortegon-Aguilar [11, 12] proposed to up-
date the parameters in the Lie algebra of the projective and affine tranformations. Around the
same time, Tuzel et al. [104] proposed a similar approach which works with Lie algebra, but
used HOG feature [36] instead of intensity or intensity difference as in previous works.

More recently, many works proposed to learn the update using a sequence of maps instead
of a single map. Saragih and Goecke [95] proposed iterative error bound minimisation (IEBM),
where ν-support vector regression [27] is used to learn a sequence of linear maps to update trans-
formation (warp) parameters for nonrigid image alignment. Dollár et al. [43] proposed cascade
pose regression (CPR), where they train a sequence of random ferns for image-based object pose
estimation. CPR can be used with different parametrization, e.g., 2D image coodinates, scale,
and orientation of ellipses. Instead of summing the parameters with the updates, CPR can be used
with other inversible composition rules. The paper also shows that the training error decreases
exponentially under weak learner assumptions. Cao et al. [23] proposed to learn a sequence of
boosted regressors that minimizes error in parameter space for facial feature alignment. Sun et

al. [99] trained a sequence of three convolutional neural networks to both extract the features
and regress to an update vector. Xiong and De la Torre proposed Supervised descent method
(SDM) [112, 113], where they learn a sequence of linear maps as the averaged Jacobian matrices

1Interestingly, active shape model [30] and a later AAM paper [32] does not use a learned linear map to compute
the update vector, but rather use gradient methods.

10

Table 2.1: A summary of SSUs in the literature
Approach Parameter x Feature h Composition

C
Map F #Maps #Updates Applications

AAM [31] Multiple 2D image coor. Intensity diff. Summation Linear map 1 1 Nonrigid pose estimation
(face, knee)

[62] Transformation matrices Intensity diff. Summation Linear map 1 1 Template tracking
IEBM[95] Transformation

parameters
Intensity diff. Summation Linear map Multiple 1 per map Nonrigid pose estimation

(face)
[34] Multiple 2D image coor. Haar wavelets Summation GentleBoost 1 Until conv. Face alignment
[12] Lie algebra Intensity diff. Summation Linear map 1 Until conv. Template tracking

[104] Lie algebra HOG Summation Linear map 1 Until conv. Template tracking
CPR [43] Pose parameters (e.g.2D

image coor., scale,
orientation)

Pose-indexed Inversible
composition

Random ferns Multiple 1 per map Nonrigid pose estimation
(face, mice, fish)

[23] Multiple 2D image coor. Pose-indexed Summation Boosting Multiple 1 per map Face alignment
[99] Multiple 2D image coor. Intensity (deep

feature)
Summation Neural

networks
Multiple 1 per map Face alignment

SDM [112,
113]

Multiple 2D image
coor./ Euler angles and

translation vector

HOG / Reproj.
points

Summation Linear map Multiple 1 per map Face alignment / 3D pose
estimation with known

shapes
[102] Multiple 2D image coor. Intensity (deep

feature)
Summation Recurrent

neural
network

1 Multiple
(fixed)

Face alignment

DO [106,
107]

Problem dependent Provide a
framework to

derive h

Summation Linear map Multiple 1 per map,
then last
map until

conv.

3D registration, image
denoising, camera pose

estimation

11

for minimizing nonlinear least-squares functions in the feature space. They also provided condi-
tions for the error to strictly decrease in each iteration. More recent works include learning both
Jacobian and Hessian matrices [105]; running Gauss-Newton algorithm after SSU [3]; using dif-
ferent maps in different regions of the parameter space [114]; and using recurrent neural network
as the sequence of maps while also learning the feature [102]. While the mentioned works learn
the regressors in a sequential manner, Sequence of Learned Linear Predictor [122] first learns a
set of linear maps then selects a subset to form a sequence of maps.

We observe that most SSUs focus on image-based tracking and pose estimation. This is
because the feature for these problems is rather obvious: they use intensity-based features such
as intensity difference, HOG, etc. Extending SSUs to other tasks require designing new features.
In this work, we propose DO as a simple extension of previous SSUs. We study the its properties,
propose a general framework for designing features, and apply DO to other computer vision
problems, such as point cloud registration, camera pose estimation, and image denoising.

2.3.2 Gradient boosting

The concept of SSUs is similar to that of gradient boosting (GB), which was proposed by Fried-
man in [47] for classification and regression tasks. GB uses weak learners to iteratively update
the estimated parameter. Mathematically, given a feature h ∈ Rd, GB infers the estimated pa-
rameters x̂ ∈ R as

x̂ =
T∑
t=1

wtFt(h), (2.5)

where Fl : Rd → R, l = 1, . . . , T is a weak regressor, and wl is a scalar weight. The function Ft
are learned from training data {(hi, xi)}ni=1 in a sequential fashion:

Ft = argmin
wt∈R,Ft∈F

n∑
i=1

L

(
xi,

t∑
l=1

wlFl(hi)

)
, t = 1, . . . , T, (2.6)

where T denotes a loss function, and F denotes the space of the weak learners, e.g., short deci-
sion trees. GB has been interpreted as performing gradient descent minimizing T in the function
space F [75].

Originally, GB has been proposed to solve for scalar output, which may not be suitable for
computer vision problems where the parameters may have underlying structures. To handle this
issue, several works have extended GB to solve structured prediction problems [41, 42].

The main difference between GB and SSUs is that, for GB, the feature vector h is fixed,
while for SSUs the feature vector h is a function that is dependent on the estimated parameter x̂.

12

This difference allows the inference of GB to be performed in any order, while the inference of
SSUs can only be done in a sequential manner.

2.3.3 Deep neural networks

Recently, deep neural networks (DNNs) has received tremendous interest for its success in var-
ious tasks in computer vision and natural language processing [52]. Since both SSUs and DO
share certain similar structure–multiple layers of regressors–, one may wonder about the rela-
tionship between the two classes of algorithms. Here, we take a look at their similarities and
differences.

First, we wish to point out that SSUs and neural networks (NN) are not mutually exclusive.
Actually, they can be used complimentarily. On one hand, NNs can be thought of as a regressor,
and thus it is possible to use NNs as part of SSUs (see Table 2.1 for SSUs that use NNs as
regressors). On the other hand, we can think of NNs as universal function approximator [52],
which means it can also subsume SSUs. If we compare both SSUs and NNs as a single structure,
then we can see several similarities and differences. Both of them use multiple layers, which
allow them to encode rich information about the problem of interest. However, their layers are
very much different in that those of NNs are differentiable, while those of SSUs might not be.
This major difference lead to other differences. Training: NNs can be trained “end-to-end”
by backpropagating the gradient from the loss function to all parameters, while SSU needs to
be trained layer-by-layer in a greedy fashion as the estimated parameters move closer to the
correct. Flexibility and applications: NNs are more flexible and can learn to transform its input
to fit any type of differentiable loss, including those for classification and structured prediction.
On the contrary, SSUs are limited to parameter estimation. Handling nonlinearity: NNs deal
with nonlinearity using the nonlinear activation layers, while SSUs use nonlinear features or
regressors. In this view, we can think of NN as almost purely data-driven, while SSUs are more
model-driven as some nonlinearity can be encoded in those features or regressors. Computational

requirement: Typically, NN have a large number of parameters, thus they are computationally
expensive, while SSUs typically cost less to compute both in training and test.

Next, we review some DNN literatures which are related or similar to SSUs. In terms of
structure, recurrent neural networks (RNNs), such as long short term memory (LSTM) [59], use
the same network structures to make prediction in time series [118], parameter updates [102],
and attention models to restrict input feature [78], which is similar to SSUs which use the same
regressor in an iterative manner. However, a difference is that RNNs use the same weights for
all input in the sequence, while the weights of each SSU iteration are different. Taking this into
account, there also exists DNNs where the same structure is used iteratively but with different

13

weights [24, 108], which can be thought of as more similar to SSUs. In terms of applications,
DNNs have been used for some applications similar to this work, e.g., camera pose estima-
tion [65], homography estimation [38], and image denoising [111]. A notable work is spatial
transformation networks [60, 70], which propose a layer that transforms input images based on
a learned transformation (e.g.affine, homography, thin-plate spline) parameters. When concate-
nated, these spatial transformation layer can work similarly to regressors in SSUs. Finally, in
Chapter 4, we will develop a framework to design h, where we can interpret DO as imitating
a gradient method with an unknown penalty function. Similar to this, we note there are some
works that use DNNs to solve optimization [2, 28], but they differs from DO since they still need
a cost function to be defined.

14

Chapter 3

Discriminative Optimization

Mathematical optimization involves solving problems of the form

minimize
x

Φ(x)

subject to x ∈ S,
(3.1)

where x ∈ Rd is a vector of variables, Φ : Rd → R is an objective function, and S ⊂ Rd

is the constraint set. The goal of (3.1) is to find one or multiple globally optimal solutions
x∗ ∈ S that minimize the cost function, that is Φ(x∗) ≤ Φ(x) for all x ∈ S. However, solving
optimization problems with arbitrary Φ and S is considered computationally infeasible [81].
Instead of aiming for an efficient universal algorithm, many approaches are developed for specific
classes of optimization problems with specific structure. For example, if Φ is differentiable and
S = Rd, then (3.1) becomes an unconstrained optimization problem with a differentiable cost
function, which can be solved using gradient descent algorithms1.

In this chapter, we describe Discriminative Optimization (DO), a learning-based approach for
solving tasks which are conventionally formulated as unconstrainted differentiable optimization
problems. While traditional optimization has been successfully used for many tasks, a major
challenge of using it is to design a suitable cost function: If the cost mismatches with the reality,
its optimum may not correspond to the expected solution. On the other hand, DO uses training
data to learn a search algorithm that leads to the desired solution. This allows DO to solve similar
tasks without having to rely on any explicit cost function. Using synthetic data, we verify that DO
can learn to find an approximate optimum of a cost function without having to infer its explicit
form while solving incorrect cost functions results in worse solutions.

1Note that, without additional structures on Φ, such as convexity [18], gradient descent may get caught in a local
minima instead of converging to a global minimum.

15

We begin this chapter with Section 3.1, which provides a general description of our algorithm.
Then, in Section 3.2, we describe a framework for deriving problem-specific feature functions to
use with the algorithm, which provides a concrete relation between our algorithm and gradient-
based methods. We also provide a numerical example in each section. We consider the theoretical
justification for our approach in Chapter 4, and apply the algorithm to applications in Chapter 5.

3.1 Learning to search for stationary points

3.1.1 Motivation from fixed point iteration

DO aims to learn a sequence of update maps (SUM) to update an initial parameter vector to a
stationary point. The idea of DO is based on the fixed point iteration of the form

xt+1 = xt −∆xt, (3.2)

where xt ∈ Rp is the parameter at step t, and ∆xt ∈ Rp is the update vector. Eq. (3.2) is iterated
until ∆xt vanishes, i.e., until a stationary point is reached. An example of fixed point iteration for
solving optimization is the gradient descent algorithm [18] (see Figure 3.1b). Let J : Rp → R
be a differentiable cost function. The gradient descent algorithm for minimizing J is expressed
as

xt+1 = xt − µt
∂

∂x
J(x)

∣∣∣∣
x=xt

, (3.3)

where µt is a step size. One can see that the scaled gradient is used as ∆xt in (3.2), and it is
known that the gradient vanishes when a stationary point is reached.

In contrast to gradient descent where the updates are derived from a cost function, DO learns
the updates from the training data. The major advantages are that no cost function is explicitly
designed, and the neighborhoods around the solutions of the training data are taken into account
when the maps are learned, which results in more robustness to different types of perturbations
present in the data.

3.1.2 DO search algorithm

DO uses an update rule in the form of (3.2). The update vector ∆xt is computed by mapping the
output of a function h : Rp → Rf with a sequence of matrices2 Dt ∈ Rp×f (see Figure 3.1c).

2Here, we used linear maps due to their simplicity and computational efficiency. However, other non-linear
regression functions can be used in a straightforward manner.

16

(b) Optimization (c) Discriminative Optimization(a) Data

-Dth(x)

Cost Function J(x) Feature h(x)

- J(x)∂x
∂

Figure 3.1: Comparison between optimization and discriminative optimization (DO). Given (a)
input data, (b) optimization first designs a cost function, then search for the minimum by per-
forming updates, e.g., using negative gradients. (c) DO instead extracts features h(x) from the
data, then map the features to an update vector using a sequence of update maps (SUM) Dt.

Here, h is a function that encodes a representation of the data (e.g., h(x) extracts features from
an image at the position x). Let x0 ∈ Rp be an initial parameter, DO iteratively updates xt, t =

0, 1, . . . , using:
xt+1 = xt −Dt+1h(xt), (3.4)

until convergence to a stationary point. The sequence of matrices Dt+1, t = 0, 1, . . . , learned
from training data forms a sequence of update maps (SUM).

Learning a SUM

Suppose we are given a training set as a set of triplets {(x(i)
0 ,x

(i)
∗ ,h(i))}Ni=1, where x

(i)
0 ∈ Rp is

the initial parameter for the ith problem instance (e.g., the ith image), x(i)
∗ ∈ Rp is the ground

truth parameter (e.g., position of the object on the image), and h(i) : Rp → Rf extract features
from the ith problem instance. The goal of DO is to learn a SUM {Dt}t that updates x(i)

0 to x
(i)
∗ .

To learn the maps, we minimize the least-square error:

Dt+1 = arg min
D̃

1

N

N∑
i=1

‖x(i)
∗ − x

(i)
t + D̃h(i)(x

(i)
t)‖2

2, (3.5)

17

Algorithm 1 Training a sequence of update maps (SUM)

Require: {(x(i)
0 ,x

(i)
∗ ,h(i))}Ni=1, T, λ

Ensure: {Dt}Tt=1

1: for t = 0 to T − 1 do
2: Compute Dt+1 with (3.6).
3: for i = 1 to N do
4: Update x

(i)
t+1 := x

(i)
t −Dt+1h

(i)(x
(i)
t).

5: end for
6: end for

where ‖ · ‖2 is the `2 norm. After we learn a map Dt+1, we update each x
(i)
t using (3.4), then

proceed to learn the next map. This process is repeated until some terminating conditions, such
as until the error does not decrease much or a maximum number of iterations is reached. To
see why (3.5) learns stationary points, we can see that for i with x

(i)
t ≈ x

(i)
∗ , (3.5) will force

Dt+1h
(i)(x

(i)
t) to be close to zero, thereby inducing a stationary point around x

(i)
∗ . In practice,

we use ridge regression to learn the maps to prevent overfitting:

min
D̃

1

N

N∑
i=1

‖x(i)
∗ − x

(i)
t + D̃h(i)(x

(i)
t)‖2

2 + λ‖D̃‖2
F , (3.6)

where ‖ · ‖F is the Frobenius norm, and λ is a hyperparameter. The pseudocode for training a
SUM is shown in Alg. 1.

Solving a new problem instance

To solve a new problem instance with an unseen function h and an initialization x0, we update
xt, t = 0, 1, . . . , with the obtained SUM using (3.4) until a stationary point is reached. However,
in practice, the number of maps is finite, say T maps. We observed in many cases that the update
at the T th iteration is still large, which means the stationary point has not been reached, and that
xT is far from the true solution. For example, in the registration task, the rotation between initial
orientation and the solution might be so large that we cannot obtain the solution within a fixed
number of update iterations. To overcome this problem, we keep updating x using the T th map
until the update is small or the maximum number of iterations is reached. This approach makes
DO different from previous works in Section 2.3, where the updates are only performed up to the
number of maps. Alg. 2 shows the pseudocode for updating the parameters.

18

Algorithm 2 Searching for a stationary point
Require: x0,h, {Dt}Tt=1,maxIter, ε
Ensure: x

1: Set x := x0

2: for t = 1 to T do
3: Update x := x−Dth(x)
4: end for
5: Set iter := T + 1.
6: while ‖DTh(x)‖ ≥ ε and iter ≤ maxIter do
7: Update x := x−DTh(x)
8: Update iter := iter + 1
9: end while

Convergence of DO

We can see that DO operates similarly to many iterative algorithms. Instead of computing the
update from a manually defined function, each step of DO is computed based on the training data.
This raises the question whether the parameter xt would converge to x∗, both in training and test
phases. Here, we provide a short summary on this topic, while the complete detail is discussed
in Chapter 4. For the convergence in training, we show that the mean `2 distance between x

(i)
t

and x
(i)
∗ would strictly decrease in each iteration or even converge to zero under some weak

conditions. This provides theoretical foundation for DO as a learning-based algorithm for solving
estimation problems. On the other hand, we do not provide the convergence results for the test
phase in this thesis.

3.1.3 Numerical example: Finding the zero of 1D functions

In this section, we demonstrate properties of DO on the problem of finding the zero of 1D func-
tions. Consider the following function (see Figure 3.2a):

h(i)(x) =
1

1 + u
(i)
1

sin(x− x(i)
∗) +

1

1 + 9u
(i)
2

sgn(x− x(i)
∗) + η(i)(x), x ∈ X = [−1, 1] (3.7)

where sgn(x) : R → {−1, 0, 1} is the Heaviside step function, u(i)
1 , u

(i)
2 ∈ [0, 1] scale sin and

sgn, and η(i)(x) is a function representing noise. Our goal is to find x ∈ X such that h(i)(x) is
close to zero. In this case, since η(i)(x) has small amplitude, we have that x(i)

∗ is our solution:
h(i)(x

(i)
∗) ≈ 0.

There are two conventional approaches to this type of problems. First, we can use Newton’s
method to search for the zero. However, we can see that h(x) is neither monotone nor continuous.

19

-2 -1 0 1 2

x

(a) (b) (c)

-3

-2.5

-2

-1.5

-1

-0.5

0

-2 -1 0 1 2

x

-2

-1.5

-1

-0.5

0

0.5

1

-2 -1 0 1 2

x

0

0.5

1

1.5

2

Figure 3.2: Example of 1D synthetic data. (a) A function h(i)(x). The goal of the problem is to
find x such that h(i)(x) = 0. Here, the solution is x(i)

∗ = 1. (b) The cost surface if we formulate
the problem as minimization of |h(i)(x)|2 or |h(i)(x)|, which results in numerous local minima.
(c) On the other hand, if we integrate h(i)(x), we can see a cost surface where the minimum
approximates the correct solution.

This prevents us from directly applying Newton’s method. Alternatively, we could formulate an
optimization where we would minimize |h(x)|2 or |h(x)|. However, as seen in Figure 3.2b, the
cost functions of this optimization approach have a large number of local minima, making it
challenging to solve for a good solution.

To solve this problem, we observe that h(i)(x̂) > h(i)(x
(i)
∗) for all x̂ > x

(i)
∗ , and h(i)(x̂) <

h(i)(x
(i)
∗) for all x̂ < x

(i)
∗ . This property allows us to learn the sequence of update maps Dt ∈

R, t = 1, . . . , to solve this problem. We will explore this property in detail in Chapter 4. For the
case of 1D functions, this property allows us to think of h(i)(x) as the gradient of some function
ĥ(i)(x) =

∫
h(i)(x)dx, where the global minimum of ĥ(i)(x) corresponds to the correct solution

(see Figure 3.2c). With this interpretation, the update ∆x = Dth
(i)(x) can be thought of as a

gradient step of gradient descent, where the learned map Dt represents the step size at time t.

As a numerical example, we generated the training data {(x(i)
0 , x

(i)
∗ , h(i))}ni=1 where n =

5 × 103 and x(i)
0 = 0 for all i. Similarly, we also generated 5 × 102 test data instances. We

learned a total of 100 maps to observe the training error, which is shown in Figure 3.3a. Since
the training method in Alg. 1 minimizes average error, we can see that the average error decreases
monotonically, while the error of the individual training instances may oscillate. This means that,
on average, x(i)

t is moving closer to x(i)
∗ , which is the result we expect. In Figure 3.3b, we can

see that the norm of Dt is decreasing in each iteration, which matches the decreasing step size
used in gradient methods [81].

For test, we use Alg. 2 while varying the last map T . Recall that after reaching iteration T ,
we keep iterating using the last map DT until termination. Here, we terminate after reaching
100 iterations. We generated 102 test samples similar to training data. Figure 3.3c shows the test

20

0 20 40 60 80 100

Iter t

10-6

10-4

10-2

100

R
M

S
E

Individual error

Average error

0 20 40 60 80 100

Iter t

10-3

10-2

10-1

100

R
M

S
E

T=1
T=2
T=3

T=10

T=5

T=25 T=100

(a) (b) (c)

0 20 40 60 80 100

Iter t

10-3

10-2

10-1

100

Figure 3.3: (a) The training error of DO. (b) The norm of the learned map in each iteration,
which in this case also corresponds to the value of the map, i.e., Dt = |Dt|. (c) The test error
with different last maps T .

error. We can make the following three observations. (i) We can see the errors keep decreasing
when we keep iterating with DT beyond iteration T . This is because for some problem instance
i, x(i)

T may still be far from the solution, and by keep iterating, the estimate could move closer to
the solution. This validates the additional iteration beyond the last map. (ii) If a small T is used,
the estimate may not converge to the true solution, resulting in high errors than using a larger
T . This results is similar to the case of subgradient method with fixed step size, as the estimate
oscillates around the minimum but does not converge to it [19]. (iii) On the other hand, we can
see that using a large T could lead to a slower convergence, e.g., test error of T = 10 decreases
much faster than T = 100. This is because the D100 has a smaller norm than D10, which causes
the estimate to move towards to solution at a slower pace. From these observations, we can see
that the extra steps provide an important improvement over running until only step T . However,
selecting which map to use as the last map is also important, as this could control the speed of
convergence of the algorithm.

3.1.4 Section summary

We have described Discriminative Optimization (DO), a supervised framework which solves
problems by learning a sequence of maps Dt, t = 1, . . . , T, that maps feature functions h to
update steps ∆x in search space. The maps are trained using ridge regression, which can be
computed efficiently. In the test phase, DO only needs to apply the learned maps to the updated
feature iteratively, which requires very low computation cost. We provide a numerical example
which uses DO to search for the zero of a non-convex and non-monotonic function, and show
that, on average, the estimates of DO move closer to the expected solutions in both the training

21

and test phases.

One major question remains: How can we apply DO to practical applications? To accomplish
this goal, we need to incorporate information about the task of interest into the algorithm, which
can be done by designing task-specific feature function h. However, it is not a trivial task to
design a new h for every new task we wish to solve. To handle this challenge, in the following
section, we describe a general framework for deriving task-specific h.

3.2 Deriving feature function h

The function h provides information about the task of interest. For example, if we wish to solve
camera pose estimation, h should convey the information about the matches between the image
points and the 3D points, and also about the types of transformation used (e.g., projective, affine,
etc.). Since different tasks entail different types of information, we need to design new h for each
task, and this is not straightforward. Previous works which focuses on image-based tracking and
alignment, e.g., [31, 43, 104, 112, 113], use HOG [36], SIFT [72], or other intensity-based
features as h. However, it is not clear how to design h for tasks which are not image-based, such
as the feature-matching-based pose estimation task.

In this section, we describe a framework to derive a task-specific h based on the gradient
descent algorithm without assuming an explicit cost function. This is motivated by the observa-
tion that many computer vision tasks aim to find x such that gj(x) = 0d, j = 1, . . . , J , where
gj : Rp → Rd models the residual of the task of interest. Examples of gj(x) include the re-
projection error of the jth feature match for homography or camera pose estimation [57], or the
intensity residual of pixel j for tracking applications [6]. We will refer to gj(x) as the residual

function. To solve such problem, one typically formulate an optimization problem that minimizes
the sum of the residuals:

minimize
x

Φ(x) =
1

J

J∑
j=1

ϕ(gj(x)), (3.8)

where ϕ : Rd → R is a penalty function, e.g., sum of squares, `1 norm, etc. If Φ is differentiable,
then we can use gradient descent to find a minimum and returns it as the solution. However,
this approach has two disadvantages. (i) As shown in Section 3.1.3, Φ could have multiple
local minima, and it may be challenging to solve for a good one. (ii) The choice of ϕ has
a strong impact on the solution in terms of robustness to different perturbations, and it is not
straightforward to select ϕ that will account for perturbations of the real data. The following
framework will derive an h that, when used with the training method in Alg. 1, can be interpreted
as learning to imitate gradient descent on Φ with an unknown ϕ. Two main advantages are that

22

we can bypass the manual selection of ϕ and also avoid obtaining undesirable solutions.

To provide a better intuition, we first show how to derive h for the ‘Can you guess the num-

ber?’ game from Section 1.1. Then, we derive h for general residual functions. Finally, we
provide a numerical example from Can you guess the number? game to verify our approach.

3.2.1 Example: Deriving h for Can you guess the number?

Recall that in the ‘Can you guess the number?’ game in Section 1.1, we wish to solve the
optimization problem of the following form

x∗ = arg min
x

Φ(x) =
1

J
arg min

x

J∑
j=1

ϕ(x− xj), (3.9)

where ϕ : R → R is some penalty function. If ϕ is a known differentiable function, then we
could solve (3.9) by gradient descent with the update3

∆x̂ =
1

J

∂

∂x
Φ(x)

∣∣∣∣
x=x̂

=
1

J

J∑
j=1

∂

∂x
ϕ(x− xj)

∣∣∣∣
x=x̂

, (3.10)

where x̂ is the current estimate. Here, we will show how to derive the function h to solve (3.9)
when ϕ is unknown.

Given n pairs of data instance and its minimizers {(X (i), x
(i)
∗)}ni=1, whereX (i) = {x(i)

1 , . . . , x
(i)
Ji
},

our approach solves for x̃∗ for an unseen X̃ using an update rule that imitates the gradients of
the unknown function. We denote this imitation of the gradient as a function φ : R → R. By
replacing the gradient ∂

∂x
ϕ with φ, the update is then modified to

∆x̂ =
1

J

J∑
j=1

φ(x̂− xj). (3.11)

At this point, we are able to compute x̂ − xj but we do not know what φ is. Thus, we approx-
imate (3.11) as the product Dh(x̂), where we will express φ as a part of D and learn it from
the training data with Alg. 1, while x̂ − xj will be expressed in h(x̂) which can be computed
independently from φ. To do so, we need to decouple φ and x̂− xj into a matrix-vector product.
This is done by noting that φ(x̂ − xj) can be written as the convolution between φ and Dirac’s

3We leave out the step size.

23

delta function δ:

∆x̂ =
1

J

J∑
j=1

φ(x̂− xj) =
1

J

J∑
j=1

∫
φ(v)δ(v − x̂+ xj)dv (3.12)

=
1

J

∫
V

φ(v)
J∑
j=1

δ(v − x̂+ xj)dv, (3.13)

where V = R. Note that φ(v) and δ(v − x̂+ xj) can be thought of as vectors indexed by v, and
the integration as the inner product between them. Recall that the update of DO, ∆x = Dh(x),
is also an inner product between each row of D and h(x), where D is learned from training data.
This allows us to assign φ and δ into D and h as4

D(v) = φ(v), and (3.14)

h(v; x̂) =
1

J

J∑
j=1

δ(v − x̂+ xj). (3.15)

Now, we can see that h depends only on the data xj and the estimate of the solution x̂, while the
function φ is expressed entirely by D. This allows us to use Alg. 1 to learn the approximation of
φ as D.

Discretization: To compute ∆x in (3.13) in practice, we approximate it as an inner product
between two finite-dimenstional vectors. The main idea of this approximation is shown in Fig-
ure 3.4. Specifically, we discretize the functions into vectors: φ(v) is discretized into a vector
φ ∈ Rr and δ(v − x̂ + xj) is discretized into a standard basis vector5 eγq,r(x̂−xj). The function
γq,r : R → {0, 1, . . . , r} is a discretization function that returns the index of the box that its
argument discretizes to. It is defined as

γq,r(z) =

⌈
r
2

(
z
q

+ 1
)⌉

z ∈ [−q, q],

0 otherwise,
(3.16)

where d·e rounds up any number, q denotes the discretization range, and r denotes the number
of boxes. Note that here we define e0 = 0r. With the definition of γq,r, we can express the

4Here, D is a scalar function. Notation for matrix (bold capital letter) is used here to remind of the update
rule (3.4).

5Note that a discrete delta function is similar to a standard basis vector.

24

F
un
ct
io
n

V
ec
to
r

Indices of vector's element Disregarded
(Outside of

segment [-q,q])

Figure 3.4: Approximating the inner product of functions as the inner product of vectors by
discretization. The functions φ(v) and 1

J

∑
j δ(v− x̂+ xj) are discretized into the vectors φ and

1
J

∑
j eγq,r(x̂−xj) in Rr, resp. The function γq,r returns the index of the box (i.e., vector element)

that each δ(v − x̂+ xj) is assigned to. Note that only the values between [−q, q] are discretized,
and any values outside the segment are disregarded. See text for details.

approximation of (3.13) as:

∆x̂ =
1

J

∫
V

φ(v)
J∑
j=1

δ(v − x̂+ xj)dv ≈ φ>
(

1

J

J∑
j=1

eγq,r(x̂−xj)

)
. (3.17)

Similar to (3.14) and (3.15), we can set

D = φ, and (3.18)

h(x̂) =
1

J

J∑
j=1

eγq,r(x̂−xj). (3.19)

25

Using the above h, we can train a SUM {Dt}Tt=1 using the procedure in Alg. 1 to solve the ‘Can

you guess the number?’ game. Next, we derive the h function for general residual functions.

3.2.2 Deriving h for general residual functions

In this section, we derive the h function for the general residual function in (3.8), reproduced
here for convenience:

minimize
x

Φ(x) =
1

J

J∑
j=1

ϕ(gj(x)), (3.20)

For simplicity, we assume Φ(x) is differentiable, but the following approach also applies when
it is not. Let us observe its derivative:

∂

∂x
Φ(x) =

1

J

∂

∂x

J∑
j=1

ϕ(gj) =
1

J

J∑
j=1

[
∂gj
∂x

]>
∂ϕ(gj)

∂gj
, (3.21)

where we express gj(x) as gj to reduce notation clutter. We can see that the form of ϕ affects
only the last term in the RHS of (3.21), while the Jacobian ∂gj

∂x
does not depend on it. Here, we

will derive h to learn this last term from a set of training data with DO.

Similar to Section 3.2.1, we will express (3.21) as the product Dh. First, we rewrite (3.21)
as an update vector ∆x, where we replace the derivative of ϕ with a function φ : Rd → Rd:

∆x =
1

J

J∑
j=1

[
∂gj
∂x

]>
φ(gj) (3.22)

=
1

J

J∑
j=1

d∑
k=1

[
∂gj
∂x

]>
k,:

[φ(gj)]k, (3.23)

where [Y]k,: is row k of Y, and [y]k is element k of y. Next, we express (3.23) as the convolution
between φ and Dirac delta function δ:

∆x =
1

J

J∑
j=1

d∑
k=1

[
∂gj
∂x

]>
k,:

∫
V

[φ(v)]kδ(v − gj)dv, (3.24)

where V = Rd. It can be seen that (3.24) is equivalent to (3.21), while being linear in φ. This
allows us to express (3.24) as the product Dh, where φ is included into D which will be learned
using linear least squares, while the remaining terms will be incorporated into the function h.

26

For simplicity, we only look at the element l of ∆x:

[∆x]l =
1

J

J∑
j=1

d∑
k=1

[
∂gj
∂x

]
k,l

∫
V

[φ(v)]kδ(v − gj)dv, (3.25)

=
1

J

d∑
k=1

∫
V

[φ(v)]k

 J∑
j=1

[
∂gj
∂x

]
k,l

δ(v − gj)

 dv, (3.26)

=
d∑

k=1

∫
V
D(v, k)h(v, k, l;x)dv. (3.27)

Eq. 3.27 expresses [∆x]l as an inner product between D and h over v and k, where

D(v, k) = [φ(v)]k, (3.28)

h(v, k, l;x) =
1

J

J∑
j=1

[
∂gj
∂x

]
k,l

δ(v − gj). (3.29)

We can see from (3.29) that h is a mixture of weighted Dirac’s delta functions. Thus, we can
think of h as a function that samples the gradient of ϕ, which is represented as D in 3.28.

Discretization: Eq. (3.29) expresses h as a function with continuous domain. To compute h

in practice, we need to express it as a vector. To do so, we follow the similar approximation from
Section 3.2.1: We will discretize h in (3.29) into a discrete grid, then vectorize it. Specifically,
we first discretize δ(v − gj) into a d-dimensional grid with r boxes in each dimension, where a
box evaluates to 1 if gj is discretized to that box, and 0 for all other boxes. Using the function γq,r
(eq. (3.16) from Section 3.2.1), we can approximate the δ as the following Kronecker product of
standard basis vectors:

δ(v − gj) →
approx.

eγq,r([gj]1) ⊗ · · · ⊗ eγq,r([gj]d) =
d⊗

α=1

eγq,r([gj]α) ∈ {0, 1}r
d

. (3.30)

With this discretization, we can express h in (3.29) in a discrete form as

h(k, l;x) =
1

J

J∑
j=1

[
∂gj
∂x

]
k,l

d⊗
α=1

eγq,r([gj]α). (3.31)

By concatenating h(k, l;x) over k and l, we obtain the final form of h as

h(x) =
1

J

J∑
j=1

p⊕
l=1

d⊕
k=1

[
∂gj
∂x

]
k,l

d⊗
α=1

eγq,r([gj]α), (3.32)

27

where
⊕

denotes vector concatenation. The dimension of h is pdrd. We show how to ap-
ply (3.32) to computer vision tasks in Chapter 5. Note that the above approach is one way of
designing h to use with DO. It is possible to use different form of h (e.g., see Section 5.1), or
replace D with a nonlinear map.

3.2.3 Numerical example: Can you guess the number?

In this section, we use the ‘Can you guess the number?’ game from Section 1.1 as a numerical
example. Recall that the game is trying to solve an optimization problem without knowing the
explicit form of its penalty function. Specifically, given a set of number X = {x1, x2, . . . , xJ},
we are interested in finding the solution x of the problem

gj(x) = 0 = x− xj, j = 1, . . . , J. (3.33)

A typical approach to solving this problem is to solve the optimization

P : minimize
x:x=xj+εj

J∑
j=1

ϕ (εj) ≡ minimize
x

n∑
j=1

ϕ (x− xj) , (3.34)

for some function ϕ. In essence, solving problem P in (3.34) is the equal to finding the M-
estimator under some distribution of the noise εj: Suitable forms of ϕ depends on the assumption
on the distribution of εj , e.g., the maximum likelihood estimation for i.i.d. Gaussian εj would use
ϕ(x) = x2. If the an explicit form of ϕ is known, then one can compute x∗ in closed form (e.g.,
ϕ is squared value or absolute value) or with an iterative algorithm. However, using a ϕ that
mismatches with the underlying distribution of εj may lead to an optimal, but incorrect, solution
x∗. Here, we will use DO to solve for x∗ from a set of training data.

For this problem, we consider 6 ϕβ’s as follows:

ϕ1(x) =|x|, (3.35)

ϕ2(x) =0.35|x|4.32 + 0.15|x|1.23, (3.36)

ϕ3(x) =(3 + sgn(x))x2/4, (3.37)

ϕ4(x) =|x|0.7, (3.38)

ϕ5(x) =1− exp(−2x2), (3.39)

ϕ6(x) =1− exp(−8x2). (3.40)

The first 3 ϕβ’s are convex, where ϕ1 is a nonsmooth function; ϕ2 is a combination of different

28

(g) Training MSE (h) (i) scaled

x
-2 0 2
0

1

2

x
-2 0 2

-1

0

1

u
10 20 30 40

-1

0

1

x
-2 0 2
0

1

2

x
-2 0 2

-1

0

1

u
10 20 30 40

-1

0

1

1
=|x|

2
=0.35|x|4.32+0.15|x|1.23

3
=(3+sgn(x))x2/4

4
=|x|0.7

5
=1-exp(-2x2)

6
=1-exp(-8x2)

t
5 10 15

10 -4

10 -2

10
0

t
5 10 15

10 -4

10 -2

10 0

u
10 20 30 40

-1

0

1

(a)

(e) scaled (f) scaled

(c) scaled(b) scaled

(d)

Figure 3.5: Learning to solve unknown cost functions. (a-c) show three convex functions, their
gradients, and the learned DT for each function. (d-f) show similar figures for pseudoconvex
functions. In (c) and (f), their x-axes are the indices of boxes u = 1, . . . , 40 of the corresponding
discretized interval [−2, 2]. (g) shows training error in each step t. (h) shows the squared norm
of the maps Dt. (i) shows the first map of each function.

powers; ϕ3 is an asymmetric function (i.e., ϕ3(x) 6= ϕ3(−x)). The latter 3 ϕβ’s are pseudocon-
vex6, where ϕ4 has the exponent smaller than 1; while ϕ5 and ϕ6 are inverted Gaussian functions
with different widths. Pseudoconvex functions are typically used as robust penalty functions [86]
because they penalize outliers less than convex functions. Note that the sum of pseudoconvex
functions may not be pseudoconvex, and can have multiple local minima. The graphs of the
functions and the gradient7 are shown in Figure 3.5a,b,d,e. We refer to the problem in (3.34) that
uses ϕ = ϕβ as Pβ .

We generate the training data for Pβ as Xβ = {(X(i)
β , x

(i)
0,β, x

(i)
∗,β)}ni=1 where n = 104; X (i)

β =

6We discuss pseudoconvex functions in Section 4.3.
7Here, we abuse the word gradient to include subdifferential for nonsmooth convex functions and generalized

subdifferential for nonconvex functions [54].

29

{x(i)
1,β, . . . , x

(i)
Ji,β
} ⊂ [−1, 1], where we random Ji as an odd number between 3 and 51 to ensure

the sum of ϕ1 has strictly one global minimum; x(i)
0,β = 0 is the initial estimate; and x(i)

∗,β is the
global minimizer of Pβ with the data X(i)

β . To find the minimizers, we use fminunc for convex
functions, and grid search with the step size of 0.0001 for nonconvex functions. We trained the
SUMs using the h from (3.19), reproduced here as follows:

h(x) =
1

J

J∑
j=1

eγq,r(x−xj). (3.41)

We use [−2, 2] as the range of x − xj (i.e., q = 2), and discretize it into r = 40 boxes. Let us
denote the SUM learned from the data Xβ as SUMβ . To illustrate the training error, we train up
to 15 maps for each β, but for test we set the number of maps T to the last map that reduce the
training RMSE more than 0.005. During test, we set ε = 10−3 and maxIter = 100.

Figure 3.5c,f show the scaled maps DT for each β. The ticks on their x-axes represent the
vector indices u = 1, . . . , 40 that correspond to the box indices of the discretized interval [−2, 2].
We can see that the maps resemble the gradient of their respective functions, suggesting that DO
can learn the approximation of the gradients from training data without explicit access to the cost
functions. At the far left and right sides of the maps DT , we can see they take the values of
zero. This is because there were no training samples falling into those boxes, and they simply
took the values of zero due to the regularization in the learning rule. It should be noted that the
first maps for all β in Figure 3.5i are different from their T th maps. This is because the first
maps try to move x(i)

0 as close to x(i)
∗ as possible, and thus the shapes of first maps may differ

from their respective gradients. The training errors in Figure 3.5g show that convex functions
are easier to learn than nonconvex ones. This is because nonconvex functions may have multiple
local minima, and x(i)

t may get trapped in a wrong stationary point, causing the error to be high.
Figure 3.5h shows that the map have decreasing norms, which represents reducing step sizes as
the estimates approach the solutions.

We also perform an experiment on unseen sets of data. Our goal is to compare SUM learned
from the correct cost function against gradient methods where one gradient method minimizes
the correct cost function and the rest minimize mismatched ones. Given a set of numbers X ,
we first find the global minimizer x∗,β of Pβ . Then, we run 7 algorithms and compute the errors
between their estimates and x∗,β . In the 7 algorithms, the first is SUMβ (learned from Xβ),
and the rest are fminunc (quasi-Newton) that minimizes Pω, ω = 1, . . . , 6 (five of which use
mismatched cost functions). Table 3.1 shows the MAE over 1000 test instances. We can see
that the solutions of SUMβ have lower errors than those of fminunc that use mismatched cost
functions. This shows that using mismatched costs can lead to worse solutions, while DO can

30

Table 3.1: MAE of solving unknown cost functions. The first column is Pβ used to generate
ground truths x∗,β , while the rest show the MAE between the ground truths and the solutions of
the algorithms. Best results in underline bold, and second best in bold.

Pβ

Algorithms
fmincon

SUMβP1 P2 P3 P4 P5 P6

P1 .0000 .0675 .1535 .0419 .0707 .2044 .0137
P2 .0675 .0000 .1445 .1080 .1078 .2628 .0145
P3 .1535 .1445 .0000 .1743 .1657 .2900 .0086
P4 .0493 .1009 .1682 .0457 .0929 .1977 .0325
P5 .0707 .1078 .1657 .0823 .0000 .1736 .0117
P6 .2098 .2515 .2791 .1905 .2022 .1161 .0698

learn from the training data to approximate the optimum of an unknown cost without knowing
to its explicit form. An interesting point to note is that DO seems to be able to solve nonconvex
problems better than fminunc, suggesting DO can avoid some local minima and more often
terminate closer to the global minimum.

We summarize this section in 4 points. (i) We show that DO can learn to imitate the gradients
of unknown penalty functions. (ii) A very important point to note is that a single training data
can have multiple ground truths, and DO will learn to find the solution based on the ground truths
provided during the training. Thus, it is unreasonable to use DO that, say, trained with the mean
as its ground truth and hope to get the median as the result. (iii) A practical implication of this
demonstration is that if we optimize a wrong cost function then we may obtain an unexpected
optimum as solution, and it would be more beneficial to obtain training data and learn to solve
for the solution directly. (iv) We show that for nonconvex problems, DO has the potential to skip
local minima and arrive at a better solution than that of the quasi-Newton algorithm (fminunc).

3.2.4 Section summary

In this section, we have described a framework for deriving task-specific feature function h to use
with the DO algorithm from Section 3.1. The derivation of the framework is based on the gradient
descent for minimizing a cost function which penalized the sum of residual functions gj with an
unknown penalty function ϕ. The form of h is a mixture of weighted Dirac’s delta functions,
which can be thought of as a function that samples the gradient map of ϕ. We demonstrated
using numerical examples that the proposed h can be used to find the optimum of convex and
pseudoconvex functions, while the learned SUMs were shown to approximate the gradient maps
of their corresponding functions. This shows the potential of DO as a framework that can robustly

31

solve tasks which are conventionally solves as optimization problems. In the next chapter, we
provide theoretical analysis on the convergence in training error of DO.

32

Chapter 4

Theoretical Analysis: Convergence and
Relations to Monotonicity and Convexity

In the previous chapter, we describe the DO algorithm and a framework for deriving task-specific
feature function h. In this chapter, we perform a theoretical analysis on the algorithm. Specifi-
cally, we provide the conditions that guarantee that the estimated parameter x(i)

t will move closer
or converge to the target x(i)

∗ .

Some convergence aspects of supervised sequential update (SSU) algorithms have been in-
vestigated by previous works. In [43], Dollar et al. assumes a weak learner assumption, and
shows that learning a sequence of weak learners allows the estimated parameters to converge to
the target parameters in training phase. However, since a weak learner is defined as a regressor
that reduces the training error by a constant multiplicative factor, this assumption is rather strong,
and only very complex regressors may achieve such error reduction in practice. In addition, [43]
focuses on the learners but does not consider their relation with the features, which also has an
important role for the convergence result. In [113], Xiong and De la Torre assumed strict mono-

tonicity at a point and Lipschitz at a point, and showed that repeatedly applying a single linear
map to update the parameters leads to strict reduction in error. These assumptions reveal that
the relation between the features and the regressors is an important factor for the error to reduce.
However, as we demonstrated in Section 3.1.3, using a single map may not decrease the error,
and a sequence of maps is preferable. The reason for this phenomenon was not mathematically
explained in [113]. In addition, the conditions for the training error to converge to zero were not
examined.

Our analysis builds upon the work of Xiong and De la Torre [113]. To achieve the conver-
gence results, we rely on two conditions: Monotonicity at a point and relaxed Lipschitz at a point.
These two conditions are similar to, but weaker than, the conditions used in [113]. We also show

33

that these two conditions can respectively be considered as a generalization of monotonicity and
Lipschitz continuous, which are conditions generally used to show the convergence of gradient
methods [18]. This relation provides a theoretical link between our algorithm and generalized
convexity. Under a different set of the assumptions, we can show that the training error may
strictly decrease in each iteration, and even converge to zero. Finally, we show the conditions
where using the feature function h from Section 3.2 allows the training error to strictly decrease
or converge to zero. These results form a theoretical foundation for our DO framework.

We begin this chapter by defining monotonicity at a point and relaxed Lipschitz at a point.
Then we provide the main results on the convergence of the training error for the general frame-
work from Section 3.1, followed by the results of h from Section 3.2. The proofs of all results
are provided in Appendix A.

4.1 Definitions

In this section, we define monotonicity at a point and relaxed Lipschitz at a point .

4.1.1 Monotonicity at a point

Definition 1. (Monotonicity at a point) A function f : Rp → Rp is

(i) monotone at x∗ ∈ Rp, denoted asM0(x∗), if

(x− x∗)
>f(x) ≥ 0 (4.1)

for all x ∈ Rp,

(ii) strictly monotone at x∗ ∈ Rp, denoted asM+(x∗), if

(x− x∗)
>f(x) ≥ 0 (4.2)

for all x ∈ Rp and the equality holds only at x = x∗,

(iii) strongly monotone at x∗ ∈ Rp, denoted asM++(x∗), if

(x− x∗)
>f(x) ≥ m‖x− x∗‖2

2 (4.3)

for some m > 0 and all x ∈ Rp.

We refer to the conditions monotonicity at a point, strict monotonicity at a point, and strong

monotonicity at a point without refering to any specific point as M0, M+, and M++, resp.

34

(a) (b) (c)

(d) (e) (f)

Monotone at 0

Monotone

Monotone at a point Strictly monotone at a point Strongly monotone at a point

Figure 4.1: Monotonicity at a point. (a-c) Examples of 1D functions which are monotone (resp.,
strictly, strongly) at 0. (d-f) Example of update x− f(x) in 2D case. The ranges of the possible
update for f ’s which are monotone (resp., strictly, strongly) at x∗ are shown in blue.

Figure 4.1 illustrates examples of functions which are monotone at a point. In order for a 1D
function f : R → R to be M0(0), M+(0), and M++(0), f(x) must lie in the blue region in
Figure 4.1a-c. Figure 4.1a also shows example of a monotone function in red, which needs to be
nondecreasing at every point, while a function f which isM0(0) can have decreasing values. In
fact, f does not even need to be continuous.

We can also obtain the intuition of monotonicity at a point by looking at x−f(x) as an update
operation, i.e., updating x with −f(x). In two dimensional space, Figure 4.1d-f show the range
of possible values that x − f(x) can take with respect to x − x∗ for 2D functions f : R2 → R2

which areM0(x∗),M+(x∗), andM++(x∗), resp. It can be seen that the update x− f(x) has to
lie in the half space on the side of x∗. This means that if we take a small step in the direction
−f(x), then x− εf(x) should be closer to x∗ than x for a small ε > 0, which is an important
property for our convergence results.

We can also observe the relationship between M0, M+, and M++: From Def. 1, we can
see thatM++(x∗) impliesM+(x∗), which in turn impliesM0(x∗). We will explore the relation
between monotonicity and monotonicity at a point in more details in Sec 4.3.

35

Comparison with monotonicity at a point of [113]

Xiong and De la Torre [113] also introduced similar notions of monotonicity at a point and strict

monotonicity at a point, which are given as follows:

Definition 2. (Monotonicity at a point [113]) A function f̃ : Rp → Rp is

(i) monotone at x∗ ∈ Rp, if

(x− x∗)
>(f̃(x)− f̃(x∗)) ≥ 0 (4.4)

for all x ∈ Rp,

(ii) strictly monotone at x∗ ∈ Rp, if

(x− x∗)
>(f̃(x)− f̃(x∗)) ≥ 0 (4.5)

for all x ∈ Rp and the equality holds only at x = x∗.

It is important to note that in [113], the update rule used is

xt+1 = xt − (f̃(xt)− f̃(x∗)), (4.6)

where f̃(x) = D̃h̃(x), and h̃(x∗) is a constant vector which is learned from the data. Since
h̃(x∗) is learned, we can merge it with the learned map D̃. This results in the update rule of DO
in (3.4):

xt+1 = xt − [D̃, h̃(x∗)]

[
h̃(xt)

1

]
(4.7)

= xt −Dh(xt). (4.8)

This allows us to relate our definitions (Def. 1) to those of [113] (Def. 2): if we assume f̃(x∗)

in Def. 2 to be constant, then we can define f(x) in Def. 1 as f̃(x) − f̃(x∗). This shows that
that Def. 1 subsumes Def. 2. Moreover, Def. 1 does not require f(x∗) to be zero, while Def. 2
requires f̃(x) − f̃(x∗) = 0p when x = x∗. This shows that Def. 1 is more general than Def. 2.
From a practical perspective, it is unlikely that the update f(x) = Dh(x) will be zero even
at x = x∗, since h might return features such as SIFT or HOG or some transformation of the
residual functions, which are likely to be noisy and have non-zero values when multiplied with
D. Thus, Def. 1 defines a class of functions that covers more practical situations than Def. 2.

36

Figure 4.2: An example of 1D (H,L)-relaxed-Lipschitz-at-0 function is shown as the blue curve.
In fact, any 1D function that lies in the blue region (bounded by the red curves) is (H,L)-relaxed
Lipschitz at 0.

4.1.2 Relaxed Lipschitz at a point (RL)

We define relaxed Lipschitz at a point (RL) as follows.

Definition 3. (Relaxed Lipschitz at a point) A function f : Rp → Rq is (H,L)-relaxed Lipschitz

at a x∗, denoted as (H,L)-RL(x∗), if there exists H,L ≥ 0 such that

‖f(x)‖2
2 ≤ H + L‖x− x∗‖2

2 (4.9)

for all x ∈ Rp.

Figure 4.2 shows an example of a 1D function which is (H,L)-RL(0): Any 1D function
which lies in the blue region is (H,L)-RL(0). Similar to Lipschitz continuous function, a func-
tion f which is RL has a bound on its growth. However, while Lipschitz continuous functions
constrain the function values based on the distance between any pair of points,RL(x∗) depends
only on the distance from any point x to a single point x∗. This allows f to be discontinuous. In
particular, if H > 0 then (H,L)-RL(x∗) allows f to be discontinuous even at x∗.

Other than Lipschitz continuous, the RL condition also relates to other similar concepts
in the literature. Notably, if L = 0 then (H,L)-RL reduces to a bounded function, while if
H = 0 then (H,L)-RL reduces to Lipschitz at a point defined in [113]. In [100], Tian and
Narasimhan also introduced a similar concept called relaxed Lipshitz condition. This condition
provides both upper bound and lower bound on the image difference as a ratio of the distortion
parameter difference, which in a sense is similar to a combination of Lipschitz continuous and
strong monotonicity. However, relaxed Lipshitz condition in [100] also applies to multivalued
maps, i.e., its arguments need not be a function. The condition (H,L)-RL also relates to the
concept of inexact oracle in first-order methods for smooth convex minimization (see Cor. 1
in [40], and also [39]).

37

4.2 Convergence of the training error

Using the above definitions, we can derive the following main convergence result on the training
error of SUM.

Theorem 1. (Convergence of SUM’s training error) Given a training set {(x(i)
0 ,x

(i)
∗ ,h(i))}Ni=1,

if there exists a linear map D̂ ∈ Rp×f where D̂h(i) isM+(x
(i)
∗) for all i, and if there exists an i

where x
(i)
t 6= x

(i)
∗ , then the update rule:

x
(i)
t+1 = x

(i)
t −Dt+1h

(i)(x
(i)
t), (4.10)

with Dt+1 ⊂ Rp×f obtained from (3.5), guarantees that the training error strictly decreases in

each iteration:
N∑
i=1

‖x(i)
∗ − x

(i)
t+1‖2

2 <
N∑
i=1

‖x(i)
∗ − x

(i)
t ‖2

2. (4.11)

Moreover, if D̂h(i) isM++(x
(i)
∗) and (H,L)-RL(x

(i)
∗), then the training error converges to zero.

If H = 0 then the training error converges to zero linearly.

Proof. See Appendix A.1.

In words, Thm. 1 says that if each instance i is similar in the sense that each D̂h(i) is
M+(x

(i)
∗), then sequentially learning the optimal maps with (3.5) guarantees that the training

error strictly reduces in each iteration. In addition, if D̂h(i) isM++(x
(i)
∗) and (H,L)-RL(x

(i)
∗)

then the error converges to zero. Note that h(i) is not required to be differentiable or continuous.
Xiong and De la Torre [113] also presents a convergence result for a similar update rule, but it
shows the strict reduction of error of a single function under a single ideal map. It also requires
an additional condition called Lipschitz at a point. This condition is necessary for bounding the
norm of the map, otherwise the update can be too large, preventing the reduction in error. In
contrast, Thm. 1 explains the convergence of multiple functions under the same SUM learned
from the data, where the each learned map Dt can be different from the ideal map D̂. To en-
sure reduction of error, Thm. 1 does not require the Lipschitz at a point since the norms of the
maps are adjusted based on the training data. Meanwhile, to ensure convergence to zero, Thm. 1
requires RL (recall that D̂h(i)(x

(i)
∗) does not need to be 0p). These weaker assumptions have

an important implication as it allows robust discontinuous features, such as HOG in [113], to be
used as h(i). Finally, we wish to point out that Thm. 1 guarantees the reduction in the average
error, not the error of each instance i.

38

4.2.1 Analytical examples

We can see that there are two different convergence results on the training error: strictly decrease
(based onM+) and convergence to zero (based onM++ andRL). This raises some interesting
questions. For example, can we show the decrease in error for the weaker M0? Are the two
classes of convergence results strictly different? In this section, we provide analytical examples
to show the necessity of each assumption, which implies that each convergence results are strictly
different.

Example 1: Monotone at a point functions (M0)
Here, we show examples of training sets with D̂h which isM0 where their training errors

may not strictly decrease in each iteration.

1. A trivial example is h(x) = 0f , where D̂h is monotone at all x ∈ Rp for any D̂. In this
case, for any training set with any x

(i)
∗ , the training error will not decrease.

2. Consider the training set {(x(i)
0 ,x

(i)
∗ ,h(i))}2

i=1 ⊂ R2×R2×(R2 → R2), where x(1)
0 = x

(2)
0 ,

x
(1)
∗ = x

(2)
∗ = 02, and

h(1)(x) =

[
0 −1

1 0

]
x, and h(2)(x) =

[
0 1

−1 0

]
x. (4.12)

The function h(1) generates a clockwise vector field around 02, while h(2) generates a
counterclockwise one. We can see that with D̂ = I2, we have (x − x

(i)
∗)>D̂h(i)(x) = 0

for any x for all i, meaning D̂h(i) isM0(x
(i)
∗). Observe that, in the first iteration, we have

h(1)(x
(1)
0) = −h(2)(x

(2)
0) while x

(1)
0 − x

(1)
∗ = x

(2)
0 − x

(2)
∗ . This will lead to D1 = 02×2,

which means all updates will be zero and that we will have x
(1)
0 = x

(2)
0 = x

(1)
t = x

(2)
t for

all t = 1, 2, Thus the training error will not decrease.

On the other hand, consider a training set {(x(i)
0 ,x

(i)
∗ ,h(1))}ni=1 for any n > 0, where

x
(i)
∗ = 02, x(i)

0 is any points in R2, and h(1) is defined in (4.12). Then we can see that for

D̂ =

[
0 −1

1 0

]
, (4.13)

we have D̂h(i) isM++(x
(i)
∗) and (0, 1)-RL(x

(i)
∗) for all i. From Thm. 1, the training error

converges to zero linearly. In fact, for this specific case, the training error converges to
zero in a single iteration.

The above examples show that we cannot guarantee that the training error ofM0 functions
will strictly decrease in each iteration. Next, we look atM+ functions.

39

Example 2: Strictly monotone at a point function (M+)
In this example, we show that the training error of a function which is M+(02) may not

converge to 02, illustrating the distinction between the convergence results ofM+ andM++ in
Thm. 1.

Consider

h(x) =

(0, sgn(x2)) ;x2 6= 0,

(sgn(x1), 0) ;x2 = 0.
(4.14)

With D̂ = I2, we can see that D̂h isM+(02).1 Suppose we are given the following training set
with three samples {(x(i)

0 ,x
(i)
∗ ,h)}3

i=1, where x
(1)
0 = (1, 1), x(2)

0 = (1,−1), x(3)
0 = (0, 2), and

x
(i)
∗ = 02 for all i. With these training samples, we can explicitly derive Dt and x

(i)
t , t = 0, 1, . . . ,

as

Dt =
1

3t

[
0 0

0 4

]
,x

(1)
t =

[
1

(−1/3)t

]
,x

(2)
t =

[
1

(−1/3)t−1

]
,x

(3)
t =

[
0

2(1/3)t

]
. (4.15)

It can be seen that the samples’ second coordinates [x
(i)
t]2 are geometric sequences which ap-

proach, but never reach, zero. This prevent [x
(i)
t]1, i = 1, 2, from decreasing, thus the training

error will not converge to 0.

Example 3: Strongly monotone at a point function (M++)
In this example, we show that the training error of aM++ function without (H,L)-RL may

not converge to 0, implying (H,L)-RL is an important condition for the convergence of the
training error.

Consider the following 1D function:

h(x) =

 1
x

+ x ;x 6= 0,

0 ;x = 0.
(4.16)

It can be seen that with D̂ = 1, D̂h is M++(0) with m = 1. However, the value of D̂h(x)

as x → 0 is unbounded. Suppose we are given the following training set with two samples
{(x(i)

0 , x
(i)
∗ , h)}2

i=1, where x(1)
0 = 1, x(2)

0 is an arbitrary small positive number, and x(i)
∗ = 0 for

all i. We can see that h(x
(1)
0) = 2, while h(x

(2)
0) → ∞ as x(2)

0 → 0+. As x(2)
0 → 0+, we will

have D1 → 0, meaning x(1) will not make any progress towards 0, thus the training error will not
converge to 0.

1Note that D̂h is also (1, 0)-RL(02).

40

4.3 Relation to generalized monotonicity and generalized con-
vexity

In the previous section, we provide the conditions for the strict reduction and convergence
to zero of DO’s training error. We can see that strict and strong monotonicity at a point are
important conditions for the convergence results. In this section, we explore the relation between
monotonicity at a point and generalized monotonicity and generalized convexity. Specifically, we
show that monotonicity at a point is a generalization of monotonicity and pseudomonotonocity,
which are the properties of gradient of convex and pseudoconvex functions [63, 90]. This relation
allows us to derive the convergence results when we use the feature function h from Section 3.2
with DO.

We begin this section by providing definitions for monotone and pseudomonotone functions
(i.e., single-valued case), and their relation to convex and pseudoconvex functions. Then we
state our result that relates these concepts to monotonicity at a point. Next, we show that these
results can be generalized to the case of monotone and pseudomonotone multivalued maps (i.e.,
multi-valued case), which are related to nonsmooth convex and pseudoconvex functions. Finally,
we apply the derived relation to show the convergence when using the feature function h from
Section 3.2.

4.3.1 Single-valued case

Convexity is one of the most well-studied properties in optimization. Since all local minima of a
convex function are also global minima, convex optimization problems can be solved using com-
putationally efficient algorithms [18, 81]. We will refer to this property as local-global property.
Convex optimization has been widely applied to a variety of fields from finance and economy,
transportation planning, control theory, to machine learning and computer vision. However, the
local-global property is not confined to only convex functions. In this work, we focus on a class
of function called pseudoconvex, which generalizes convexity while still retaining local-global
property2. This property allows gradient-based algorithms to efficiently find a global minimum3.
Pseudoconvex functions have been used as penalty functions for their stronger robustness than
convex ones [7, 17, 86]. However, unlike convexity, pseudoconvexity is not preserved under

2More generally, the class of functions where it is both sufficient and necessary for all stationary points to be
global minima is called Invex functions [13]. These functions do not require the sublevel sets to be convex sets,
while convex and pseudoconvex do. We do not focus on invex functions in this work.

3It is known that all pseudoconvex functions are also quasiconvex [63]. However, quasiconvex functions can
have stationary points which are not local minima. We do not focus on quasiconvex functions in this work.

41

Strongly Monotone
(Strongly Convex)

Stricty Monotone
(Strictly Convex)

Monotone
(Convex)

Strongly Pseudomonotone
(Strongly Pseudoconvex)

Stricty Pseudomonotone
(Strictly Pseudoconvex)

Pseudomonotone
(Pseudoconvex)

Strongly Monotone at Strictly Monotone at Monotone at

Figure 4.3: Suppose f : Rp → R is a differentiable function with x∗ = arg minx f(x). This
diagram provides the relation between the monotonicity of ∇f . The boxes in the top two rows
indicate the classes of∇f and the corresponding classes of f in the parentheses.

summation, i.e., the sum of pseudoconvex functions may not be pseudoconvex and can have
multiple local minima.

Relating to the convexity and pseudoconvexity are the concepts of monotonicity and pseu-
domonotonicity. Specifically, it can be shown that the gradients of convex functions are mono-
tone functions, while the gradients of pseudoconvex functions are pseudomonotone functions [63].

In this section, we will review the relation between these concepts, and show that monotone
and pseudomonotone functions are monotone at their zeros. This leads us to the result that the
gradient of convex and pseudoconvex functions are monotone at their minima. First, we will
review the definitions of convexity, pseudoconvexity, monotonicity, and pseudoconvexity. Then,
we will provide our result on the relation between these concepts and monotonicity at a point.
Figure 4.3 provides a summary of the relation in terms of the gradient of a differentiable function.

Definitions: Convex and pseudoconvex functions

Definition 4. (Convexity [90]) A function f : Rp → R is

(i) convex if for any pairs of points x,x′ ∈ Rp and any α ∈ [0, 1],

αf(x) + (1− α)f(x′) ≥ f(αx + (1− α)x′), (4.17)

(ii) strictly convex if for any pairs of points x,x′ ∈ Rp and any α ∈ [0, 1],

αf(x) + (1− α)f(x′) ≥ f(αx + (1− α)x′), (4.18)

where equality holds only if x = x′,

42

(iii) strongly convex if there exists m > 0 such that for any pairs of points x,x′ ∈ Rp and

any α ∈ [0, 1],

αf(x) + (1− α)f(x′)) ≥ f(αx + (1− α)x′) +m‖x− x′‖2
2. (4.19)

Definition 5. (Pseudoconvexity [63]) A differentiable function f : Rp → R is

(i) pseudoconvex if for any distinct points x,x′ ∈ Rp,

(x− x′)>∇f(x′) ≥ 0 =⇒ f(x) ≥ f(x′), (4.20)

(ii) strictly pseudoconvex if for any distinct points x,x′ ∈ Rp,

(x− x′)>∇f(x′) ≥ 0 =⇒ f(x) > f(x′), (4.21)

(iii) strongly pseudoconvex if there exists m > 0 such that for any distinct points x,x′ ∈ Rp,

(x− x′)>∇f(x′) ≥ 0 =⇒ f(x) ≥ f(x′) +m‖x− x′‖2
2. (4.22)

It can be shown that differentiable convex (resp., strictly convex, strongly convex) functions
are (resp., strictly pseudoconvex, strongly pseudoconvex) pseudoconvex [54]. Next, we define
monotone and pseudomonotone functions.

Definitions: Monotone and pseudomonotone functions

Definition 6. (Monotonicity [63]) A function f : Rp → Rp is

(i) monotone if for any distinct points x,x′ ∈ Rp,

(x− x′)>(f(x)− f(x)′) ≥ 0, (4.23)

(ii) strictly monotone if for any distinct points x,x′ ∈ Rp,

(x− x′)>(f(x)− f(x)′) > 0, (4.24)

(iii) strongly monotone if there exists m > 0 such that for any distinct points x,x′ ∈ Rp,

(x− x′)>(f(x)− f(x)′) ≥ m‖x− x′‖2
2. (4.25)

Definition 7. (Pseudomonotonicity [63]) A function f : Rp → Rp is

43

(i) pseudomonotone if for any distinct points x,x′ ∈ Rp,

(x− x′)>f(x′) ≥ 0 =⇒ (x− x′)>f(x) ≥ 0, (4.26)

(ii) strictly pseudomonotone if for any distinct points x,x′ ∈ Rp,

(x− x′)>f(x′) ≥ 0 =⇒ (x− x′)>f(x) > 0, (4.27)

(iii) strongly pseudomonotone if there exists m > 0 such that for any distinct points x,x′ ∈
Rp,

(x− x′)>f(x′) ≥ 0 =⇒ (x− x′)>f(x) ≥ m‖x− x′‖2
2. (4.28)

Similar to convexity and pseudoconvexity, it can also be shown that monotone (resp., strictly
monotone, strongly monotone) functions are pseudomonotone (resp., strictly pseudomonotone,
strongly pseudomonotone) [63]. The following proposition provides a relation between the gra-
dients of convex and pseudoconvex functions and monotone and pseudomonotone functions.

Proposition 1. (Generalized convexity and generalized monotonicity [63]) A differentiable

function f : Rp → R is convex (resp., strictly convex, strongly convex, pseudoconvex, strictly

pseudoconvex, strongly pseudoconvex) if and only if its gradient is monotone (resp., strictly

monotone, strongly monotone, pseudomonotone, strictly pseudomonotone, strongly pseudomono-

tone).

Note that Prop. 1 only applies to the gradient of a function; A function g : Rp → Rp which
is monotone may not be a gradient of a convex function. For example, g(x1, x2) = (−x2, x1) is
not the gradient of any function.

Results: Generalized monotone functions and monotonicity at a point

Next, we derive our result on the relation between monotonicity at a point and pseudomonotonic-
ity.

Proposition 2. (Pseudomonotonicity and monotonicity at a point) If a function f : Rp → Rp

is pseudomonotone (resp., strictly pseudomonotone, strongly pseudomonotone) and f(x∗) = 0p,

then f is monotone (resp., strictly monotone, strongly monotone) at x∗.

Proof. See Appendix A.2.

Prop. 2 shows that monotonicity at a point is a generalization of pseudomonotonicity. The
converse of the proposition is not true. For example, f(x) = [x1x

2
2 + x1, x2x

2
1 + x2]> is strictly

monotone at 02, but not strictly pseudomonotone (counterexample at x = (1, 2) and y = (2, 1)).

44

With Prop. 1 and 2, we can obtain the following result which implies that monotonicity at

a point is weaker than the conditions for the gradient map of pseudoconvex and differentiable
convex functions.

Corollary 1. (Pseudomonotone functions and monotonicity at a point) If a function f : Rp →
Rp is pseudoconvex (resp., strictly pseudoconvex, strongly pseudoconvex) with a minimum at x∗,

then∇f is monotone (resp., strictly monotone, strongly monotone) at x∗.

4.3.2 Multi-valued case

In the previous section, we look at the relation between monotone and pseudomonotone functions
and monotonicity at a point. In this section, we generalize the results to the case of multivalued
maps. Multivalued maps generalize functions: Whereas a function f : Rp → Rq is a mapping
from the input argument to a single value, i.e., f(x) ∈ Rq, a multivalued map f : Rp → 2Rq is
a mapping from the input argument to a set which may contain multiple values f(x) ⊂ Rq. An
example of multivalued maps is the subdifferential of convex functions [90], e.g., the subdiffer-
ential of |x| at x = 0 is the set [−1, 1]. Here, we will show that monotone and pseudomonotone
multivalued maps are monotone at their zeros. This result allows us to relate monotonicity at a

point to nonsmooth convex functions.

To obtain the result, we first define monotone and pseudomonotone multivalued maps. Then,
using the property that subdifferential of convex functions are monotone, we can show that the
subdifferential of the convex functions are monotone at their minima.

Definitions: Monotone and pseudomonotone multivalued maps

Definition 8. (Monotone multivalued map [116]) A multivalued map f : Rp → 2Rp is

(1) monotone if for any distinct points x,x′ ∈ Rp and any u ∈ f(x),u′ ∈ f(x′),

(x− x′)>(u− u′) ≥ 0, (4.29)

(2) strictly monotone if for any distinct points x,x′ ∈ Rp and any u ∈ f(x),u′ ∈ f(x′),

(x− x′)>(u− u′) > 0, (4.30)

(3) strongly monotone if there exists m > 0 such that for any distinct points x,x′ ∈ Rp and

any u ∈ f(x),u′ ∈ f(x′),

(x− x′)>(u− u′) ≥ m‖x− x′‖2
2. (4.31)

45

Definition 9. (Pseudomonotone multivalued map [116]) A multivalued map f : Rp → 2Rp is

(1) pseudomonotone if for any distinct points x,x′ ∈ Rp and any u ∈ f(x),u′ ∈ f(x′),

(x− x′)>u′ ≥ 0 =⇒ (x− x′)>u ≥ 0, (4.32)

(2) strictly pseudomonotone if for any distinct points x,x′ ∈ Rp and any u ∈ f(x),u′ ∈
f(x′),

(x− x′)>u′ ≥ 0 =⇒ (x− x′)>u > 0, (4.33)

(3) strongly pseudomonotone if there existsm > 0 such that for any distinct points x,x′ ∈ Rp

and any u ∈ f(x),u′ ∈ f(x′),

(x− x′)>u′ ≥ 0 =⇒ (x− x′)>u ≥ m‖x− x′‖2
2. (4.34)

It is known that monotone (resp. strictly monotone, strongly monotone) multivalued maps
are pseudomonotone (resp. strictly pseudomonotone, strongly pseudomonotone) multivalued
maps [54]. The following results connects monotone multivalued maps to convex functions.

Proposition 3. (Convex functions and monotone multivalued maps [90]) A function f : Rp →
R is convex (resp., strictly convex, strongly convex) if and only if its subdifferential is monotone

(resp., strictly monotone, strongly monotone).

Results: Generalized monotone multivalued maps and monotonicity at a point

Before we proceed to our result, let us define induced function.

Definition 10. (Induced function) Let f : Rp → 2Rp be a multivalued map. A function f̂ : Rp →
Rp is an induced function of f if for all x, we have f̂(x) = u for some u ∈ f(x).

In words, at each x, the induced function f̂ returns a single value from the set f(x). We
can think of an induced function as a function that picks a single output from the set of outputs
from a multivalued map, thereby flattening the multivalued map into a function. With the above
definitions, we can derive the following result, which generalize Prop. 2 to the case of multivalued
maps.

Proposition 4. (Pseudomonotone multivalued map and monotonicity at a point) Suppose a

multivalued map f is pseudomonotone (resp., strictly, strongly) with 0p ∈ f(x∗). Let f̂ be an

induced function of f . Then f̂ is monotone (resp., strictly, strongly) at x∗.

Proof. See Appendix A.3.

46

With Prop. 3 and 4, we can obtain the following result which shows that the subgradient of a
convex function is monotonicity at a its minimum. This implies that monotonicity at a point is a
weaker condition than that of the subgradient.

Corollary 2. (Nonsmooth convex functions and monotonicity at a point) Suppose a function

f : Rp → Rp is convex (resp., strictly convex, strongly convex) with a minimum at x∗. Let

g : Rp → Rp be an induced function of ∂f(x). Then g is monotone (resp., strictly monotone,

strongly monotone) at x∗.

Extension to nonsmooth pseudoconvex functions

Extending Cor. 1 for the case of nonsmooth pseudoconvex is not simple as Def. 5 defines pseu-
doconvex functions to be differentiable functions. Unlike convex functions where we can replace
gradients with subdifferentials, pseudoconvex functions cannot use the same definition of sub-
differentials as those of convex functions, as the they may return empty sets when the function
is not convex. To handle this issues, different definitions of pseudoconvex functions and subdif-
ferentials have been proposed (see [54]), but their relation to pseudomonotone multivalued maps
are not as straightforward when compared with those in convex cases. Thus, we do not extend
out results to nonsmooth pseudoconvex functions in this work.

4.4 Convergence of training error with task-specific feature
function h

Building upon the results in the previous sections, we present the convergence result for training
DO when the task-specific feature function h from (3.29) is used4. First, we begin with the
following case for differentiable pseudoconvex cost functions.

Proposition 5. (Convergence of the training error with an unknown differentiable cost func-
tion) Given a training set {(x(i)

0 ,x
(i)
∗ , {g(i)

j }
Ji
j=1)}Ni=1, where x

(i)
0 ,x

(i)
∗ ∈ Rp and g

(i)
j : Rp → Rd

differentiable, if there exists a function ϕ : Rd → R such that for each i,
∑Ji

j=1 ϕ(g
(i)
j (x(i))) is

differentiable strictly pseudoconvex with the minimum at x(i)
∗ , then the training error of DO with

h from (3.29) strictly decreases in each iteration. Alternatively, if
∑Ji

j=1 ϕ(g
(i)
j (x(i))) is differen-

tiable strongly pseudoconvex with Lipschitz continuous gradient, then the training error of DO

converges to zero.

Proof. See Appendix A.4.

4Note that this is h in function form, not the discretized vector form. Showing the convergence with h is
discretized form is more complicated, and we do not study it in this thesis.

47

Next, we present a similar result for nonsmooth convex cost functions.

Proposition 6. (Convergence of the training error with an unknown nondifferentiable con-
vex cost function) Given a training set {(x(i)

0 ,x
(i)
∗ , {g(i)

j }
Ji
j=1)}Ni=1, where x

(i)
0 ,x

(i)
∗ ∈ Rp and

g
(i)
j : Rp → Rd differentiable, if there exists a function ϕ : Rd → R such that for each i,∑Ji
j=1 ϕ(g

(i)
j (x(i))) is strictly convex with the minimum at x(i)

∗ , then the training error of DO with

h from (3.29) strictly decreases in each iteration. Alternatively, if
∑Ji

j=1 ϕ(g
(i)
j (x(i))) is strongly

convex with the minimum at x(i)
∗ and there exist L > 0, H ≥ 0 such that (1/J)

∑Ji
j=1 ϕ̄(g

(i)
j (x(i)))

is (H,L)-RL(x
(i)
∗) for all i,x(i), where ϕ̄ is any induced function of ∂ϕ, then the training error

of DO converges to zero.

Proof. See Appendix A.5.

Roughly speaking, Prop. 5 and 6 say that if there exists a penalty function ϕ such that for each
i the global minimum of (3.8) is at x(i)

∗ with no other local minima, then using (3.29) allows us to
learn the maps for DO. Note that we do not need to know explicitly what such penalty function
is. Thus, we can say that using (3.29) is equivalent to learning a surrogate of the gradient of an
unknown cost function. Also, since monotonicity at a point is a weaker condition than that of
the subgradient of convex functions, we can say that DO’s training error can reduce or converge
under broader conditions than those of convexity.

4.5 Chapter summary

In this chapter, we introduced the concepts of monotonicity at a point and relaxed Lipschitz at a

point. We show that, under different varieties of these conditions, the training error of DO may
strictly decrease or converge to zero. These results illustrate the benefit of sequentially learning
regressors, which was previously treated as heuristics.

We also explore the relation between monotonicity at a point and monotonicity, pseudomono-
tonicity, convexity, and pseudoconvexity. With this relation, we show that using the feature
function h from Section 3.2 can lead to strict reduction or convergence of training error under
a broader set of conditions than those of convexity. This analysis provides theoretical support
for the interpretation that DO is learning to imitate gradient steps for minimizing an unknown
penalty function.

48

Chapter 5

Applications to Computer Vision

In this chapter, we demonstrate the potential of DO to three computer vision applications, namely
point cloud registration (Section 5.1), camera pose estimation (Section 5.2), and image denoising
(Section 5.3). For each task, we provide details on the feature function, how to parametrize the
parameters into the format acceptable by the DO update rule (3.4), and how to train the update
maps. We also compared the DO against state-of-the-art algorithms of each task, and show that
DO can often outperform them in terms of accuracy and computation time. All experiments were
performed in MATLAB on a single thread on an Intel i7-4790 3.60GHz computer with 16GB
memory.

5.1 Shape-specific point cloud registration

In our first application, we apply DO to the task of rigid point cloud registration (PCReg). PCReg
is one of the most studied tasks in computer vision due to its large number of applications, which
range from registering partial views into a complete recontruction [85], building 3D maps [89],
shape tracking and pose estimation [83], to object recognition [29]. Formally, the PCReg prob-
lem can be stated as follows (see Figure 5.1): Let M ∈ R3×NM be a matrix containing 3D coor-
dinates of one shape (‘model’) and S ∈ R3×NS of the second shape (‘scene’), find the rotation
and translation that registers S to M.

Various algorithms have been proposed to solve PCReg in different settings. Although
there exist many classes of PCReg algorithms, including branch-and-bound-based global meth-
ods [115] and feature-based methods [121], we only focus on local methods which rely on itera-
tive algorithms in this work.

Local algorithms for PCReg can be divided into point-based and density-based. Point-based:
Arguably, the most well-known algorithms in this class are Iterative Closest Point (ICP) [16] and

49

Model Scene

Figure 5.1: Point cloud registration problem. Given a model point cloud M and a scene point
cloud S, find the rotation matrix R and translation vector t that register the two point clouds.
Here, the surface renderings are shown for visualization purpose.

its variants [46, 93]. These approaches alternate between solving for the correspondence and the
geometric transformation until convergence. A typical drawback of ICP is the need for a good
initialization to avoid a bad local minimum. To alleviate this problem, Robust Point Matching
(RPM) [49] uses soft assignment instead of binary assignment. Recently, Iteratively Reweighted
Least Squares (IRLS) [14] proposes using various robust cost functions to provide robustness
to outliers and avoid bad local minima. Density-based: Density-based approaches model each
point as the center of a density function. Kernel Correlation [103] aligns the densities of the
two point clouds by maximizing their correlation. Coherent Point Drift (CPD) [80] assumes the
point cloud of one shape is generated by the density of the other shape, and solves for the pa-
rameters that maximize their likelihood. Gaussian Mixture Model Registration (GMMReg) [61]
minimizes the L2 error between the densities of the two point clouds. More recently, [22] uses
Support Vector Regression to learn a new density representation of each point cloud before min-
imizing L2 error, while [50] models point clouds as particles with gravity as attractive force, and
solves differential equations to obtain the registration.

In summary, previous approaches tackle the registration problem by first defining different
cost functions, and then solving for the optima using iterative algorithms (e.g., expectation max-
imization, gradient descent). Our approach takes a different perspective by not defining new
cost functions, but directly learning a sequence of updates of the rigid transformation parameters
such that the stationary points match the ground truths from a training set. In the next section,
we describe how to apply DO to PCReg.

50

5.1.1 DO parametrization and training

In this section, we first describe the parametrization of rotation and translation parameters as x.
Then, we describe the feature h used for the PCReg task. Note that the feature used here is not
derived from the framework in Section 3.2. Then we provide the details on how to precompute
the features, which leads to a significant speed up in terms of computation time, and how we
generated training data to train the update maps Dt.

Parametrization of the transformations

Rigid transformations are usually represented in matrix form with nonlinear constraints. Since
DO does not admit constraints, it is inconvenient to parametrize the transformation parameter x
as matrices. However, it is known that the matrix representation of rigid transformation forms
a Lie group, which associates with a Lie algebra [55, 74]. In essence, the Lie algebra is a
linear vector space with the same dimensions as the degrees of freedom of the transformation;
for instance, R6 is the Lie algebra of the 3D rigid transformation. Each element in the Lie
algebra is associated with an element in the Lie group via exponential and logarithm maps, where
closed form computations exists. Being a linear vector space, Lie algebra provides a convenient
parametrization for x since it requires no constraints to be enforced. Note that multiple elements
in the Lie algebra can represent the same transformation in Lie group, i.e., the relation is not
one-to-one. However, the relation is one-to-one locally around the origin of the Lie algebra,
which is sufficient for our task. Previous works that use Lie algebra include motion estimation
and tracking in images [10, 104].

Features for registration

Recall that the function h encodes information about the problem to be solved, e.g., it extracts
features from the input data. For PCReg, we observe that most shapes of interest are composed
of points that form a surface, and good registration occurs when the surfaces of the two shapes
are aligned. To achieve such alignment, we design h to be a histogram that indicates the weights
of scene points on the ‘front’ and the ‘back’ sides of each model point (see Figure 5.2). This
allows DO to learn the parameters that update the point cloud in the direction that aligns the
surfaces. Let na ∈ R3 be a normal vector of the model point ma computed from its neighboring
points; T (y;x) be a function that applies rigid transformation with parameter x to vector y;
S+
a = {sb : n>a (T (sb;x) −ma) > 0} be the set of scene points on the ‘front’ of ma; and S−a

51

n1

m1

h
1
2

NM-1
NM
NM+1
NM+2

2NM-1
2NM

...
...

T'Front': n1(T(sb;x)-m1)>0

Σexp(...)

Σexp(...)

n1

'Back': n1(T(sb;x)-m1)<0T

(a) (b) (c)

Figure 5.2: Feature h for point cloud registration. (a) Model points (square) and scene points
(circle). (b-c) Weights of sb that are on the ‘front’ or ‘back’ of model point m1 are assigned to
different indices in h.

contains the remaining scene points. We define h : R6 × R3×NS → R2NM as:

[h(x;S)]a =
1

z

∑
sb∈S+

a

exp

(
− 1

σ2
‖T (sb;x)−ma‖2

)
, (5.1)

[h(x;S)]a+NM =
1

z

∑
sb∈S−a

exp

(
− 1

σ2
‖T (sb;x)−ma‖2

)
, (5.2)

where z normalizes h to sum to 1, and σ controls the width of the exp function. The exp term
calculates the weight depending on the distance between the model and the scene points. The
weight due to sb is assigned to index a or a + NM depending on the side of ma that sb is on.
Note that h is specific to a model M, and it returns a fixed length vector of size 2NM . This is
necessary since h is to be multiplied to Dt, t = 1, . . . , T , which are fixed size matrices with the
dimension of 6× 2NM . Thus, the SUM learned is also specific to the shape M. However, h can
take the scene shape S with an arbitrary number of points to use with the SUM. Although we do
not prove that this h complies with the condition in Thm. 1, we show empirically in Section 5.1.2
that it can be effectively used for our task.

Fast feature computation

Empirically, we found that computing h directly is slow due to pairwise distance computations
and the evaluation of exponentials. To perform fast computation, we quantize the space around
the model shape into uniform grids, and store the value of h evaluated at the center of each
grid. When computing features for a scene point T (sb;x), we simply return the precomputed
feature of the grid center that is closest to T (sb;x). Note that since the grid is uniform, finding
the closest grid center can be done in O(1). To get a sense of scale in this section, we assume

52

the model is mean-subtracted and normalized so that the largest dimension is in [−1, 1]. We
compute the uniform grid in the range [−2, 2] with 81 points in each dimension. We set any
elements of the precomputed features that are smaller than 10−6 to 0. This causes most of the
precomputed feature values to be zero, allowing us to store them in a sparse matrix. We found
that this approach significantly reduces the feature computation time by 6 to 20 times while
maintaining the same accuracy. In our experiments, the precomputed features require less than
50MB for each shape.

Training

Given a model shape M, we first normalized the data to lie in [−1, 1], and generated the scene
models as training data by uniformly sampling with replacement 400 to 700 points from M.
Then, we applied the following perturbations: (i) Rotation and translation: We randomly rotated
the model within 85 degrees, and added a random translation in [−0.3, 0.3]3. These transforma-
tions were used as the ground truth x∗, with x0 = 06 as the initialization. (ii) Noise and outliers:

Gaussian noise with standard deviation 0.05 was added to the sample. Then we added two types
of outliers: sparse outliers (random 0 to 300 points within [−1, 1]3); and structured outliers (a
Gaussian ball of 0 to 200 points with the standard deviation of 0.1 to 0.25). Structured outliers is
used to mimic other dense object in the scene. (iii) Incomplete shape: We used this perturbation
to simulate self occlusion and occlusion by other objects. This was done by uniformly sampling
a 3D unit vector u, then projecting all sample points to u, and removing the points with the top
40% to 80% of the projected values. For all experiments, we generated 30000 training samples,
trained a total of T = 30 maps for SUM with λ = 3 × 10−4 in (3.6) and σ2 = 0.03 in (5.1)
and (5.2), and set the maximum number of iterations to 1000.

5.1.2 Experiments and results

Baselines and evaluation metrics

We compared DO with two point-based approaches (ICP [16] and IRLS [14]) and two density-
based approaches (CPD [80] and GMMReg [61]). The codes for all methods were downloaded
from the authors’ websites, except for ICP where we used MATLAB’s implementation. For
IRLS, the Huber cost function was used.

We used two performance metrics, which are the registration success rate and the compu-
tation time. We considered a registration to be successful when the mean `2 error between the
registered model points and the corresponding model points at the ground truth orientation was
less than 0.05 of the model’s largest dimension.

53

(a) Number of Points (b) Noise SD (c) Initial Angle (d) Number of Outliers (e) Incomplete Scene
Removed part

#pt = 200 , 1000 Noise sd = 0.02 , 0.1 Angle = 30° , 90° #outlier = 100 , 300 Ratio Incomplete = 0.2 , 0.7
ICP IRLS CPD GMMReg DO

Initial Angle (Degrees)
0 50 100 150

C
om

pu
ta

tio
n

Ti
m

e
(s

)

10 -2

10 -1

10 0

10 1

Initial Angle (Degrees)
0 50 100 150

Su
cc

es
s

R
at

e

0

0.25

0.5

0.75

1

Noise SD
0 0.04 0.08

C
om

pu
ta

tio
n

Ti
m

e
(s

)

10 -2

10 -1

10 0

10 1

Noise SD
0 0.04 0.08

Su
cc

es
s

R
at

e

0

0.25

0.5

0.75

1

Number of Points
100 1000 2000 3000 4000

C
om

pu
ta

tio
n

Ti
m

e
(s

)

10 -2

10 -1

10 0

10 1

Number of Points
100 1000 2000 3000 4000

Su
cc

es
s

R
at

e

0

0.25

0.5

0.75

1

Number of Outliers
0 200 400 600

C
om

pu
ta

tio
n

Ti
m

e
(s

)

10 -2

10 -1

10 0

10 1

Number of Outliers
0 200 400 600

Su
cc

es
s

R
at

e

0

0.25

0.5

0.75

1

Ratio of Incompleteness
0 0.2 0.4 0.6

C
om

pu
ta

tio
n

Ti
m

e
(s

)

10 -2

10 -1

10 0

10 1

Ratio of Incompleteness
0 0.2 0.4 0.6

Su
cc

es
s

R
at

e

0

0.25

0.5

0.75

1
*DO's training time: 236 sec.

Figure 5.3: Results of 3D registration with synthetic data under different perturbations. (Top)
Examples of scene points with different perturbations. (Middle) Success rate. (Bottom) Compu-
tation time.

Synthetic data

We performed synthetic experiments using the Stanford Bunny model [97] (see Figure 5.3). We
used MATLAB’s pcdownsample to select 472 points from 36k points as the model M. We
evaluated the performance of the algorithms by varying five types of perturbations: (i) the number
of scene points ranges from 100 to 4000 [default = 200 to 600]; (ii) the standard deviation of the
noise ranges between 0 to 0.1 [default = 0]; (iii) the initial angle from 0 to 180 degrees [default
= 0 to 60]; (iv) the number of outliers from 0 to 600 [default = 0]; and (v) the ratio of incomplete
scene shape from 0 to 0.7 [default = 0]. While we perturbed one variable, the values of the other
variables were set to the default values. Note that the scene points were sampled from the original
36k points, not from M. All generated scenes included random translation within [−0.3, 0.3]3.
A total of 50 rounds were run for each variable setting. Training time for DO was 236 seconds
(incl. training data generation and precomputing features).

Examples of test data and the results are shown in Figure 5.3. ICP required low computation
time for all cases, but it had low success rates because it tends to get trapped in the local minimum
closest to its initialization. CPD generally performed well except when number of outliers was
high, and it required a high computation time. IRLS was faster than CPD, but it did not perform
well with incomplete targets. GMMReg had the widest basin of convergence but did not perform

54

(a) Model (b) Scene (c) Results

ICP IRLS CPD GMMReg DO

ICPIRLS CPD GMMRegInitialization Step 10 Step 90Step 30 Step 220 (Final) Groundtruth

(d) Registration steps of DO (e) Baseline results

*DO's avg. training time: 260 sec.

Initial Angle (Degrees)
0 15 30 45 60 75

C
om

pu
ta

tio
n

Ti
m

e
(s

)

10 -2

10 -1

10 0

10 1

Initial Angle (Degrees)
0 15 30 45 60 75

Su
cc

es
s

R
at

e

0

0.25

0.5

0.75

1

Figure 5.4: Results of 3D registration with range scan data. (a) example 3D model (‘chef’). (b)
Example of a 3D scene. We include surface rendering for visualization purpose. (c) Results of
the experiment. (d) shows an example of registration steps of DO. The model was initialized 60
degrees from the ground truth orientation with parts of the model intersecting other objects. In
addition, the target object is under 70% occlusion, making this a very challenging case. However,
as iteration progresses, DO is able to successfully register the model.

well with incomplete targets, and it required long computation time for the annealing steps. For
DO, its computation time was much lower than those of the baselines. Notice that DO required
higher computation time for larger initial angles since more iterations were required to reach a
stationary point. In terms of the success rate, we can see that DO outperformed the baselines in
almost all test scenarios. This result was achievable because DO does not rely on any specific
cost functions, which generally are modelled to handle a few types of perturbations. On the other
hand, DO learns to cope with the perturbations from training data, allowing it to be significantly
more robust than other approaches.

Range-scan data

In this section, we performed 3D registration experiment on the UWA dataset [77]. This dataset
contains 50 cluttered scenes with 5 objects taken with the Minolta Vivid 910 scanner in various
configurations. All objects are heavily occluded (60% to 90%). We used this dataset to test
our algorithm under unseen test samples and structured outliers, as opposed to sparse outliers in
the previous section. The dataset includes 188 ground truth poses for 4 objects. We performed
the test using all the 4 objects on all 50 scenes. From the original model, ∼300 points were
sampled by pcdownsample to use as M (Figure 5.4a). We also downsampled each scene to

55

(a) Models (b) Results

3D
 D

at
a

R
ep

ro
j.

 o
n

 R
G

B
 im

g.

D
O

IC
P

IC
P

D
O

Figure 5.5: Result for object tracking in 3D point cloud. (a) shows the 3D models of the kettle
and the hat. (b) shows tracking results of DO and ICP in (top) 3D point clouds with the scene
points in blue, and (bottom) as reprojection on RGB image. Each column shows the same frame.

∼1000 points (Figure 5.4b). We initialized the model from 0 to 75 degrees from the ground
truth orientation with random translation within [−0.4, 0.4]3. We ran 50 initializations for each
parameter setting, resulting in a total of 50 × 188 rounds for each data point. Here, we set the
inlier ratio of ICP to 50% as an estimate for self-occlusion. Average training time for DO was
260 seconds for each object model.

The results and examples for the registration with DO are shown in Figure 5.4c and Fig-
ure 5.4d, resp. IRLS, CPR, and GMMReg has very low success in almost every scene. This was
because structured outliers caused many regions to have high density, creating false optima for
CPD and GMMReg which are density-based approaches, and also for IRLS which is less sensi-
tive to local minima than ICP. When initialized close to the solution, ICP could register fast and
provided some correct results because it typically terminated at the nearest–and correct–local
minimum. On the other hand, DO provided a significant improvement over ICP, while main-
taining low computation time. We emphasize that DO was trained with synthetic examples of a
single object and it had never seen other objects from the scenes. This experiment shows that we
can train DO with synthetic data, and apply it to register objects in real challenging scenes.

Application to 3D object tracking

In this section, we explore the use of DO for 3D object tracking in 3D point clouds. We used
Microsoft Kinect to capture RGBD videos at 20fps, then reconstruct 3D scenes from the depth
images. We used two reconstructed shapes, a kettle and a hat, as the target objects. These two
shapes present several challenges besides self occlusion: the kettle has a smooth surface with
few features, while the hat is flat, making it hard to capture from some views. We recorded the
objects moving through different orientations, occlusions, etc. The depth images were subsam-

56

pled to reduce computation load. To perform tracking, we manually initialized the first frame,
while subsequent frames were initialized using the pose in the previous frames. Here, we only
compared DO against ICP because IRLS gave similar results to those of ICP but could not track
rotation well, while CPD and GMMReg failed to handle structured outliers in the scene (similar
to Section 5.1.2). Figure 5.5b shows examples of the results. It can be seen that DO can robustly
track and estimate the pose of the objects accurately even under heavy occlusion and structured
outliers, while ICP tended to get stuck with other objects. The average computation time for DO
was 40ms per frame. This shows that DO can be used as a robust real-time object tracker in 3D
point cloud.

Failure case: We found DO failed to track the target object when the object was occluded
at an extremely high rate, and when the object moved too fast. When this happened, DO would
either track another nearby object or simply stay at the same position as in the previous frame.

5.2 Camera Pose Estimation

The goal of camera pose estimation is to estimate the relative pose between a given 3D and 2D
correspondence set. Given {(pj, sj)}Jj=1 ⊂ R2×R3 where pj is a 2D image coordinate and sj is
the corresponding 3D coordinate of feature j, we are interested in estimating the rotation matrix
R ∈ SO(3) and translation vector t ∈ R3, such that

p̃j ≡ K
[
R t

]
s̃j, j = 1, . . . , J,

where tilde denotes homogeneous coordinate, K ∈ R3×3 is a known intrinsic camera matrix, and
≡ denotes equivalence up to scale. General approaches for camera pose estimation involve solv-
ing nonlinear problems [66, 68, 69, 120]. Most of existing approaches assume that there are no
outlier matches in the correspondence set. When outliers are present, they rely on RANSAC [45]
to select the inliers. One approach that does not rely on RANSAC is REPPnP [44], which finds
the camera pose by solving for the robust nullspace of a matrix that represents algebraic projec-
tion error. In this section, we will use DO to find a set of inliers, then postprocess the inliers to
obtain the camera pose. We show that our algorithm is more robust than REPPnP while being
faster than RANSAC-based approaches when the amount of outliers is large.

57

5.2.1 DO parametrization and training

Residual function and DO parametrization

Assuming the camera is calibrated (i.e., the intrinsic camera matrix has been removed), we define
the residual function as the following geometric error [57]:

gj(X) = pj −

[
x>1 s̃j/x

>
3 s̃j

x>2 s̃j/x
>
3 s̃j

]
= 02, j = 1, . . . , J, (5.3)

where X = [x1,x2,x3]> ∈ R3×4 is the parameter to be solved. Note that we do not impose any
constraints on X and simply use all its 12 elements as DO’s parameters. This is because we will
use X only to find the inliers, then perform postprocessing to obtain the rotation and translation.

The optimization for solving X is formulated by summing the error over all correspondences:

minimize
X

1

J

J∑
j=1

ϕ(gj(X)), (5.4)

where ϕ is a penalty function. Following the derivation in Section 3.2, we can derive the follow-
ing h function:

h(X) =
1

J

J∑
j=1

12⊕
l=1

2⊕
k=1

[
∂gj(X)

∂vec(X)

]
lk

2⊗
α=1

eγq,r([gj(X)]α). (5.5)

After computing 5.5, we normalize it to a unit vector and use it our feature. Note that, although
the Jacobian matrix of gj is a 12× 2 matrix, it has only 12 degrees of freedom. Thus, we need to
consider only its 12 values instead of all 24.

Training

We generated DO’s training data as follows. Each image was assumed to be 640 by 480 pixels.
Generating 3D shapes: A 3D shape, composing of 100 to 500 points, was generated as random
points in one of the following shapes: (i) in a box; (ii) on a spherical surface; and (iii) on multiple
planes. For (iii), we randomly generated normal and shift vectors for 2 to 4 planes, then added
points to them. All shapes were randomly rotated, then normalized to fit in [−1, 1]3. Generating

camera matrix: We randomized the focal length in [600, 1000] with the principal point at the
center of the image. We sampled the rotation matrix from SO(3), while the translation was
generated such that the projected 3D points lie in the image boundary. Generating image points:

58

We first projected the 3D shape using the generated camera parameters, then randomly selected
0% to 80% of the image points as outliers by changing their coordinates to random locations.
All random numbers were uniformly sampled. No noise was added to the training samples. To
reduce the effect of varying sizes of images and 3D points, we normalized the image points
to lie in [−0.5, 0.5]2.1 Since the camera matrix is homogeneous, we normalize it to have a unit
Frobenius norm. We use [−1, 1] as the range for each dimension of gj (i.e., q = 1), and discretize
it to r = 10 boxes. We generated 50000 training samples, and trained 30 maps with λ = 10−4.
The training time was 252 seconds.

We compared 3 DO-based approaches: DO, DO+P3P+RANSAC, and DO+RPnP. For DO,
we projected the first three columns of the output X to SO(3) to obtain the rotation matrix.
For DO+P3P+RANSAC and DO+RPnP, we used X to project all 3D points back to the image
then selected the matches with small reprojection errors as inliers. We then used these inliers to
compute the camera parameters using P3P+RANSAC [66] and RPnP [69] (without RANSAC).

5.2.2 Experiments and results

Baselines and evaluation metrics

We compared our approach against 5 baselines. EPnP [68] and REPPnP [44] are determin-
istic approaches. The other three baselines, P3P+RANSAC [66], RPnP+RANSAC [69], and
EPnP+RANSAC [68] rely on RANSAC to select inliers and use the respective PnP algorithms
to find the camera parameters. The minimum number of matches for each algorithm is 3, 4, and
6, resp. We use the code from [44] as the implementation of the PnP algorithms. The RANSAC
routine automatically determines the number of iterations to guarantee 99% chance of obtaining
the inlier set. The performance are measured in terms of (i) mean computation time, (ii) mean
rotation angle error, and (iii) mean inlier reprojection error.

Synthetic data

We first performed experiments using synthetic data. We generated the test data using the same
approach as the training samples. We varied 3 parameters: (i) the ratio of outliers from 0% to
90% [default = 30%]; (ii) the noise standard deviation from 0 to 10 pixels [default = 2]; and (iii)

the number of points from 200 to 2000 [default = 400]. When one parameter was varied, the
other two parameters were set to the default values. We performed a total of 500 trials for each
setting.

1Camera matrix needs to be transformed accordingly, similar to [58].

59

EPnP REPPnP EPnP+RANSAC P3P+RANSAC RPnP+RANSAC DO DO+P3P+RANSAC DO+RPnP

(a) Outlier
Outlier = 0~90%
Noise SD = 2 px
#Points = 400

(b) Noise SD
Outlier = 30%
Noise SD = 0~10 px
#Points = 400

0 2 4 6 8 10

Noise SD

10-1

100

101

102

R
ot

at
io

n
E

rr
or

 (
de

gr
ee

s)

0 2 4 6 8 10

Noise SD

10-3

10-2

10-1

100

101

C
om

pu
ta

tio
n

T
im

e
(s

)
0 2 4 6 8 10

Noise SD

10-2

10-1

100

101

102

103

104

In
lie

r
R

ep
ro

j.
E

rr
or

 (
pi

xe
ls

)

200 600 1000 1400 1800

Number of Points

10-3

10-2

10-1

C
om

pu
ta

tio
n

T
im

e
(s

)

0 0.2 0.4 0.6 0.8

Outlier Ratio

10-1

100

101

102

R
ot

at
io

n
E

rr
or

 (
de

gr
ee

s)

0 0.2 0.4 0.6 0.8

Outlier Ratio

10-3

10-2

10-1

100

101

C
om

pu
ta

tio
n

T
im

e
(s

)

0 0.2 0.4 0.6 0.8

Outlier Ratio

100

101

102

103

104

In
lie

r
R

ep
ro

j.
E

rr
or

 (
pi

xe
ls

)

(c) Number of Points

Outlier = 30%, Noise SD = 2 px
#Points = 200 ~ 2000

Figure 5.6: Results for PnP with synthetic data. Varying parameters are (a) outlier ratio, (b) noise
SD, and (c) number of points.

Figure 5.6 shows the results of the experiments. In Figure 5.6a, we can see that RANSAC-
based approaches could obtain accurate results, but their computation time grows exponentially
with the outlier ratio. On the other hand, EPnP and REPPnP which are deterministic performed
very fast, but they are not robust against outliers even at 10%. For our approaches, it can be seen
that DO alone did not obtain good rotations since it did not enforce any geometric constraints.
However, DO could accurately align the 3D inlier points to their image points as can be seen by
its low inlier reprojection errors. This is a good indication that DO can be used for identifying
inliers. By using this strategy, DO+P3P+RANSAC could obtain accurate rotation up to 80% of
outliers while maintaining low computation time. In contrast, DO+RPnP could obtain very accu-
rate rotation when there were small outliers, but the error increases as it was easier to mistakenly
include outliers in the post-DO step. For the noise case (Figure 5.6b), DO+RPnP has constant
time for all noise levels and could comparatively obtain good rotations under all noise levels,
while DO+P3P+RANSAC required exponentially increasing time as points with very high noise
may be considered as outliers. Finally, in Figure 5.6c, we can see that computation times of all
approaches grow with the number of points, but those of DO approaches grow with faster rate,
which is a downside of our approach.

Real data

Next, we performed experiments on real images. For DO, we used the same SUM from the pre-
vious section. We only compared against P3P+RANSAC, which was the baseline that achieved
the best performance in the previous section.

60

(a) BRISK matches (b) DO [17.24 ms]

(c) DO+P3P+RANSAC [21.64 ms] (d) DO+RPnP [18.99 ms] (e) P3P+RANSAC [159.72 ms]

Figure 5.7: Results for camera pose estimation on real image. (a) Feature matches. Left and right
images contain 2D points and projection of 3D points, resp. (b-d) Projected shape with average
time over 100 trials.

(a) BRISK matches (b) DO [8.020 ms]

(c) DO+P3P+RANSAC [11.04 ms] (d) DO+RPnP [8.781 ms] (e) P3P+RANSAC [131.5 ms]

Figure 5.8: Results for camera pose estimation on real image. (a) Feature matches. Left and right
images contain 2D points and projection of 3D points, resp. (b-d) Projected shape with average
time over 100 trials.

61

Images from [120]: First, we show the results on the images provided with the code in [120].
Figure 5.7a shows the input matches. Notice that the matches are not one-to-one. Although DO is
a deterministic algorithm, different configurations of the same 3D shape can affect the result. For
example, we might consider either a 3D shape or its 90◦ rotated shape as the initial configuration
with the identity transformation. To measure this effect, we performed 100 trials for DO-based
algorithms, where we randomly rotate the 3D shape as the initial configuration. Similarly, we
performed 100 trials for P3P+RANSAC. 5.7b-e show the results. It can be seen that DO can
gives a rough estimate of the camera pose, then DO+P3P+RANSAC and DO+RPnP can post-
process to obtain accurate pose. P3P+RANSAC also obtained the correct pose, but it required 8
times the computation time of DO-based approaches. Figure 5.8 show similar results for a planar
object. In Figure 5.8b, we can see that DO alone could not provide a precise estimation. This
caused DO+RPnP in Figure 5.8d to be inaccurate. However, DO+P3P+RANSAC in Figure 5.8c
could still recover the pose. Note that P3P+RANSAC in Figure 5.8e could also obtain good pose
estimates, but, again, it required higher computational time than DO-based methods due to high
outlier ratio.

Dataset of University of Oxford’s Visual Geometry Group: Next, we used the dataset
from University of Oxford’s Visual Geometry Group2 [109, 110] for real image experiments.
The dataset contains several images with 2D points and their reconstructed 3D points, camera
matrix of each image, and also reconstructed lines. We used ‘Corridor’ (11 images), ‘Merton
College I’ (3 images), ‘Merton College II’ (3 images), ‘Merton College III’ (3 images), ‘Uni-
versity Library’ (3 images), and ‘Wadham College’ (5 images). To perform this experiment,
we selected one image from each group as a reference image (for extracting feature for the 3D
points), and selected another image as the target for estimating camera pose. This results in a
total of 182 pairs of images. Similar to the previous real image experiment, we performed 100
trials for each pair, where in each trial we transformed the 3D points with a random rotation for
DO-based methods.

Figure 5.9 shows the cumulative plots of rotation error and computation time. P3P+RANSAC
obtained the best rotation accuracy since RANSAC can reliably selected the set of inliers, but
it could require a long computation time to achieve this result (note that P3P+RANSAC is the
fastest of all RANSAC-based approaches). On the other hand, DO-based approaches roughly
require the same amount of time for all cases. Similar to previous experiment, DO and DO+RPnP
did not obtain good rotation results, while DO+P3P+RANSAC could still obtain good rotation
results. To sum up this experiment, we see P3P+RANSAC obtained best rotation but it could take
a long and varying computation to do so, while DO+P3P+RANSAC required roughly the same

2http://www.robots.ox.ac.uk/∼vgg/data/data-mview.html

62

10-2 10-1 100 101 102

Rotation Error (degrees)

0

0.2

0.4

0.6

0.8

1

R
at

io
 o

f T
es

t D
at

a

10-3 10-2 10-1 100

Computation Time (s)

0

0.2

0.4

0.6

0.8

1

R
at

io
 o

f T
es

t D
at

a

P3P+RANSAC DO DO+P3P+RANSAC DO+RPnP

(a) (b)

Figure 5.9: Cumulative plots on the Oxford dataset in terms of (a) rotation error and (b) compu-
tation time.

Figure 5.10: Results for camera pose estimation on real image. (a) Feature matches. Left and
right images contain 2D points and projection of 3D points, resp. (b) Ground truth. (c-e) Pro-
jected shape with average time over 20 trials.

amount of time but could be less reliable than P3P+RANSAC. This poses a trade-off between
the two approaches.

We provide a visualization of the estimated parameters as the projection of the reconstructed
lines on the images in Figures 5.10. Subfigures b show the projection using the groundtruth pa-
rameters, while subfigures c to f show the projection of 20 trials using each algorithm’s estimated
camera parameters. In Figure 5.10, we can see that DO can provide a good initialization, which
are then further refined by DO+P3P+RANSAC and DO+RPnP. Note that some refinement could
worsen the result, as can be seen in Figure 5.10e of DO+RPnP. On the other hand, DO do not al-
ways provide good initialization for Figure 5.11. Here, DO+P3P+RANSAC can recover from the

63

Figure 5.11: Results for camera pose estimation on real image. (a) Feature matches. Left and
right images contain 2D points and projection of 3D points, resp. (b) Ground truth. (c-e) Pro-
jected shape with average time over 20 trials.

failure of DO, while most of the time DO+RPnP could not. We believe the reason that DO could
not provide a good initialization in this case is because the distribution of the outlier matches is
different from DO’s training data. This is the main limitation of DO which is a learning-based
method. On the other hand, PnP solvers of RANSAC-based approaches can reliably obtain the
correct pose since they could repeatedly solve the exact geometric problem. Future works for
this application may incorporate real data with synthetic data in the training set so DO can learn
to cope with real outlier distribution.

5.3 Image Denoising

The final application in this chapter is the task of image denoising, which can be considered as
one of the most fundamental tasks in computer vision and image processing. Traditionally, image
denoising is tackled using filtering operations [51], such as Gaussian filter, median filter, Wiener
filter, etc. More recently, optimization based method, such as total variation (TV) denoising [26],
and learning-based methods, such as deep neural networks [111], have received increasing atten-
tion from researchers due to their robustness to different types of noise and outliers.

In this section, we apply DO to the image denoising tsak. This task can illustrate the potential
of DO in multiple ways. First, we show that a SUM trained in a simple fashion can compare

64

favorably against state-of-the-art total variation (TV) denoising algorithms for impulse noises.
Second, we show that a SUM can be used to estimate a large and variable number of parameters
(number of pixels in this case). This differs from previous experiments that used DO to estimate
a small, fixed number of parameters. Third, we show that it is simple for DO to incorporate
additional information, such as pixel-wise mask, during both training and testing. Finally, we
demonstrate the effect of residual distribution on the training data on the performance of DO.

5.3.1 DO parametrization and training

Residual model and DO parametrization

We based our design of h on the TV denoising model [26]:

minimize
{xi}

∑
i∈Ω

miϕ1(xi − ui) +
∑
j∈N (i)

ϕ2(xi − xj)

 , (5.6)

where we impose the unknown penalty functions ϕ1 and ϕ2 on the data fidelity term and the
regularization term, resp.; Ω is the image support; ui ∈ [0, 1] is the intensity at pixel i of the
noisy input image; mi ∈ {0, 1} is a given mask; and N (i) is the set of neighboring pixels of i.
The goal is to estimate the clean image {xi}.

In order to allow DO to work with images of different sizes, we will treat each pixel i of an
image as if they are different problem instances.3 In other words, the update ∆x = Dh(xi) will
be used to update only the estimate xi of pixel i alone, and to update the whole image, we will
need to compute ∆x = Dh(xi) of each pixel and update them independently. This procedure
allows us to apply DO to denoise the image of arbitrary sizes.

To derive the h function for image denoising task, note that (5.6) have two residual terms,
which are the data fidelity xi−ui and the regularization (neighbor) term xi−xj . To combine the
terms, we follow Section 3.2 to obtain the feature function for each term, then simply concatenate
them to form hi for pixel i, resulting in

hi(xi;ui, {xj}j∈N (i)) =

mie
>
γq,r(xi−ui),

∑
j∈N (i)

e>γq,r(xi−xj)

> . (5.7)

The first part of hi accounts for the data fidelity term, while the second part accounts for the
regularization term.

3The idea is similar to parameter sharing in deep neural network.

65

Training

In order to train DO, we randomly sample 1000 patches of size 40 × 40 to 80 × 80 pixels from
the training images, then randomly replace 0% to 80% of the pixels with impulse noise to create
noisy images. We trained 3 SUMs: (i) DO-SP, where we used salt-pepper (SP) impulse noise
in {0, 1}; (ii) DO-RV, where we used random-value (RV) impulse noise in [0, 1]; and (iii) DO-

SPRV, where 50% of the patches has RV noise, while the rest have SP noise. This is to study
the effect of training data on the learned SUMs. Following [117], for images with SP noise we
assume the pixels with value 0 and 1 to be corrupted by SP noise, so we set the mask mi = 0

for pixels with intensity 0 and 1, and set mi = 1 for others. For images with RV noise, we set
mi = 1 for all pixels as we cannot determine whether a pixel is corrupted by impulse noise or
not. The intensity of each pixel in the noisy images is treated as initial estimate x0, and x∗ is its
noise-free counterpart. We use [−2, 2] (i.e., q = 2) as the ranges for both xi − ui and xi − xj ,
and discretize them to r = 100 boxes. We train a total of 30 maps for DO with λ = 10−2. The
training time took on average 367 seconds. During test, we use maximum number of iterations
of 200 as the stopping criteria.

5.3.2 Experiments and results

Baseline and evaluation metrics

We compared our approach with two total variation (TV) denoising algorithms which are suitable
for impulse noise. The first baseline is the convex `1TV [25], which uses `1 for the data fidelity
term and isotropic TV as the regularization term. The optimization is solved by the ADMM
algorithm. The second baseline is `0TV [117], which uses the nonconvex `0 for the data term
and isotropic TV for the regularization term. The optimization is solved by the Proximal ADMM
algorithm. The codes of both algorithms are provided in the toolbox of [117]. We used the same
maskmi as in the DO algorithms. We compare the results in terms of Peak Signal-to-Noise Ratio
(PSNR).

Results

We downloaded 96 grayscale images of size 512 × 512 pixels from the Image Database4 of
University of Granada’s Computer Vision Group. The first 30 images were used for training DO
and selecting the best hyperparameters for the baselines and noise types, while the remaining

4http://decsai.ugr.es/cvg/dbimagenes/g512.php

66

Random-Value Noise Ratio
0.2 0.4 0.6 0.8

P
S

N
R

 (
dB

)

5

15

25

35

Salt-Pepper Noise Ratio
0.2 0.4 0.6 0.8

P
S

N
R

 (
dB

)

5

15

25

35

l0TV l1TV DO-RV DO-SP DO-SPRV

(a) (b)

Figure 5.12: Results for image denoising for (a) salt-pepper impulse noise, and (b) random-value
impulse noise.

66 images were used for evaluation. For each image, we add impulse noise of 10% to 90% to
measure the algorithm robustness.

Figure 5.12 show the result PNSR over different noise ratios. It can be seen that DO trained
with the correct noise type can match or outperform state-of-the-art algorithms, while using a
wrong DO give a very bad result. Interestingly, DO-SPRV which was trained with both noise
performed well for both cases. Figure 5.13 shows examples of denoising results of each al-
gorithm. For SP noise, `0TV , DO-SP, and DO-SPRV can recover small details, while `1TV

oversmoothed the image and DO-RV returned an image with smudges. For RV noise, DO-RV
returned the best result. DO-SPRV also returned an acceptable image but still contain intensity
clumps, while DO-SP cannot recover the image at all. On the other hand, both baselines over-
smoothed the image (notice the persons’ heads) and still have intensity clumps over the images.
This experiment shows that DO can robustly handle different types of impulse noises, and that
the training data have a strong effect on types and amount of noise that it can handle. The best
approach for solving the problem is to select the correctly trained model. Still, training DO with
both noise can return a good result, illustrating the potential of DO in solving a hard problem.

67

(b) 60% RV Noise

(a) 60% SP Noise

11.63 22.77
Noisy imageOriginal image l0TV

25.17 12.03 24.41
DO-RV DO-SP DO-SPRV

20.34
l1TV

Noisy imageOriginal image l0TV
PSNR = 7.28 28.42

DO-RV DO-SP DO-SPRV
20.43 28.94 26.90

21.61
l1TV

Figure 5.13: Examples of image denoising results for (a) 60% salt-pepper impulse noise and (b)
60% random-value impulse noise. The PSNR for each image is shown on the top-right.

68

Chapter 6

Generalizing DO

In this chapter, we consider four generalizations of the DO framework in Chapter 3. These
generalizations are motivated by the following observations.

Observation 1: The summation update can be generalized to composition operations.
In Chapter 3, DO updates the parameter vectors by summing the estimated parameter with an
update vector. However, for many problems, other composition operations may provide a more
natural way to combine two sets of parameters. For example, two rotation matrices should be
composed by multiplication, not summation, to form a new rotation matrix. Generalizing DO to
composition operations would allow DO to tackle problems, such as registration problems, that
mainly deal with such parameter set.

Observation 2: Feature function h from Section 3.2 cannot handle high-dimensional
residuals. In Section 3.2, we describe a framework of deriving task-specific feature function h,
and we have successfully applied the framework to computer vision tasks in Chapter 5. However,
we notice that a major issue with the framework is that the dimension of h is exponential in the
dimension of the residual function gj . For example, if RGB images are used in the denoising
problem in Section 5.3, we will need to deal with 3-dimensional residuals, and the dimension of
the feature will be O(r3). This problem prohibits using the framework for problems with high-
dimensional residuals. Even with low-dimension cases, training the update maps may require a
large number of training data, depending on how fine we discretize the space.

Observation 3: Relation with first-order optimization algorithms. In Chapter 4, we an-
alyze the relation between DO and generalized convexity, which concretely connects DO with
first-order methods for optimizing an unknown cost function. However, the formulation of DO
in Chapter 3 only applies to the case where the parameters are unconstrained, which limits the
applicability of DO. Meanwhile, first-order methods play a vital role for solving many classes of
optimization problems, and many extensions have been proposed to expand its applicability [81].

69

It would be beneficial to import these concepts to DO.

Inspired by these observations, we propose four generalizations of DO: (i) using inverse
composition operation as the update rule for DO (Section 6.1); (ii) deriving h with basis functions
as an alternative to discretizing the residual (Section 6.2); (iii) accelerating the convergence of
DO with momentum (Section 6.3); and (iv) DO with constraints (Section 6.4).

6.1 Inverse Composition Discriminative Optimization (ICDO)
for registration tasks

In Chapter 3, we see that DO updates its parameter vector xt by computing the sum xt − ∆xt,
where ∆xt is an update vector. However, in many cases, the parameter of interest may form
a group structure which can be combined with a composition operation other than summation.
Examples of such parameters are the various parametrizations of rotation matrices, such as axis-
angle vectors and quaternions. Summing these parameters may not result in a valid parametriza-
tion of rotation, while composing them would return an element inside the group. Here, we show
a generalization of DO where we use Inverse Composition (IC) [6] operation to update the pa-
rameters instead of summing them. We call this approach Inverse Composition Discriminative
Optimization (ICDO). In this section, we illustrate that ICDO can be used to solve 3D rigid point
cloud registration (PCReg) task, but its formulation can also be extended to other registration
tasks, such as image-based template alignment.

We begin this section by describing a general formulation for registration tasks, followed
by the Forward Composition (FC) and Inverse Composition (IC) operations. Then, we describe
the ICDO algorithm. Finally, we apply ICDO to the PCReg task and show that it can outper-
form some state-of-the-art PCReg algorithms. Additional analysis specific to the PCReg task is
provided in Appendix B.

6.1.1 A general formulation for registration tasks

In this section, we describe a general formulation for registration tasks, which we will use as the
foundation for FC and IC operations. Given two objects I and J (we can think of them as two
images or point clouds), the goal of registration problems is to estimate the parameter x under the
transformation function T that transforms J so that the residual between I and the transformed

70

J is small. This can be written as an optimization problem

minimize
x

NI∑
a=1

NJ∑
b=1

ϕ(I(yI,a)− J(T (yJ,b;x))), (6.1)

where the meaning of yI,a and yJ,b depends in specific applications. We provide the following
examples for illustration.

Example 1: Template Alignment For the grayscale template alignment problem, we can
think of I as the template image T : R2 → R; J as the image I : R2 → R to be aligned with
T ; and yI,a and yJ,b are the pixel locations p of the images. Suppose we are working with affine
transformation, x may denote the transformation parameters in R6 with the transformation T
defined as

T (p;x) =

[
x1 x3

x2 x4

]
p +

[
x5

x6

]
. (6.2)

Finally, if we use the `2 function as ϕ, then (6.1) reduces to

minimize
x

N∑
i=1

(T (pi)− I(T (pi;x)))2, (6.3)

which can be solved using the Lucas-Kanade algorithm [6].

Example 2: 3D Rigid Point Cloud Registration (PCReg) For PCReg, we can consider yI,a
as point a of the model shape M ∈ R3×NM ; yJ,b as point b of the scene shape S ∈ R3×NS ; I
and J as the identity function; and x as the rotation and translation parameters. Suppose R and
t return the rotation matrix and the translation vector from x, then the transformation T can be
defined as

T (y;x) = R(x)y + t(x). (6.4)

If we use the Gaussian function as ϕ, then (6.1) reduces to

minimize
x

NM∑
a=1

NS∑
b=1

exp

(
− 1

σ2
‖ma − T (sb;x)‖2

)
, (6.5)

which is the PCReg formulation used by Kernel Correlation [103] and Gaussian Mixture Regis-
tration [61].

With a general formulation for registration tasks, we can consider the FC and IC updates
which can be used to solve (6.1).

71

6.1.2 Forward Composition (FC) and Inverse Composition (IC)

Forward Composition (FC) and Inverse Composition (IC) [6] were proposed to solve image-
based template alignment where the transformation parameters form a group structure. While
FC and IC are shown to be equivalent [6], IC is the more efficient choice as it requires less com-
putation than FC. Before we describe FC and IC, let us first define the notations for composition.
Let x1 ⊕ x2 denotes the composition of two parameter vectors x1 and x2. This composition
affects y under the transformation operator T as

T (y;x1 ⊕ x2) = T (T (y;x1);x2). (6.6)

We also define (x)−1 to be the inverse of x, i.e., x1 ⊕ x2 ⊕ (x2)−1 = x1, and let 0 parametrizes
the identity transformation. With these notations, we discuss FC and IC used for solving (6.1) as
follows.

Forward Composition (FC): Consider (6.1) with a differentiable ϕ, and let x and x+ denote
the current and the next estimates, resp. FC operates by alternately computing the following
gradient step and the update step (we disregard the step size in ∆x):

∆x = −
NI∑
a=1

NJ∑
b=1

(−∇x̃J(T (yJ,b; x̃)))∇−Jϕ(I(yI,a)− J(T (yJ,b; x̃)))

∣∣∣∣∣
x̃=x

(6.7)

x+ = x⊕∆x. (6.8)

Inverse Composition (IC): Unlike FC which computes the gradient of (6.1), IC uses the
gradient at x̃ = 0 from

NI∑
a=1

NJ∑
b=1

ϕ(I(T (yI,a; x̃))− J(T (yJ,b;x))). (6.9)

In other words, IC uses the gradient that transforms I(yI,a) to J(T (yJ,b;x)) in the update ∆x.
Since ∆x is based on the transformation of I instead of J, ∆x must be inversely composed with
the previous estimate x to obtain the next estimate x+. This results in the following IC update
steps:

∆x = −
NI∑
a=1

NJ∑
b=1

∇x̃I(T (yI,a; x̃))∇Iϕ(I(T (yI,a; x̃))− J(T (yJ,b;x)))

∣∣∣∣∣
x̃=0

(6.10)

x+ = x⊕ (∆x)−1. (6.11)

72

To see why IC requires less computation than FC, notice that IC requires computing∇x̃I(T (yI,a; x̃))

only once as it is always evaluated at x̃ = 0. On the other hand, FC requires recomputing
−∇x̃J(T (yJ,b; x̃)) at every iteration as it is evaluated at x̃ = x, leading to more computation
than IC [6].

In the next section, we will describe how to apply the IC update rule to DO. However, unlike
previous works where ∆x is computed from the gradient of ϕ, ICDO learns to compute the IC
update ∆x from a set of training data.

6.1.3 Learning IC update with DO

In order to learn the update step under the IC update rule, we modify the DO framework from
Chapter 3 which uses the summation update rule. Here, we first describe the update rule, fol-
lowed by the feature function, how to learn the maps, and how to apply them to solve registration
problems.

Update rule: Given an initialization x0 = 0 and a function h that extracts features from the
point clouds, ICDO updates the estimated parameter at step t using the IC operation

xt = xt−1 ⊕ (Dth(xt−1; I,J))−1, (6.12)

where Dt, t = 1, 2, . . . , are matrices that map the feature function h(xt−1; I,J) to an update
vector ∆x.

Feature function h: We apply the same framework from Section 3.2 to derive the feature
function h. Let x ∈ Rp,yI,a,yJ,b ∈ Rz and I,J : Rz → Rd. Taking the gradient from (6.11) as
the base for derivation, we can derive h as

h(xt−1; I,J) = −
NI∑
a=1

NJ∑
b=1

p⊕
l=1

d⊕
k=1

[∇x̃I(T (yI,a; x̃))]k,l

∣∣∣
x̃=0p

d⊗
α=1

eγq,r([I(yI,a)−J(T (yJ,b;x))]α),

(6.13)
where

⊗
is the Kronecker product, and

⊕
denotes vector concatenation operation. Recall

from (3.16) that γq,r is the function that discretizes [−q, q] to an integer in {0, . . . , r} and re-
turns zero otherwise. Similar to the h in Section 3.2, the dimension of h above is pdrd.

Learning update maps: Suppose we are given a training set {(x(i)
∗ , I(i),J(i))}Ni=1, where x(i)

∗

is the ground truth registration parameter satisfying T (J(i);x
(i)
∗) ∼ I(i). Similar to Section 3.1,

we use regularized linear least-squares minimization to learn the maps, but use the composition

73

Algorithm 3 Training ICDO

Require: {(x(i)
∗ , I(i),J(i))}Ni=1, T, λ, q0, r, α

Ensure: {Dt}Tt=1

1: Initialize x
(i)
0 := 0,∀i; and q := q0

2: for t = 1 to T do
3: Compute h̃(i) = h(x

(i)
t−1; I(i),J(i)),∀i from (6.13)

4: Compute Dt with (6.14)
5: Compute x

(i)
t := x

(i)
t−1 ⊕ (Dth̃

(i))−1,∀i
6: Compute q := q0/α

t

7: end for

operation to compute the difference between x
(i)
∗ and x

(i)
t−1 instead of the minus operation:

Dt = arg min
D̃

1

N

N∑
i=1

‖((x(i)
∗)−1 ⊕ x

(i)
t−1)− D̃h(x

(i)
t−1; I(i),J(i))‖2

2 + λ‖D̃‖2
F . (6.14)

After a map is learned, we update the training instances using the update rule (6.12). We repeat
this process until a terminating criteria is reached, e.g., a maximum number of maps. Alg. 3
shows a pseudocode for training ICDO.

Solving registration: The pseudocode for solving registration with ICDO is summarized in
Alg. 4. Suppose we trained a total of T maps. We first perform the update using (6.12) until step
T , then we continue using DT to update until a termination criteria is reached, e.g., the update
is small. However, in the PCReg experiment in the following section, we observe that using DT

to update beyond iteration T causes the parameter to bounce around the correct solution without
converging to it. This behavior resembles subgradient method with constant step size [19], which
may not converge to a minimum. To alleviate this issue, we attempted to scale the update with
1/(t−T) and 1/

√
t− T for t > T but we found that the updates diminished too fast, leading to a

premature termination. The strategy that we found effective is to use ∆x from the average of the
updates from the current and the previous iterations (line 6 in Alg. 4). This strategy resembles
the momentum approach [81] used frequently in first-order optimization.

6.1.4 Application: Shape-independent point cloud registration

We demonstrate the potential of ICDO on the problem of rigid 3D point cloud registration
(PCReg). Unlike the PCReg approach in Section 5.1 which is shape-specific, here we develop
an algorithm that is shape-independent and show that the learned maps generalize even to shapes
which are not included in the training data. Recall that the goal of PCReg is to find the rigid trans-

74

Algorithm 4 Solving registration with ICDO
Require: I,J, {Dt}Tt=1, q0, r, α
Ensure: x

1: Initialize x := 0; t := 1; and q := q0

2: while not converge do
3: Compute h̃ := h(x; I,J) with (6.13)
4: Compute ∆x := Dmin(t,T)h̃
5: if t > T then
6: Compute ∆x := (∆x + ∆x−)/2
7: end if
8: Compute x := x⊕ (∆x)−1

9: Compute ∆x− := ∆x
10: Compute q := q0/α

t

11: Compute t := t+ 1
12: end while

formation parameters x that aligns a scene shape S ∈ R3×NS to a model shape M ∈ R3×NM .
We first describe our parametrization, the feature function, and our training method. Then, we
perform experiments on synthetic and real data to test the performance of ICDO against other
state-of-the-art PCReg algorithms. Additional analysis for this task is provided in Appendix B.

DO parametrization and training

Transformation parametrization: We parametrize x = [r>, t>]> ∈ R6, where r ∈ R3 is an
axis-angle vector parametrizing rotation and t ∈ R3 is the translation vector. The composition
between x1 = [r>1 , t

>
1]> and x2 = [r>2 , t

>
2]> is defined as

x1 ⊕ x2 =

[
R−1(R(r2)R(r1))

R(r2)t1 + t2

]
, (6.15)

where R : R3 → SO(3) converts an axis-angle vector to its rotation matrix representation and
R−1 : SO(3)→ R3 reverts a rotation matrix back to its axis-angle vector.

Feature function h: While it is possible to apply (6.13) as the h function for PCReg, a major
problem is that its dimension is exponential in the dimension of the point cloud. In the 3D case,
the dimension of h will be O(r3), which can be too large to store and train efficiently. In order
to make the learning more tractable, we look at an alternative formulation for PCReg:

minimize
x̃

J(x̃) =

NM∑
a=1

NS∑
b=1

ϕ(‖T (ma; x̃)− T (sb;x)‖). (6.16)

75

The cost function in (6.16) differs from (6.9) in that (6.9) uses the residual–a 3D function–as the
argument of ϕ, while (6.16) uses the norm of the residual, which is a 1D function. This allows
us derive a feature function h with has much smaller dimension than that in (6.13). Define
ga,b(x̃;x) = T (ma; x̃)− T (sb;x), we take the derivative of the above cost function as

∆x̃ = − ∂

∂x̃
J(x̃) = −

NM∑
a=1

NS∑
b=1

[
−[m]×

I3

]
ga,b(x̃;x)

‖ga,b(x̃;x)‖︸ ︷︷ ︸
=wa,b

∂ϕ(‖ga,b(x̃;x)‖)
∂‖ga,b(x̃;x)‖

, (6.17)

where I3 is a 3× 3 identity matrix. Then following the feature derivation similar to the approach
in Section 3.2 (full detatil provided in Appendix B), we arrive at the matrix D and the feature h:

D = I6 ⊗ φ> (6.18)

h(x;M,S) = −
NM∑
a=1

NS∑
b=1

6⊕
l=1

[wa,b]leγq,r(‖ga,b(06;x)‖). (6.19)

Here, γq,r only discretizes the nonnegative segment [0, q] into r boxes because ‖ga,b(06;x)‖
cannot be negative (this differs from γq,r in (3.16) which discretizes [−q, q]).

Training ICDO for PCReg: We generated synthetic data to train the maps from seven 3D
shapes: Bunny and armadillo from Stanford’s 3D scan repository [35] and all 5 shapes from
the UWA dataset [77]. Each training model M(i) was generated by randomly picking a shape;
scaling it so that all points are in [−1, 1]3; and randomly rotating in [0, 180] degrees. Next, we
copied the model as the scene shape S(i), then added a random rotation in [0, 85] degrees and
translation in [−0.2, 0.2]3 to only S(i). Then, we applied the following modifications to M(i) and
S(i) independently: Randomly sampling 200 − 400 points; adding Gaussian noise with SD in
[0, 0.03]; and mimicking incomplete shape by randomly sampling a 3D vector u, then removing
the points where their dot product with u are in the top 0− 30% (this is done only either M or S
but not both). No outliers were added for the training data as we found this degraded the results.
We found λ = 10−8, q = 3, r = 100, α = 1.15, and T = 20 work well across all experiments.
We used a total of 105 training samples, and ICDO took 96 minutes to train.

Implementation details: The following section describes implementation details on normal-
ization, how to speed up computation, training procedure, and termination criteria.

Normalization: PCReg algorithms are generally sensitive to variations in the point clouds, e.g.,
density and scale. These issues are further complicated by the fact that ICDO is learning-based,
thus normalization is very important. First, we remove the mean of M from both M and S to
maintain their relative configuration. Next, we perform two normalizations for scale and density.

76

(i)Scale: Suppose that we have the registration RS + t ∼M. If the shapes are scaled by ρ, e.g.,
M̂ = ρM, we will have RŜ + ρt ∼ M̂: only the translation vector is scaled but not rotation,
making it harder to learn effectively. To prevent this effect, we scale both M and S by

√
NM/η,

where η is the mean of M’s singular values. (ii) Density: Consider two pairs of point clouds
θ(1) = (M,S) and θ(2) = ([M,M],S). We can see that θ(2)’s model density is doubled that of
θ(1). This causes an undesirable effect that h(x, θ(2)) = 2h(x, θ(1)), meaning the update step of
θ(2) will be double that of θ(1), while the shapes are the same. To handle this issue, we divide h

in (6.19) by NMNS .

Speeding up computation: We found that the most time-consuming step is the aggregation
of [wij]l into h in (6.19). To reduce computation, we reduce the number of terms in (6.19) by
reducing the value of q in each iteration. Since we keep r constant, an additional advantage of
this reduction is that the discretized boxes become finer as iteration increases, allowing more
details to be captured. Note that while this reduction speeds up computation, it does not change
ICDO’s complexity.

Training: We found that the training error in Alg. 3 reduces too fast, which causes the latter
maps to have small updates. To handle this issue, we add random rotation in N (0, 10) degrees
and translation vector with the norm inN (0, 0.1) to the data in each training iteration, and adjust
the ground truth xk∗ accordingly. In addition, notice that D in (6.18) is block-diagonal with
nonzero values only in the elements of ϕ. In practice, we also found that the off-block-diagonal
elements have very small values. With these observations, we constrain all elements outside the
diagonal blocks to be zero when we learn the maps in (6.14).

Termination criteria: We terminate the algorithm when the rotation and the total displace-
ment in the past 5 iterations amount to less than 0.5 degrees and 3×10−3, resp. We also terminate
if the number of iterations reaches 200.

Experiments and results

Baselines and evaluation metrics: We use the same 4 baselines from Section 5.1.2: (i) ICP [16].
(ii) IRLS [14], which is similar to ICP but uses the Huber function as penalty. (iii) CPD [80],
which maximizes the likelihood that one point cloud is generated by the Gaussian mixture of
the other. Its optimization is performed using Expectation-Maximization algorithm. (iv) GMM-
Reg [61], which minimizes L2 distance between the two Gaussian mixtures. Note that GMMReg
is a gradient-base method. This makes GMMReg most similar to ICDO. We obtained the MAT-
LAB codes from the authors’ websites, except ICP which we used MATLAB’s implementation.
Note that CPD and GMMReg use C implementation of fast Gauss transform (FGT) [53] to accel-
erate the computation of Gaussian kernels. Here, we do not compare with DO from Section 5.1

77

as it is for shape-specific task and requires 3-4 minutes to train each shape, thus it is impractical
for this experiment.

To measure performance, we use the registration error, defined as the pointwise RMSE of
the model in the ground truth pose and the model in the estimated pose:

(1/
√
NM)‖T (M;x)− T (M;xgt)‖F , (6.20)

where ‖ · ‖F is the Frobenius norm, and x and xgt are the estimated and the ground truth
poses, resp. We also report computation time for each algorithm.

Synthetic data: We use 7 shapes (cat, centaur, dog, gorilla, gun, horse, and wolf) from TUM
3D object in clutter dataset [91] for testing. These shapes were selected so that they did not
overlap with those in training. The initial shapes were normalized to lie in [−1, 1]3. Similar to
Section 5.1.2, we tested 5 modifications: (i) Number of points from 100 to 2000 [default = 200 to
400]; (ii) Initial angle from 0◦ to 180◦ [default = 0◦ to 60◦]; (iii) Noise SD from 0 to 0.1 [default =
0 to 0.03]; (iv) Outlier ratio against the number of inliers from 0 to 2 [default = 0]; (v) Incomplete
shape from 0 to 0.9 [default = 0] (generated the same way as in training). All tests included
random translation in [0, 0.3]3. Outlier points were randomly generated in [−1.25, 1.25]3. While
one parameter was varied, other parameters were set to the default values. For each setting,
we tested 500 pairs of point clouds sampled from the 7 shapes. Unlike in training, the model
and scene points were independently sampled. Here, we consider a registration successful if the
registration error is less than 0.15.

Figure 6.1 shows the results of the synthetic experiment. We can see that ICDO is comparable
to the state-of-the-art algorithms: It performed almost perfectly under varying number of points,
noisy data, and outlier ratios. ICDO has less success than CPD and GMMReg for large initial
angles, while being more successful than ICP and IRLS. GMMReg even has some success with
180◦ initial angle because its annealing can smooth the shapes enough to avoid bad optima. How-
ever, a downside is GMMReg can also oversmooth, leading to some failure even with 0◦ initial
angle. In contrast, ICDO has more success with lower angles and less success with high angles.
We also found that ICDO works well with outliers even it was not trained with them. This is
because ICDO can be interpreted as learning an annealing schedule (see Section B.3), so outliers
have little effect on its performance. This behavior is similar to GMMReg which requires setting
the Gaussian widths as an annealing schedule prior to running the algorithm, i.e., the outliers
in the data have no effect on the widths. In contrast, CPD estimates the Gaussian width as the
algorithm is run, thus outliers can thwart this estimation. Also, outliers create more local minima
for ICP and IRLS which use closest matches, leading to bad registration. Under similar reasons,
ICDO and GMMReg are the most robust to incomplete shapes. In terms of computation time,

78

ICP IRLS CPD GMMReg ICDO

(b) Initial Angle(a) Number of Points (c) Noise SD (d) Outliers (e) Incomplete Shape

0 50 100 150

Initial Angle

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 r
at

e

0 50 100 150

Initial Angle

10-2

10-1

100

101

102
C

om
pu

ta
tio

n
tim

e
(s

)

0 0.3 0.6 0.9

Ratio Removed

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 r
at

e

0 0.3 0.6 0.9

Ratio Removed

10-2

10-1

100

101

102

C
om

pu
ta

tio
n

tim
e

(s
)

0 0.04 0.08

Noise SD

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 r
at

e

0 0.04 0.08

Noise SD

10-2

10-1

100

101

102

C
om

pu
ta

tio
n

tim
e

(s
)

0 0.8 1.6

Outlier Ratio

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 r
at

e

0 0.8 1.6

Outlier Ratio

10-2

10-1

100

101

102

C
om

pu
ta

tio
n

tim
e

(s
)

100 500 1000 1500 2000

Number of Points

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 r
at

e

100 500 1000 1500 2000

Number of Points

10-2

10-1

100

101

102

C
om

pu
ta

tio
n

tim
e

(s
)

Figure 6.1: Results for synthetic data experiment over different modifications. (Top) Success
rate. (Bottom) Computation time.

(a) (b)

Figure 6.2: Real data examples (modified for visualization). (a) Stanford’s dragon. (b) ETH laser
registration dataset (Apartment and Gazebo Summer).

ICDO is generally slightly slower than IRLS and CPD while being much faster then GMMReg
(Note that CPD and GMMReg use C code for FGT while ICDO is completely written in MAT-
LAB, so their times are not directly comparable). This experiment demonstrates that ICDO can
be trained and tested on different sets of shapes, while being able to obtain competitive success
and time as state-of-the-art algorithms.

Real data: We perform experiments on two real datasets to evaluate ICDO. (i) Stanford’s
dragon [35] and (ii) ETH laser registration dataset [88]. Figure 6.2 shows examples from the two
datasets. We provide the details and results below.

Stanford’s dragon [35]: This dataset contains 15 scans at every 24◦ of a dragon statue. Fol-
lowing [22, 61], we merge scans at ±24◦,±48◦,±72◦,±96◦, with a total of 30 pairs for each
angle. A registration is successful if q>qgt > 0.99 where q and qgt are the estimated and the
ground truth unit quaternions, resp. Each point cloud was downsampled to 2000 points. The
result is presented in Table 6.1. The results of the baselines were taken from SVR paper [22],
which improves GMMReg by learning the weight of each Gaussian. We can see that ICDO is
second to SVR while outperforming ICP, CPD, and GMMReg, illustrating the robustness of our

79

Table 6.1: Successful registration on Stanford’s dragon.
Pose ICP CPD GMMReg SVR ICDO
±24◦ 28 26 29 30 30
±48◦ 19 18 20 29 26
±72◦ 13 14 13 16 15
±96◦ 1 3 2 4 0

0 2 4 6 8 10

Error (m)

0

0.2

0.4

0.6

0.8

1

R
at

io
 o

f D
at

a

ICP IRLS CPD GMR ICDO

0 0.2 0.4 0.6

Relative Error

0

0.2

0.4

0.6

0.8

1

R
at

io
 o

f D
at

a

0 0.5 1 1.5 2
0.8

0.85

0.9

0.95

1

0 0.05 0.1
0.8

0.85

0.9

0.95

1

Figure 6.3: Results of ETH laser registration dataset in cumulative plots. (Left) Absolute regis-
tration error. (Right) Relative error.

approach against methods which consider all point as having equal weights. Our implementation
took 7.7 seconds to register each pair on average.

ETH laser registration dataset [88]: This dataset consists of 3D laser scans from 8 outdoor
and indoor environments. Each environment has 31 to 45 scans (total 275), and contains dynamic
objects such as people and furniture displacement, which can be considered as outliers. The
scans were recorded sequentially as the scanner traversed the environments. In this experiment,
we merge consecutive scans in both forward and backward directions (total 534 pairs). We
preprocessed each point cloud by using a box grid filter (MATLAB’s pcdownsample) at 10cm
interval to make the density more uniform, then subsampled to 1000 points.

Figure 6.3 shows the cumulative error plots in terms of the absolute registration error (in
meters) and the relative registration error. The latter is defined as the registration error divided
by the largest distance between any two model points. We can see that ICDO achieved the best
result in both measures. Recall that ICDO was trained with synthetic data synthesized from 7
shapes, which have no similarity to the data in this section. This demonstrates the potential of
ICDO as a robust learning-based PCReg algorithm which can generalize to different classes of
objects. In terms of the average computation time, we have ICP at 0.06s, IRLS at 0.35s, CPD at
1.62s, GMMReg at 18.66s, and ICDO at 2.14s.

80

6.1.5 Section summary

In this section, we have introduced ICDO, which uses Inverse Composition (IC) operation to
perform the update for registration tasks instead of the summation update rule of DO. ICDO
allows the parameters that form a group to be updated under their natural composition operation,
and require less computation than Forward Composition (FC) approach. We demonstrated the
potential of ICDO in the problem of 3D point cloud registration (PCReg), illustrating that the
learned maps generalize to unseen shapes and that its performance is competitive to those of the
state-of-the-art PCReg algorithms.

6.2 Representing feature function h as a combination of basis
functions

In Section 3.2, we proposed a method to derive h function as a mixture of Dirac delta function,
where Dh can be interpreted as imitating the gradient steps of an unknown penalty function. A
major drawback of the approach is that, to compute h, we need to perform grid-based discretiza-
tion. There are four problems with such discretization. First, it was shown that the dimension of
h is pqrd, which means that the discretization does not scale for the residual gj : Rp → Rd with
large d. Second, we can only discretize a bounded portion of the space of Rd. Anything values
outside of this portion have to be discarded, which could lead to a loss of information. Third,
grid-based discretization may lead to overfitting. Since the number of training samples are finite,
there could be a large number of boxes where only a few samples fall into. This could cause the
learned maps to overfit to these small number of samples. In the many cases, some boxes may
not receive any sample at all, and due to regularization the values of the learned maps will be set
to zero. Lastly, it may not be obvious how to set the appropriate value of r. A large r would be
able to represent very complex function but would be hard to scale, while a small r may not be
able to represent the function well.

To alleviate such issues, in this section we propose to derive h as a combination of basis
functions instead of discretizing the space. Unlike discretization where the residuals outside the
interval [−q, q] are discarded, using basis functions allow residuals with arbitrary values to be
included reducing the loss of information. In addition, using basis functions disregards the need
to discretize the space, resulting in fewer number of parameters to learn and also less overfitting.
We describe the procedure of deriving h with basis functions as follows.

81

6.2.1 Learning with basis functions

Recall that in (3.22), we express the update step with an unknown penalty function ϕ as

∆x =
1

J

J∑
j=1

[
∂gj
∂x

]>
φ(gj), (6.21)

where φ : Rd → Rd represents the gradient of ϕ, and the notation gj expresses the residual
gj(x). Given a set of basis functions B = {b1,b2, . . . ,bnB} ⊂ (Rd → Rp), we can approximate
φ(gj) as a linear combination of basis functions as

φ(gj) ≈ B(gj)d = [b1(gj),b2(gj), . . . ,bnB(gj)]d, (6.22)

where B : Rd → Rp×nB contains that function value of the bases, and d ∈ RnB is the vector
containing the weights of the bases. Thus, (6.21) can be approximated as

∆x ≈ 1

J

J∑
j=1

[
∂gj
∂x

]>
B(gj)d (6.23)

= h(x)d, (6.24)

where we express h as

h(x) =
1

J

J∑
j=1

[
∂gj
∂x

]>
B(gj). (6.25)

It can be seen that (6.24) is simply a multiplication between h and d, where d does not depend on
gj . This allows us to learn the sequence of maps dt with linear regression similar to (3.6). Note
that here, the feature h becomes a matrix of dimension p× nB, and the update maps becomes a
vector of dimension nB. This leads to a modified update rule:

xt+1 = xt − h(xt)dt+1. (6.26)

There are several benefits of using (6.25) as h compared to discretization. First, the bases can
be selected such that each of their domain cover the whole space Rp, and thereby removing the
need to discretize the space. With a good set of bases, this could also lead to a reduced number of
parameters in the update maps dt that we need to learn, thereby reducing the overfitting problem.
Finally, if all basis functions are gradients of some functions, then it is possible to approximately
reconstruct the penalty function. However, since the learning is performed sequentially, dt will
be different for each t, and so the penalty function will also change in each iteration. We can

82

think of this as learning to imitate gradient method on a continuation of cost functions.

6.2.2 Discretization as basis functions

We can also interpret the discretization in Section 3.2 as basis functions. This can be seen by
considering the indicator of each grid as a basis:

bb1,...,bd(gj) =

⊗d

α=1 ebα ; γ([gj]α) = bα, ∀α,

0rd ; otherwise,
(6.27)

where bb1,...,bd(gj) is indexed by bα ∈ {1, 2, . . . , r}, α = 1, . . . , d. In this manner, we unify
the discretization approaches as a set of basis functions. However, the basis of discretization is
discontinuous and it is not a gradient of any function. This prevents us from exactly recovering
the unknown penalty function.

6.2.3 Experiments

In this section, we performed synthetic experiment to compare the basis strategy and discretiza-
tion strategy.

Problem settings

Here, we are interested in the problem of the form

minimize
x̂

1

J

J∑
j=1

ϕ (Aj(x̂− yj)) , (6.28)

where {(Aj,yj)}Jj=1 ⊂ R2×2 × R2 are a given set of data. Examples of problems that can be
formulated in this form include template tracking, optical flow, affine point cloud registration,
and image deconvolution, and this formulation can be extended to other problems that includes
regularization terms, such as image denoising. We inspect three penalty functions:

ϕ`2(x) = ‖x‖2
2, (6.29)

ϕ`1(x) = ‖x‖1, (6.30)

ϕIG(x) = − exp

(
− 1

2 · 0.52
‖x‖2

2

)
+

1

10
‖x‖2

2, (6.31)

83

where ϕ`2 is the squared `2 function, which is smooth and strongly convex; ϕ`1 is the `1 func-
tion, which is nonsmooth and convex; and ϕIG is the sum of inverted Gaussian and squared `2

function, which is smooth and strongly pseudoconvex.

The training set is given byX = {(x(i)
0 ,x

(i)
∗ , {(A(i)

j ,y
(i)
j)}J(i)

j=1)}ni=1, where A(i)
j was randomly

generated from [−0.75, 0.75]2×2, y(i)
j from [−1, 1]2, and J (i) from {3, . . . , 50}. The initializer x(i)

0

was set to 02, and the minimum x
(i)
∗ is generated by solving (6.28) using fminunc. We generated

104 samples for training and 5× 103 for test.

Performance measures

We measure the performance of each instance i with the `2 error from the current estimate to
its groundtruth: ‖x(i)

t − x
(i)
∗ ‖. We report the mean and the median of the training error and the

test error against the iteration number t to see how these errors progress through the iterations.
Note that the mean error should be used as the main measures for comparison as the DO learning
rule minimizes the mean error, while the median error is shown for reference as there are hard

problem instances that can strongly affect the mean.

Algorithm settings

We compare three main classes of algorithms: DO with discretization-based h from Section 3.2;
DO with the basis functions from Section 6.2.1; and the subgradient method, assuming we know
the correct penalty function. We provide the settings of each algorithm as follows.

Discretization: We discretize gj in the range [−2, 2]2 (i.e., q = 2) with 3 different values
of grids r, which are 10, 20, and 40. We denote these discretization strategies as D10, D20,
and D40, resp. The learned maps of D10, D20, and D40 will have the dimensions of 2 × 400,
2× 1600, and 2× 6400, resp. Here, we set λ = 10−5.

Basis functions: We use two basis strategies, denoted by B1 and B2. B1 comprises of
5 sinusoidal functions for each dimension, and B2 contains the basis functions of B1 with 2
additional bases in each dimension. Their corresponding matrix representations are given by

Bb(gj) =

[
b̂>b ([gj]1) 0>

0> b̂>b ([gj]2)

]
, b = 1, 2, (6.32)

where

b̂>1 (α) = [sin(2α), sin(4α), sin(6α), sin(8α), sin(10α)], (6.33)

b̂>2 (α) = [sin(2α), sin(4α), sin(6α), sin(8α), sin(10α), α, sgn(α)], (6.34)

84

where sgn(·) is the Heaviside step function. We use these two bases to compare the situation
when we have the exact gradients of the cost as part of the basis (B2) against the case that we
do not (B1): B2 contains functions which are the gradient of ϕ`2 and ϕ`1 , while B1 has only
sinusoidal functions. The learned maps of B1 and B2 will have the size of 10 × 1 and 14 × 1,
respectively. Note that all the functions we selected as basis are odd functions, as even functions
are not monotone at 0 for any subset of its domain except at 0. Here, we set λ = 10−10.

Subgradient: Assuming we know the penalty function ϕ, we can use the subgradient method
to solve for the minimum. Here, we use the subgradient method with decreasing step sizes [96]
as a comparison. This is given by

xt+1 = xt −
1

t
vt, (6.35)

where vt is a (sub)gradient of ϕ at xt. Note that we include subgradient method here to compare
their convergence rate only, but they cannot replace DO in real applications since the subgradient
methods assume knowing the cost function while DO learn the update directions from training
data.

Results

Figure 6.4 shows the results for ϕ`2 , which is a differentiable strongly convex function. For the
training error in Figure 6.4a, we can see that the training error reduces faster as the discretization
grid r increases. However, this could also lead to overfitting, as can be seen in Figure 6.4b,
where the error of D40 reduce slowest of all strategies. On the other hand, B1 and B2 can
reduce the training error faster than all discretization-based methods, while also maintaining
good decrease in test error. We can also see that knowing the correct basis can significantly
speed up the convergence from the result that the errors of B2 decrease much faster than those
of B1. In addition, basis-based methods can decrease error faster than the subgradient method,
suggesting that the basis approaches can learn to find a better sequence of step sizes than that of
the subgradient method. Another thing to notice is that the mean error can decrease much slower
than the median error. This is because there are some hard samples where A

(i)
j have very high

condition numbers, e.g., more than 106. This cause the cost surface of some problem instances
to become almost flat in some directions, and gradient-based methods can take a long time to
converge [18]. Since DO imitates gradient-based methods, this condition number also affects
DO in a similar fashion.

Next, we take a look at what DO learns. Figures 6.4c,d,e,f,g show reconstructed update maps
of each strategy1. These maps are comparable to the directional derivative of ϕ1, of which ∂ϕ1(x)

∂[x]1

1We show that last map of each strategy that reduces training RMSE more than 1 × 10−3. For discretization

85

(a) Training error (b) Test Error

(c) D10 (d) D20

(e) D40 (f) B1

(g) B2 (h) Subgradient

D10 D20 D40 B1 B2 Subgrad

0 20 40 60 80 100

Iter t

10-5

100
M

ea
n

E
rr

or

0 20 40 60 80 100

Iter t

10-5

100

M
ea

n
E

rr
or

0 20 40 60 80 100

Iter t

10-5

100

M
ed

ia
n

E
rr

or

0 20 40 60 80 100

Iter t

10-5

100

M
ed

ia
n

E
rr

or

Figure 6.4: DO with basis with ϕ`2 . (a) Training error. (b) Test error. (c-g) Learned maps for
each method (reconstructed for visualization). (h) Directional subgradient of φ`2 .

and ∂ϕ1(x)
∂[x]2

are shown on the left and right of Figure 6.4h, resp. We can see that the learned maps
resemble the subgradient up to some scale factors. These scale factors replace the use of step
size in subgradient method. The maps of D10 and D20 are quite smooth while those of D40 are
not. This provides an evidence that D40 is overfitting, which results in the slow decrease in test
error shown in Figure 6.4b. More data may be required for training if we wish to discretize with
a large number of grids. In addition, we can see that the edges of the maps of D10, D20, and D40
have values of 0. This is due to the fact that the residual gj in training data may not be able to

strategies, we reshape the learned maps into 2D grids indexed by the location of gj(x). For basis strategies, we
multiply the learned coefficients to the basis functions to obtain the maps.

86

(a) Training error (b) Test Error

(h) Subgradient

D10 D20 D40 B1 B2 Subgrad

(c) D10 (d) D20

(e) D40 (f) B1

(g) B2

0 20 40 60 80 100

Iter t

10-2

10-1

100
M

ea
n

E
rr

or

0 20 40 60 80 100

Iter t

10-2

10-1

100

M
ea

n
E

rr
or

0 20 40 60 80 100

Iter t

10-3

10-2

10-1

100

M
ed

ia
n

E
rr

or

0 20 40 60 80 100

Iter t

10-3

10-2

10-1

100

M
ed

ia
n

E
rr

or

Figure 6.5: DO with basis with φ`1 . (a) Training error. (b) Test error. (c-g) Learned maps for
each method (reconstructed for visualization). (h) Subgradient of φ`1 .

cover the whole space, and the grids with no residuals will have the value set to 0. On the other
hand, for the basis strategies where smooth basis functions are used, their maps are also smooth.
The maps of B2 look almost similar to the subgradient in Figure 6.4h. This is because the basis
set of B2 also includes the derivative of ϕ`2 , allowing it to learn a similar set of maps. On the
other hand, B1 does not have the derivative of ϕ`2 as basis functions, thus it learns the update
maps that best approximate the subgradient map. In this case, we can see that the sinusoidal
basis functions can be use to learn the update maps quite well.

Next, we look at the results of ϕ`1 in Figure 6.5. Recall that ϕ`1 is the `1 norm, which

87

is a nonsmooth convex function. Similar to the results of ϕ`2 , we can see from the errors in
Figure 6.5a,b that the discretization strategies, especially D40, overfit to the training data. The
learned maps also reflect this overfitting, as the maps of D20 and D40 are not as flat compared
with those of D10 and the subgradient. On the other hand, the results of the two basis strategies
differ in this case. The training error and the test error of B1 do not reduce beyond a certain
value, while those of B2 still reduce in every iteration. This is because B1 have only continuous
basis functions which cannot represent the nonsmooth subgradient of ϕ`1 , and this also reflects
as the wavy surfaces in the reconstructed maps in Figure 6.5f. Meanwhile, B2 has sgn(·) in its
basis, allowing it to learn a good set of update maps, and its reconstructed maps in Figure 6.5g
can well represent the ‘jump’ in ϕ`1’s subgradient.

Finally, we look at the results of ϕIG, which is a smooth strongly pseudoconvex function,
in Figure 6.6. Here, we can see that the basis strategies can learn good sets of update maps,
which can well represent the subgradient maps and reduce both the training error and test error
in a fast manner. Note that the mean test error of B1 increases around iteration 60 due to a test
instances jumped to an incorrect local minimum. On the other hand, D10, which did not overfit
with ϕ`2 and ϕ`1 , does not perform well with ϕ3: Its errors do not decrease much and the learned
maps do not look similar to those of the subgradient. This may be due to the number of grids
being too small, and thus it cannot well represent the smoothly varying true maps. Among the
discretization strategies, D20 performed the best, while D40 still show signs of overfitting when
looking at the mean test error.

6.2.4 Concluding remarks and discussions

In this section, we showed that it is possible to use a set of basis functions to learn the update
directions instead of using discretization strategies from Chapter 3.2. Since the domains of basis
functions cover the whole space, the learned maps will not have the value of zero beyond the
values of the residuals gj . In addition, since the number of basis functions can be small, they are
less likely to overfit than the discretization approaches.

There are also several disadvantages when using basis functions. As can be seen in the case
of ϕ`1 , if the set of basis functions are not well-selected, we may not be able to learn a good
sets of update maps that greatly reduces both training and test errors. In addition, here we only
show the case where the basis functions are axis-aligned. It is possible to include other non-axis-
aligned functions, such as sin(Wx) for some matrix W. However, in high-dimensional settings,
manually selecting W can be a challenging task, and we may need a large number of such basis
to represents the high-dimensional update maps. One approach to tackle this issue is to learn
both the update maps and the matrix W.

88

(a) Training error (b) Test Error

(h) Subgradient

D10 D20 D40 B1 B2 Subgrad

(c) D10 (d) D20

(e) D40 (f) B1

(g) B2

0 20 40 60 80 100

Iter t

10-3

10-2

10-1

100
M

ea
n

E
rr

or

0 20 40 60 80 100

Iter t

10-3

10-2

10-1

100

M
ea

n
E

rr
or

0 20 40 60 80 100

Iter t

10-4

10-2

100

M
ed

ia
n

E
rr

or

0 20 40 60 80 100

Iter t

10-4

10-2

100

M
ed

ia
n

E
rr

or

Figure 6.6: DO with basis with φIG. (a) Training error. (b) Test error. (c-g) Learned maps for
each method (reconstructed for visualization). (h) Subgradient of φIG (Note that here we use the
term subgradient loosely as φIG is not convex).

An interesting observation is that when the differentiable basis functions are used, the whole
system becomes differentiable. This may allow the whole system to be learned in an end-to-end
manner, similar to deep neural networks (DNNs) [52]. It is also interesting to note that if we
use rectified-linear function (ReLU) or sigmoid as the basis function, then we actually arrive at
DNNs. This observation provides a bridge between DO and DNNs.

89

6.3 Accelerating DO with momentum

Momentum methods [48] are a group of approaches which are used to accelerate the convergence
of optimization algorithms. Typically, they involve different weighting schemes that incorporate
the estimates from previous steps into computing the next estimates. Suppose we are given a
differentiable cost function f : Rp → R, a momentum method for minimizing f is given by

zt+1 = βzt +∇f(xt) (6.36)

xt+1 = xt − αtzt+1, (6.37)

where xt ∈ Rp is the estimate at step t, zt ∈ Rp is an auxiliary vector, αt ∈ R is the step size,
and β ∈ R is a weight constant. By eliminating zt, we can rewrite the momentum method in a
single line as

xt+1 = (1 + β)xt − βxt−1 − αt∇f(xt). (6.38)

From (6.38), we can see that the momentum update is simply a linear combination of xt, xt−1,
and the gradient at xt.

6.3.1 Incorporating momentum into DO

It is straightforward to incorporate momentum terms into DO. Instead of using a fixed weights
as (6.38), we simply concatenate the feature vector h with the previous parameter estimates
xt−1, . . . ,xt−τ , which leads to the following analogy of (3.4):

xt+1 = xt −Dt+1hmmt(xt, · · · ,xt−τ), (6.39)

where
hmmt(xt, · · · ,xt−τ) = [h>(xt) x>t x>t−1 · · · x>t−τ]

>. (6.40)

When learning the SUM, the coefficients of the momentum will be directly learned into the
matrix Dt+1.

We can also discuss the convergence result of the training error when momentum is used.
Relying on the convergence result in Thm. 1, it is easy to see that if there exists D̂ such that
D̂h(i) for all i are strictly monotone at x(i)

∗ , then there exists D̂mmt of the form

D̂mmt = [D̂ 0(τ+1)p×p], (6.41)

where D̂mmth
(i)
mmt are strictly monotone at x(i)

∗ . Thus, all convergence results from Chapter 4

90

(a) Training error (b) Test Error

D20 D20τ0 D20τ1 D20τ2

B2 B2τ0 B2τ1 B2τ2

Subgrad
Subgrad+mmt

0 20 40 60 80 100

Iter t

10-5

100

M
ea

n
E

rr
or

0 20 40 60 80 100

Iter t

10-5

100

M
ea

n
E

rr
or

0 20 40 60 80 100

Iter t

10-5

100

M
ed

ia
n

E
rr

or

0 20 40 60 80 100

Iter t

10-5

100

M
ed

ia
n

E
rr

or

Figure 6.7: DO with momentum with ϕ`2 . (a) Training error. (b) Test error.

(a) Training error (b) Test Error

D20 D20τ0 D20τ1 D20τ2

B2 B2τ0 B2τ1 B2τ2

Subgrad
Subgrad+mmt

0 20 40 60 80 100

Iter t

10-2

10-1

100

M
ea

n
E

rr
or

0 20 40 60 80 100

Iter t

10-2

10-1

100

M
ea

n
E

rr
or

0 20 40 60 80 100

Iter t

10-4

10-2

100

M
ed

ia
n

E
rr

or

0 20 40 60 80 100

Iter t

10-4

10-2

100

M
ed

ia
n

E
rr

or

Figure 6.8: DO with momentum with ϕ`1 . (a) Training error. (b) Test error.

apply to DO with momentum as well.

6.3.2 Experiments

We perform experiments to test DO with momentum and compare its efficiency against the reg-
ular DO. We use the same problem settings and performance measure as in Section 6.2.3.

Algorithm settings

We use D20 and B2 from Section 6.2.3. To denote the algorithms that use previous steps, we
append the name with τ and the number of previous steps, e.g., B2τ2 indicates using B2 and
concatenate its h with 0 to 2 previous steps, which are xt, xt−1, and xt−2. The algorithms using
no previous steps are denoted without any following τ , i.e., D20 and B2. Here, we test the cases
of no previous steps and τ = 0, 1, 2. For subgradient, we include subgradient with and without
momentum, denoted as Subgrad and Subgrad+mmt, for comparison. For Subgrad+mmt, we use
β = 0.5.

91

(a) Training error (b) Test Error

D20 D20τ0 D20τ1 D20τ2

B2 B2τ0 B2τ1 B2τ2

Subgrad
Subgrad+mmt

0 20 40 60 80 100

Iter t

10-4

10-2

100

M
ea

n
E

rr
or

0 20 40 60 80 100

Iter t

10-4

10-2

100

M
ea

n
E

rr
or

0 20 40 60 80 100

Iter t

10-5

100

M
ed

ia
n

E
rr

or

0 20 40 60 80 100

Iter t

10-5

100

M
ed

ia
n

E
rr

or

Figure 6.9: DO with momentum with ϕIG. (a) Training error. (b) Test error.

Results

The training errors and test errors on ϕ`2 , ϕ`1 , and ϕIG are shown in Figures 6.7, 6.8, and 6.9,
resp. We can see that all approaches, including subgradient, benefit from momentum: All the
training errors and test errors decrease faster when momentum is used. For DO approaches,
simply adding the current estimate (D20τ0 and B2τ0) does not make the convergence faster.
Only when we include the previous steps (D20τ1 and B2τ1) that we see the effect of momentum.
The effect is most apparent for the basis approaches in ϕ`2 and ϕIG, where we can observe a
significant improvement on the convergence rate. We believe that this is due to the fact that the
momentum can help compensate for the high condition number of the cost function [48]. On the
other hand, adding additional previous steps (D20τ2 and B2τ2) does not significantly improve
the convergence beyond using a single previous step. This indicates that only a single previous
estimate may be adequate for obtaining optimal convergence rate.

6.4 Incorporating constraints into DO

Constrained optimization deals with problems of the form

minimizex f(x)

subject to x ∈ S,
(6.42)

where S is the constraint set, which we assume to be convex. The constraints are used to restrict
the set of values that the variables can take. There exists many algorithms for handling constraint
in convex optimization [18, 20], such as penalty method, projected subgradient method, Frank-
Wolfe algorithm, interior point methods, etc.

In this section, we introduce constraints into DO using a combination of the penalty method
(PM) and the projected subgradient method (PSM) [73], assuming we have access to the projec-

92

tion operator of S. First, we briefly review the two methods. Then, in Section 6.4.1, we describe
our constrained DO, called projected penalty DO (PPDO), and provide our rationale on why we
choose to combine the two methods. In Section 6.4.2, we perform a synthetic experiment to
verify PPDO.

Penalty method (PM) [73]: Suppose the set S in (6.42) is given by a set of equations

S = {x ∈ Rp : f≤k (x) ≤ 0, k = 1, . . . , n1; f=
l (x) = 0, l = 1, . . . , n2}. (6.43)

PM transforms the problem (6.42) into the following unconstrained optimization problem

minimize
x

f(x) + α

n1∑
k=1

(max(0, f≤k (x)))2 + α

n2∑
l=1

(f=
l (x))2, (6.44)

where α is a large-value hyperparameter. In words, the problem (6.44) severely penalizes the
constraint violations, causing the variable x to remain in the constrain set. It can be shown
that as α → ∞, the optimal solution of (6.44) approaches the optimal solution of the original
problem 6.42. However, it is not trivial to to solve (6.44) with large α, and this could lead to a
very slow convergence.

Projected subgradient method (PSM) [20]: Unlike PM which relaxes constrained prob-
lems to unconstrained ones, PSM directly solve the constrained problems by greedily taking the
subgradient step, then projecting the updated estimates back to constraint set. Mathematically,
this update rule is given by

xt+1 = ΠS(xt − µtvt), t = 0, 1, . . . , (6.45)

where vt ∈ ∂f(xt) is a subgradient of f at xt, and ΠS is the orthogonal projector to the set S.
The projection enforces the estimate xt to comply with the constraints in every iteration. The
downside of projected subgradient is that, apart from simple constraint sets where the projection
can be computed in closed-form, it may be computationally expensive to solve the projection
step as this requires solving an additional optimization problem in each iteration.

6.4.1 Projected penalty DO (PPDO)

In Section 3.2, we have shown that we can use DO with unknown penalty function. Here, we
adapt the approach to the unconstrained formulation in (6.44). Specifically, we will use DO to
learn the functions that penalizes constraint violation. In addition, we will combine this method

93

with the projection operator. This leads to the projected penalty DO (PPDO), which is given by

xt+1 = ΠS(x−Dt+1ĥ(xt)), (6.46)

where

ĥ(xt) =

 h(xt)

h≤(xt)

h=(xt)

 , (6.47)

where h : Rp → Rf is the feature function, which, for example, can be the feature used for
point cloud registration in Section 5.1, task-specific feature function from Section 3.2, or basis
functions from Section 6.2.1. The functions h≤ and h= are the feature functions for the inequal-
ity constraints and the equality constraints, resp. They can be derived based on the feature in
Sections 3.2 or 6.2.1. Note that since the constraint functions f≤k and f=

l are 1D functions, we
can derive the feature for each constraint independently, then simply concatenate them to form
h≤ and h=.

In order to learn the SUM, we simply solve the unconstrained linear least squares minimiza-
tion, similar to the learning rule in Section 3.1. However, we use the projected update rule
in (6.46) to update x

(i)
t instead of the unprojected version in (3.4).

Next, we provide the rationale why we wish to combine the PM with PSM. Based on the
interpretation that DO imitates gradient-based methods in unconstrained cases, we should be able
to apply the PM directly to DO without the projection. However, a downside of this approach
is that we often require a strong penalty on the constraint violation, and this could easily lead to
overfitting for learning-based algorithm. In particular, the weights in D of constraint features h≤

and h= would be very high compared to those of h to ensure the constraints are not violated. As
a result, since DO can be considered as updating xt with a fixed step size, these large weights
of the constraint features can cause the update ∆xt to be so large that xt − ∆xt will jump far
outside S , leading to divergence. On the other hand, using PSM requires us to learn the maps
using the following optimization problem

Dt+1 = arg min
D

n∑
i=1

‖x(i)
∗ − ΠS(x

(i)
t −Dh(i)(x

(i)
t))‖2

2. (6.48)

For a general set S, problem (6.48) is nonconvex and can be very difficult to solve.

We can see that using the update rule and the learning rule proposed earlier can handle the
drawbacks of both PM and PSM: we avoid overfitting of PM using the projection since all points
will be projected back inside S; and avoid having to solve nonconvex problem for learning the

94

maps of PSM by considering the penalty form of the constraints. This results in the PPDO
algorithm. The idea of combining PM and PSM is similar to the algorithm in [73]. However,
while PPDO ensures the constraints are satisfied in each iteration using the projector, [73] uses
Newton’s algorithm to move xt closer to the constraint set and does not enforce the constraints
in all iterations. In the next section, we perform an experiment to verify PPDO.

6.4.2 Experiments

Problem settings

We use the problem similar to 6.28, but we constrain the variables to lie in a convex constraint
set:

minimize
x̂

1

J

J∑
j=1

ϕ (Aj(x̂− yj)) , (6.49)

subject to x ∈ S, (6.50)

where constraint set S is given by

S = {x ∈ R2 : [x]1 ≥ 0, 0 ≤ [x]2 ≤ 0.75, ‖x‖2 ≤ 1}. (6.51)

Again, we use the same ϕ`2 ,ϕ`1 , and ϕIG from Section 6.2.3 in this experiment.

Algorithm settings

Here, we used the same algorithm settings as in Section 6.3.2, i.e., we include momentum terms
into DO and subgradient approaches. However, here we use PPDO algorithm for each DO instead
of the unconstrained version. For subgradient methods, we use projected subgradient method,
where we simply project the estimate parameters back to the constraint set in each iteration.

Results

The training errors and test errors of ϕ`2 , ϕ`1 , and ϕIG are shown in Figures 6.10, 6.11, and 6.12,
respectively. We can see similar convergence trends to those in Section 6.3.2 that the momentum
terms help speed up the convergence compared with not using momentum. However, due to
constraints, the overall convergence rate is slower than in Section 6.3.2. Still, we can see that DO
methods, especially the basis strategies, can successfully reduce the error faster than PSM. This

95

shows that our combination, inspired by PM and PSM, can be extended to allow constraints into
DO.

(a) Training error (b) Test Error

D20 D20τ0 D20τ1 D20τ2

B2 B2τ0 B2τ1 B2τ2

Subgrad
Subgrad+mmt

0 20 40 60 80 100

Iter t

10-3

10-2

10-1

100

M
ea

n
E

rr
or

0 20 40 60 80 100

Iter t

10-3

10-2

10-1

100

M
ea

n
E

rr
or

0 20 40 60 80 100

Iter t

10-4

10-2

100

M
ed

ia
n

E
rr

or
0 20 40 60 80 100

Iter t

10-4

10-2

100

M
ed

ia
n

E
rr

or

Figure 6.10: Constrained DO with ϕ`2 . (a) Training error. (b) Test error.

(a) Training error (b) Test Error

D20 D20τ0 D20τ1 D20τ2

B2 B2τ0 B2τ1 B2τ2

Subgrad
Subgrad+mmt

0 20 40 60 80 100

Iter t

10-2

10-1

100

M
ea

n
E

rr
or

0 20 40 60 80 100

Iter t

10-2

10-1

100

M
ea

n
E

rr
or

0 20 40 60 80 100

Iter t

10-3

10-2

10-1

100

M
ed

ia
n

E
rr

or

0 20 40 60 80 100

Iter t

10-3

10-2

10-1

100

M
ed

ia
n

E
rr

or

Figure 6.11: Constrained DO with ϕ`1 . (a) Training error. (b) Test error.

D20 D20τ0 D20τ1 D20τ2

B2 B2τ0 B2τ1 B2τ2

Subgrad
Subgrad+mmt

(a) Training error (b) Test Error

0 20 40 60 80 100

Iter t

10-2

10-1

100

M
ea

n
E

rr
or

0 20 40 60 80 100

Iter t

10-2

10-1

100

M
ea

n
E

rr
or

0 20 40 60 80 100

Iter t

10-3

10-2

10-1

100

M
ed

ia
n

E
rr

or

0 20 40 60 80 100

Iter t

10-3

10-2

10-1

100

M
ed

ia
n

E
rr

or

Figure 6.12: Constrained DO with ϕIG. (a) Training error. (b) Test error.

6.5 Chapter summary

In this chapter, we explore four generalizations of DO. (i) We introduce ICDO that uses inverse
composition update rule for registration tasks where the parameters form a group structure. We
demonstrate its potential on 3D rigid point cloud registration (PCReg), and show that the learned

96

maps of ICDO generalized to unseen shapes and that its performance matches those of the state-
of-the-art PCReg algorithms. (ii) We show how to derive the feature function as a combination
of basis functions, and empirically show that it can achieve better convergence results than the
discretization method from Section 3.2. We also show that the convergence can be faster than
that of the subgradient method even when the cost function is known, which is due to the fact
that DO learns the optimal step size that reduce the average error in each iteration. (iii) We
incorporate momentum terms into the feature h, and show that this helps speed up the conver-
gence. (iv) We extend DO to handle constraints by applying ideas from the penalty method and
projected subgradient method. These generalizations show that it is possible to import ideas
from conventional gradient-based algorithms to DO. This open doors for applying DO to a wider
range of applications and also strengthens the relation between DO and first-order optimization
techniques. Future works may explore other types of generalization, e.g., the cases where the
solution x∗ is not unique, learning to adapt the step sizes (similar to line search), etc., and also
verify these methods with real applications.

97

98

Chapter 7

Conclusions and Future Works

7.1 Contributions

In this thesis, we propose Discriminative Optimization (DO) as a learning-based approach for
solving computer vision tasks. DO searches the parameter space for a solution by following
a series of update vectors, which is computed by mapping feature vectors with a sequence of
linear maps. To apply DO to different tasks, we propose a framework to derive task-specific
feature functions, which is motivated by gradient methods for solving optimization problems.
Rather than following descent directions of a cost function, DO can be interpreted as learning to
imitating gradient methods on an unknown penalty function. While conventional optimization
fails if there is a mismatch between the cost function and the real noise distribution, DO learns
from training data to be robust to such nuisances, providing DO an advantage over conventional
optimization. Using synthetic experiments, we verify that DO can learn to cope with different
types of perturbations, and can still approximate the optimum of unknown cost functions.

We analyze the convergence properties of DO and show that under a different set of mono-

tonicity at a point and relaxed Lipschitz at a point conditions, the training error strictly decreases
in each iteration or may even converge to zero. By studying these conditions, we unveil the
connection between DO and generalized monotonicity and generalized convexity. From these
results, we show that DO converges under broader conditions that those of convexity. This al-
lows DO to handle certain nonconvex tasks, e.g., camera pose estimation, or learn more robust
solutions than those of conventional optimization.

We apply DO to the computer vision tasks of point cloud registration, camera pose estimation,
and image denoising. We show that DO can often outperform state-of-the-art algorithms in terms
of both computation time and accuracy.

Finally, we explore four generalizations of DO. (i) We show how to use the inverse composi-

99

tion operation as the update rule, enabling DO to handle registration tasks where the parameters
may combine under composition other than addition. (ii) We propose an alternative way of de-
riving feature function as a linear combination of basis functions. This reduces the number of
parameters to learn and allow DO to be used with high-dimensional residual functions. (iii) We
accelerate the convergence of DO using momentum terms. (iv) We propose projected-penalty
DO (PPDO) that can handle convex constraints on its parameters.

In conclusion, DO provides a new perspective on using training data to solve problems which
are traditionally solved as optimization problems. Techniques similar to DO which use a se-
quence of regressors have been applied to many tasks, but in this thesis we shed light on why
these techniques work. We also provide a way to apply DO to several tasks. However, we believe
DO is still in its infancy, and there are many questions left open. We explore some of these issues
in the next section.

7.2 Future work

Of the many questions left open, we list those that are interesting and are promising as future
avenue for research.

An end-to-end DO: We showed in Section 6.2 that the features of DO can be derived from
basis functions. If the basis functions are differentiable, then it is possible to learn DO in an
end-to-end fashion instead of sequentially learning each map greedily. In the same spirit as deep
neural networks, this may allow different objective functions to be used with DO, e.g., classi-
fication error. This could lead to the possibility of DO being used for classification problems,
and also for using DO in large-scale problems where we wish to estimate a large number of
parameters.

Learning with a set of solutions instead of a point: In this thesis, we assume that the
provided ground truth for each training instance is a single point, and to show convergence in
such case, we require to impose strict or strong monotonicity at a point. On the other hand, there
are many problems where the solution can be any point in a given set instead of a specific point,
e.g., finding the median of a set of numbers, solving geometric problems under homogeneous
coordinates, etc. Training DO so that it can deal with a set of solution would allow it to be
applied more problems. In terms of theory, this may lead to a new convergence result under the
regular monotonicity at a point, which is weaker than strict and strong monotonicity at a point.

Robustness to inaccurate ground truths: In many cases, it may not be possible to provide
the exact solution to a task as training data while it is possible to provide an approximate one.
In such case, our convergence results may not hold, as there may not exist D̂ where all samples

100

are monotone at their solutions. To handle such cases, it is vital to study the robustness of the
algorithm when the ground truths are inaccurate.

Adaptive use of the maps: The present DO framework uses each map once, except the last
map where we apply it until termination. A problem of this framework is that estimates which
are at different distances to the solutions will be updated using the same map, which may not be
the optimal approach and can hinder the convergence speed. It would be beneficial to have some
criteria to decide how many times we should apply each map, or even adopt a transition criteria
between the maps, similar to a finite state machine. This may help reduce the number of steps
required for convergence.

DO for factorization, bilinear relationship, and low-rank regularization: Many computer
vision problems rely on factorization or bilinear relationship of low-rank matrices, e.g., structure
from motion [101], motion segmentation [33], and photometric stereo [9]. There are two main
issues if we wish to use DO for these problems. First, due to gauge freedom, the solutions of these
factorization problems are not unique, thus it is difficult to provide the ground truth matrices.
Second, these problems are typically solved with block-wise coordinate descent [37]. It is not
clear how DO would behave in the intermediate steps, where we fix one matrix and solve for
another matrix. Also related is the problem of low-rank regularization [21], where the solution is
governed by singular values of the variable matrix instead of all elements. It is currently not clear
how DO can be applied to these problems. Additional modification and analysis are required,
and will lead to new approaches for solving large scale problems with numerous applications.

Imitation of higher-order or other classes of algorithms: In this work, we propose a
framework that imitates first-order algorithms. Based on the derivation of the feature function
in Section 3.2, it should also be possible to derive different frameworks that imitate higher-order
algorithms, such as the Newton’s algorithm or the Levenberg-Marquardt algorithm [46]. Doing
so will allow DO to handle problems with high condition numbers, which are still a challenge
for the approach in this thesis.

101

102

Appendix A

Proofs for Theoretical Results

In this chapter, we provide the proofs for the theoretical results in the thesis.

A.1 Proof of Thm. 1

Theorem 1. (Convergence of SUM’s training error) Given a training set {(x(i)
0 ,x

(i)
∗ ,h(i))}Ni=1,

if there exists a linear map D̂ ∈ Rp×f where D̂h(i) isM+(x
(i)
∗) for all i, and if there exists an i

where x
(i)
t 6= x

(i)
∗ , then the update rule:

x
(i)
t+1 = x

(i)
t −Dt+1h

(i)(x
(i)
t), (A.1)

with Dt+1 ⊂ Rp×f obtained from (3.5), guarantees that the training error strictly decreases in

each iteration:
N∑
i=1

‖x(i)
∗ − x

(i)
t+1‖2

2 <

N∑
i=1

‖x(i)
∗ − x

(i)
t ‖2

2. (A.2)

Moreover, if D̂h(i) isM++(x
(i)
∗) and (H,L)-RL(x

(i)
∗), then the training error converges to zero.

If H = 0 then the training error converges to zero linearly.

Proof. First, we show the case of strictly monotone at a point. For simplicity, we denote x
(i)
t+1

and x
(i)
t as x

(i)
+ and x(i), respectively. We assume that not all x(i)

∗ = x(i), otherwise all x(i)
∗ are

already at their stationary points. Thus, there exists an i such that (x(i) − x
(i)
∗)>D̂h(i)(x(i)) > 0.

We need to show that
N∑
i=1

‖x(i)
∗ − x

(i)
+ ‖2

2 <

N∑
i=1

‖x(i)
∗ − x(i)‖2

2. (A.3)

103

This can be shown by letting D̄ = αD̂ where:

α =
β

γ
, (A.4)

β =
N∑
i=1

(x(i) − x(i)
∗)>D̂h(i)(x(i)), (A.5)

γ =
N∑
i=1

‖D̂h(i)(x(i))‖2
2. (A.6)

Since there exists an i such that (x(i) − x
(i)
∗)>D̂h(x(i)) > 0, both β and γ are both positive,

and thus α is also positive. Now, we show that the training error decreases in each iteration as
follows:

N∑
i=1

‖x(i)
∗ − x

(i)
+ ‖2

2 =
N∑
i=1

‖x(i)
∗ − x(i) + Dt+1h

(i)(x(i))‖2
2 (A.7)

≤
N∑
i=1

‖x(i)
∗ − x(i) + D̄h(i)(x

(i)
t)‖2

2 (A.8)

=
N∑
i=1

‖x(i)
∗ − x(i)‖2

2+ (A.9)

+
N∑
i=1

‖αD̂h(i)(x(i))‖2
2︸ ︷︷ ︸

α2γ

+

+ 2α
N∑
i=1

(x(i)
∗ − x(i))>D̂h(i)(x(i))︸ ︷︷ ︸

=−β

=
N∑
i=1

‖x(i)
∗ − x(i)‖2

2 + α2γ − 2αβ (A.10)

=
N∑
i=1

‖x(i)
∗ − x(i)‖2

2 +
β2

γ
− 2

β2

γ
(A.11)

=
N∑
i=1

‖x(i)
∗ − x(i)‖2

2 −
β2

γ︸︷︷︸
>0

(A.12)

104

<

N∑
i=1

‖x(i)
∗ − x(i)‖2

2. (A.13)

Eq. A.8 is due to Dt+1 being the optimal matrix that minimizes the squared error. Note that
Thm. 1 does not guarantee that the error of each sample i reduces in each iteration, but guarantees
the reduction in the average error.

For the case of strongly monotone at a point, we make additional RL assumption that there
exist H ≥ 0, L > 0 such that ‖D̂h(i)(x(i))‖2

2 ≤ H + L‖x(i)
∗ − x(i)‖2

2 for all x and i. Thus, we
have

β =
N∑
i=1

(x(i) − x(i)
∗)>D̂h(i)(x(i)) ≥ m

N∑
i=1

‖x(i) − x(i)
∗ ‖2

2, (A.14)

γ =
N∑
i=1

‖D̂h(i)(x(i))‖2
2 ≤ NH + L

N∑
i=1

‖x(i)
∗ − x(i)‖2

2. (A.15)

Also, let us denote the training error in iteration k as Et:

Et =
N∑
i=1

‖x(i)
∗ − x

(i)
t ‖2

2. (A.16)

From (A.12), we have

Et+1 = Et −
β2

γ
(A.17)

≤ Et −
m2E2

t

NH + LEt
(A.18)

=

(
1− m2Et

NH + LEt

)
Et. (A.19)

Recursively applying the above inequality, we have

Et+1 ≤ E0

t+1∏
l=1

(
1− m2El

NH + LEl

)
. (A.20)

Next, we will show the following result:

lim
t→∞

Et+1 = 0 (A.21)

This can be shown by contradiction. Suppose Et converges to some positive number µ > 0.
Since {Et}t is a nonincreasing sequence (A.13), we have that E0 > Et ≥ µ for all t > 0. This

105

means
0 ≤ 1− m2Et

NH + LEt
< 1− m2µ

NH + LE0

< 1. (A.22)

By recursively multiplying (A.22), we have

lim
t→∞

t+1∏
l=1

(
1− m2El

NH + LEl

)
≤ lim

t→∞

(
1− m2µ

NH + LE0

)t+1

(A.23)

= 0. (A.24)

Combining (A.24) and (A.20), we have

lim
t→∞

Et+1 ≤ E0 lim
t→∞

t+1∏
l=1

(
1− m2El

NH + LEl

)
= 0. (A.25)

This contradicts our assumption that {Et}t converges to µ > 0. Thus, the training error converges
to zero.

Next, we consider the case where H = 0. In this case, in (A.18), we will have

Et+1 ≤ Et −
m2E2

t

LEt
(A.26)

=

(
1− m2

L

)
Et. (A.27)

Recursively applying the above inequality, we have

Et+1 ≤
(

1− m2

L

)t+1

E0. (A.28)

This proves that the training error converges linearly to zero.

A.2 Proof of Prop. 2

Proposition 2. (Pseudomonotonicity and monotonicity at a point) If a function f : Rp → Rp

is pseudomonotone (resp., strictly pseudomonotone, strongly pseudomonotone) and f(x∗) = 0p,

then f is monotone (resp., strictly monotone, strongly monotone) at x∗.

Proof. We will show the case of a pseudomonotone f . From Def. 7, let x′ = x∗, then we have

(x− x∗)
>f(x∗) = 0, (A.29)

106

which, by the definition of pseudomonotonicity, implies

(x− x∗)
>f(x) ≥ 0, (A.30)

for all x ∈ Rp. That means f is monotone at x∗. The proofs for strict and strong cases follow
similar steps.

A.3 Proof of Prop. 4

Proposition 4. (Pseudomonotone multivalued map and monotonicity at a point) Suppose a

multivalued map f is pseudomonotone (resp., strictly, strongly) with 0p ∈ f(x∗). Let f̂ be an

induced function of f . Then f̂ is monotone (resp., strictly, strongly) at x∗.

Proof. We will show the case of a pseudomonotone f . From Def. 9, let x′ = x∗. Since 0p ∈
f(x∗), we have

(x− x∗)
>0p = 0, (A.31)

which, by the definition of pseudomonotonicity, implies for all u ∈ f(x)

(x− x∗)
>u ≥ 0, (A.32)

for all x ∈ Rp. Since f̂(x) ∈ f(x) for all x, we have that f̂ is monotone at x∗. The proofs for
strict and strong cases follow similar steps.

A.4 Proof of Prop. 5

Proposition 5. (Convergence of the training error with an unknown differentiable cost func-
tion) Given a training set {(x(i)

0 ,x
(i)
∗ , {g(i)

j }
Ji
j=1)}Ni=1, where x

(i)
0 ,x

(i)
∗ ∈ Rp and g

(i)
j : Rp → Rd

differentiable, if there exists a function ϕ : Rd → R such that for each i,
∑Ji

j=1 ϕ(g
(i)
j (x(i))) is

differentiable strictly pseudoconvex with the minimum at x(i)
∗ , then the training error of DO with

h from (3.29) strictly decreases in each iteration. Alternatively, if
∑Ji

j=1 ϕ(g
(i)
j (x(i))) is differen-

tiable strongly pseudoconvex with Lipschitz continuous gradient, then the training error of DO

converges to zero.

Proof. Let Φ(i) = 1
J

∑Ji
j=1 ϕ(g(i)(x)). We will also make use of the follow shorthand notation to

107

represent the inner products between D an h that results in a vector in Rp:

Dh(x) =

∑d

k=1

∫
V
D(v, k)h(v, k, 1;x)dv

...∑d
k=1

∫
V
D(v, k)h(v, k, p;x)dv

 ∈ Rp, (A.33)

for V = Rd, D : Rd × {1, . . . , d} → R and h : Rd × {1, . . . , d} × {1, . . . , l} × Rp → R.

We divide the proof into two cases:

Case 1: Differentiable strictly pseudoconvex Φ(i).

Since Φ(i) is differentiable strictly pseudoconvex, by Prop. 1, its gradient ∇Φ(i) is strictly
pseudomonotone. Also, since Φ(i) has a minimum at x

(i)
∗ , ∇Φ(i)(x

(i)
∗) = 0p. By Prop. 2,

this means that ∇Φ(i) is strictly monotone at x(i)
∗ . If we use h from (3.29) and set D̂(v, k)

to
[
∂
∂v
ϕ(v)

]
k
, then we have that D̂h(i) = ∇Φ(i), meaning D̂h(i) is strictly monotone at x(i)

∗ .
Thus, by Thm. 1, we have that the training error of DO strictly decreases in each iteration.

Case 2: Differentiable strongly pseudoconvex Φ(i).

The proof is similar to case 1, but differentiable strongly pseudoconvex Φ(i) will have D̂h(i) =

∇Φ(i) which is strongly pseudomonotone at x(i)
∗ . Since ∇Φ(i) = D̂h(i) is Lipschitz continuous

and ∇Φ(i)(x
(i)
∗) = 0p, this means

‖D̂h(i)(x(i))‖2 ≤ L‖x(i) − x(i)
∗ ‖2, (A.34)

where L is the Lipschitz constant. Thus, by Thm. 1, we have that the training error of DO
converges to zero.

A.5 Proof of Prop. 6

Proposition 6. (Convergence of the training error with an unknown nondifferentiable con-
vex cost function) Given a training set {(x(i)

0 ,x
(i)
∗ , {g(i)

j }
Ji
j=1)}Ni=1, where x

(i)
0 ,x

(i)
∗ ∈ Rp and

g
(i)
j : Rp → Rd differentiable, if there exists a function ϕ : Rd → R such that for each i,∑Ji
j=1 ϕ(g

(i)
j (x(i))) is strictly convex with the minimum at x(i)

∗ , then the training error of DO with

h from (3.29) strictly decreases in each iteration. Alternatively, if
∑Ji

j=1 ϕ(g
(i)
j (x(i))) is strongly

convex with the minimum at x(i)
∗ and there exist L > 0, H ≥ 0 such that (1/J)

∑Ji
j=1 ϕ̄(g

(i)
j (x(i)))

is (H,L)-RL(x
(i)
∗) for all i,x(i), where ϕ̄ is any induced function of ∂ϕ, then the training error

of DO converges to zero.

108

Proof. Let Φ(i) = 1
J

∑Ji
j=1 ϕ(g(i)(x)). We divide the proof into two cases:

Case 1: Strictly convex Φ(i).
The subdifferential of Φ(i) is a multivalued map [92]:

∂Φ(i) =
1

J
∂

J∑
j=1

ϕ(g
(i)
j (x)) =

1

J

J∑
j=1

∂g
(i)
j (x)

∂x
∂ϕ(g

(i)
j (x)), (A.35)

where ∂ denotes subdifferential. If we use h from (3.29) and set D̂(v, k) to [ϕ̄(v)]k, we have
that D̂h(i)(x) ∈ ∂Φ(i)(x).

From Prob. 3, we know that ∂Φ(i) is a strictly monotone multivalued map, which implies it
is also strictly pseudomonotone [54]. Since Φ(i) is strictly convex and has a global minimum at
x

(i)
∗ , we know that ∂Φ(i) has zero only at x(i)

∗ . Then, by Prop. 4, D̂h(i) is strictly monotone at
x

(i)
∗ . Thus, by Thm. 1, we have that the training error of DO strictly decreases in each iteration.

Case 2: Strongly convex Φ(i).
The proof is similar to case 1, but strongly convex Φ(i) will have D̂h(i)(x) ∈ ∂Φ(i)(x) which

is strongly monotone at x(i)
∗ . By the relaxed Lipschitz at a point assumption (RL), we also have

that ‖D̂h(i)(x(i))‖2
2 ≤ H + L‖x(i)

∗ − x
(i)
t ‖2

2 for all i,x(i). Thus, by Thm. 1, we have that the
training error of DO converges to zero.

Note that many useful convex functions have subgradients that follow relaxed Lipschitz at

a point assumption (RL). Examples of such functions include differentiable functions with
Lipschitz gradient, e.g., squared `2 norm, and functions which are point-wise maximum of a
finite number of affine functions, e.g., `1 norm. Note that, however, a function which is a point-
wise maximum of a finite number of affine functions is not strongly monotone at its minimum
since its subgradients are bounded by a constant.

109

110

Appendix B

Details and Analysis of ICDO for PCReg

In this appendix, we provide the details of ICDO from Section 6.1 which are specific to the task
of rigid point cloud registration (PCReg). First, we show how to derive the feature function where
its dimension is independent of the point cloud’s dimension. Then, we discuss the computational
complexity of ICDO for PCReg, followed by an analysis on what the maps learn.

B.1 Deriving the feature function

In this section, we describe how to derive the feature function h based on the gradient of (6.16),
reproduced here for convenience:

minimize
x̃

J(x̃) =

NM∑
i=1

NS∑
j=1

ϕ(‖T (mi; x̃)− T (sj;x)‖) (B.1)

We parametrize rotation with the axis-angle vector in R3, but the derivation can also be used
with other parametrizations. The steps to derive h is similar to those in Section 3.2.2. First,
we take the cost’s derivative and represent it as an inner product between two functions. Then,
we discretize the functions into a feature vector h and a matrix D, allowing us to learn D from
training data. The details are as follows.

Define g to be the following residual function

gij(x̃;x) = T (mi; x̃)− T (sj;x), (B.2)

111

where x is the current parameter estimate. Thus, (B.1) is modified into

minimize
x̃∈R6

J(x̃) =

NM∑
i=1

NS∑
j=1

ϕ(‖gij(x̃;x)‖). (B.3)

Next, we compute ∆x = −∂J(x̃)
∂x̃

at x̃ = 06. For simplicity, we consider a single term (i, j):

∆xij , −
∂

∂x̃
ϕ(‖gij(x̃;x)‖)

∣∣∣∣
x̃=06

= −

[
−[mi]×

I3

]
gij(06;x)

‖gij(06;x)‖︸ ︷︷ ︸
=wij

∂ϕ(‖gij(x̃;x)‖)
∂‖gij(x̃;x)‖

∣∣∣∣
x̃=06

(B.4)

We can see that only the rightmost term is dependent on ϕ. Since we assume we do not have
access to ϕ, we will learn this term from training data using the algorithm in Section 6.1.3. To do
so, we need to express ∆x as Dh with ϕ placed inside D and other information places inside h.
We do this by replacing ∂

∂y
ϕ(y) with a function φ : R→ R, then factorizing it as the convolution

with Dirac’s delta function δ:

∆xij = −wijφ(‖gij(06;x)‖) (B.5)

= −wij

∫
V

φ(v)δ(v − ‖gij(06;x)‖)dv, (B.6)

where V = R. Consider only an element l of ∆xij , we see

[∆xij]l = −
∫
V

[wij]lφ(v)δ(v − ‖gij(06;x)‖)dv. (B.7)

We can see that (B.7) is an inner product between −φ(v) and [wij]lδ(v − ‖gij(06;x)‖). This
is similar to [Dh]l, which can be considered as the inner product between h and row l of D.
Following this connection, we express the product between φ(v) and −[wij]lδ(v−‖gij(06;x)‖)
as a matrix-vector product [Dh]l. To do so, we discretize the space V into q boxes, leading
to (B.7)’s discretized counterpart:

[∆xij]l ≈ −φ>[wij]leγq,r(‖gij(06;x)‖), (B.8)

where γq,r : R → {0, 1, . . . , r} discretizes the segment [0, q] into r boxes1; δ is discretized into

1This differs from γq,r in (3.16) which discretizes the segment [−q, q].

112

the standard basis vector eβ ∈ {0, 1}r (We define e0 = 0r); and φ is discretized into a vector
φ ∈ Rr. With these discretizations, we can put everything back to the full ∆x as

∆x =

NM∑
i=1

NS∑
j=1

∆xij ≈ Dh(x;M,S), (B.9)

D = I6 ⊗ φ> (B.10)

h(x;M,S) = −
NM∑
i=1

NS∑
j=1

6⊕
l=1

[wij]leγq,r(‖gij(06;x)‖), (B.11)

where ⊗ is the Kronecker product, and
⊕

is vector concatenation. We can see that (B.9) factor-
izes ∆x in (B.4) into a product of two terms: D ∈ R6×6r which contains the unknown φ, and
h : R6×(RNM×RNS)→ R6r which contains the known information about the two point clouds.
This factorization allows us to use h as the feature function to learn the update maps with the
algorithm in Section 6.1.3.

Our derivation of the feature function differs from that in Section 3.2.2. If we follow Sec-
tion 3.2.2, we will consider ϕ̂(gij(x̃;x)) with ϕ̂ : R3 → R instead of ϕ(‖gij(x̃;x)‖) with
ϕ : R → R. Using ϕ̂ would allow learning an anisotropic penalty instead of an isotropic one in
ϕ, but the feature h of ϕ̂ will have the dimension of 6r3 for 3D cases. This is much larger than
6r of (B.11), which is independent of the point cloud’s dimension. Moreover, the maps learned
from ϕ̂ would require a much larger number of training data to prevent overfitting.

B.2 Computational complexity

We can see that the most demanding step of ICDO is the computation of the feature h, which
is O(NMNS) due to the pairwise residual gij . This is equivalent to straightforward imple-
mentations of other PCReg algorithms, as they all require computing the pairwise distances.
However, ICP can use kd-tree to find the nearest neighbors, which reduces the complexity to
O(NM logNS). Similarly, Gaussian-based approaches, such as CPD [80], KC [103], and GMM-
Reg [61], can use fast Gauss transform (FGT) [53] to compute the GAussian kernels, which
reduces the complexity to O(NM + NS). Unfortunately, the function learned by ICDO can be
more general and we do not know of a way to improve its complexity.

113

(a)

(b)

(c)

1

2

3

4

5

6

100 200 300 400 500 600

Residual range
0 1 2 3

-20

0

20

40

60

N
um

. I
nt

.

Residual range
0 1 2 3

0

5

10

15

N
um

. I
nt

.

Residual range
0 1 2 3

0

5

10

Residual range
0 1 2 3

-50

0

50

100

Figure B.1: A visualization of the maps Dt. (a) The learned matrix D5 (blue - low value, yellow
- high value). (b) Plots of the diagonal blocks φ1

t and φ4
t of Dt for different t, where we align

each element in the vectors to the residual range [0, q] they represent. Note that the length in
x-axis of each vector differs since q decreases as t increases. (c) Numerical integration of φ1

t and
φ4
t from (b).

B.3 Analyzing the maps

Figure B.1a shows D5 as an example of the learned maps. Here, φbt denotes the vector in the
diagonal block b of map Dt. We observe that φ1

t , φ
2
t , and φ3

t which map to the update in
rotation r are similar, while φ4

t , φ
5
t , and φ6

t for translation t are also similar. This is because the
distribution of the residuals is isotropic. Since the maps of the same type are similar, we visualize
φ1
t and φ4

t of different t in Figure B.1b. We can see that the peaks of the curves move toward 0

as t increases. Since we can interpret the maps as imitating a gradient map (Section 3.2.3), we
also show the numerical integration of φ1

t and φ4
t in Figure B.1c, where we can see the functions

squeeze closer to 0. These visualizations indicate that ICDO is learning an annealing schedule
for PCReg from training data, unlike previous works, e.g., GMMReg, which need to set one
manually. Note that since the maps of rotation and translation are different, the vector fields of
the updates cannot be integrated into a single cost function2.

2We tried to learn a shared φ for all rotation and translation that allows numerical integration to a cost function,
but its result was not good.

114

Bibliography

[1] A. Agarwal, C. V. Jawahar, and P. J. Narayanan. A survey of planar homography esti-
mation techniques. Technical report, International Institute of Information Technology,
India, 2005.

[2] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, and
N. de Freitas. Learning to learn by gradient descent by gradient descent. In Proc. Neural

Information Processing Systems, 2016.

[3] E. Antonakos, P. Snape, G. Trigeorgis, and S. Zafeiriou. Adaptive cascaded regression. In
Proc. Int. Conf. Image Processing, 2016.

[4] S. Avidan. Support vector tracking. IEEE Trans. Pattern Anal. Mach. Intell., 26(8):1064–
1072, 2004.

[5] J. A. Bagnell. An invitation to imitation. Technical report, Carnegie Mellon University,
2015.

[6] S. Baker and I. Matthews. Lucas-kanade 20 years on: A unifying framework. Int. J.

Computer Vision, 56(3):221–255, 2004.

[7] J. T. Barron. A more general robust loss function. arXiv preprint arXiv:1701.03077, 2017.

[8] R. Basri, L. Costa, D. Geiger, and D. Jacobs. Determining the similarity of deformable
shapes. Vision Research, 38(15-16):2365–2385, 1998.

[9] R. Basri, D. Jacobs, and I. Kemelmacher. Photometric stereo with general, unknown
lighting. Int. J. Computer Vision, 72(3):239–257, 2007.

[10] E. Bayro-Corrochano and J. Ortegn-Aguilar. Lie algebra approach for tracking and 3D
motion estimation using monocular vision. Image and Vision Computing, 25(6):907921,
2007.

[11] E. Bayro-Corrochano and J. Ortegon-Aguilar. Lie algebra template tracking. In Proc. Int.

Conf. Pattern Recognition, 2004.

[12] E. Bayro-Corrochano and J. Ortegón-Aguilar. Lie algebra approach for tracking and 3d

115

motion estimation using monocular vision. Image and Vision Computing, 25(6):907–921,
2007.

[13] A. Ben-Israel and B. Mond. What is invexity? The ANZIAM Journal, 28(1):1–9, 1986.

[14] P. Bergström and O. Edlund. Robust registration of point sets using iteratively reweighted
least squares. Computational Optimization and Applicat., 58(3):543–561, 2014.

[15] M. Bertero, T. A. Poggio, and V. Torre. Ill-posed problems in early vision. Proceedings

of the IEEE, 76(8):869–889, Aug 1988.

[16] P. J. Besl and H. D. McKay. A method for registration of 3-D shapes. IEEE Trans. Pattern

Anal. Mach. Intell., 14(2):239–256, 1992.

[17] M. Black and A. Rangarajan. On the unification of line processes, outlier rejection, and
robust statistics with applications in early vision. Int. J. Computer Vision, 19(1):57–91,
1996.

[18] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[19] S. Boyd, L. Xiao, and A. Mutapcic. Subgradient methods. Lecture Notes of EE392o,
Stanford University, 2003.

[20] S. Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends in

Machine Learning, 8(3-4):231–357, 2015.

[21] R. Cabral, F. De la Torre, J. P. Costeira, and A. Bernardino. Unifying nuclear norm and
bilinear factorization approaches for low-rank matrix decomposition. In Proc. Int. Conf.

Computer Vision, 2013.

[22] D. Campbell and L. Petersson. An adaptive data representation for robust point-set regis-
tration and merging. In Proc. Int. Conf. Computer Vision, 2015.

[23] X. Cao, Y. Wei, F. Wen, and J. Sun. Face alignment by explicit shape regression. In Proc.

Conf. Computer Vision and Pattern Recognition, 2012.

[24] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik. Human pose estimation with itera-
tive error feedback. In Proc. Conf. Computer Vision and Pattern Recognition, 2016.

[25] A. Chambolle, V. Caselles, M. Novaga, D. Cremers, and T. Pock. An introduction to
Total Variation for Image Analysis. working paper or preprint, Nov. 2009. URL https:

//hal.archives-ouvertes.fr/hal-00437581.

[26] T. Chan, S. Esedoglu, F. Park, and A. Yip. Total variation image restoration: Overview
and recent developments. In N. Paragios, Y. Chen, and O. Faugeras, editors, Handbook of

Mathematical Models in Computer Vision, pages 17–31. Springer US, Boston, MA, 2006.

116

https://hal.archives-ouvertes.fr/hal-00437581
https://hal.archives-ouvertes.fr/hal-00437581

[27] C.-C. Chang and C.-J. Lin. Training v-support vector regression: theory and algorithms.
Neural Computation, 14(8):1959–1977, 2002.

[28] Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil, T. P. Lillicrap, and N. de Fre-
itas. Learning to learn for global optimization of black box functions. arXiv preprint

arXiv:1611.03824, 2016.

[29] A. Collet, D. Berenson, S. S. Srinivasa, and D. Ferguson. Object recognition and full
pose registration from a single image for robotic manipulation. In Int. Conf. Robotics and

Automation, 2009.

[30] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active shape models-their training
and application. Computer Vision and Image Understanding, 61(1):38–59, 1995.

[31] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. In Proc. Euro-

pean Conf. Computer Vision, 1998.

[32] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. IEEE Trans.

Pattern Anal. Mach. Intell., 23(6):681–685, 2001.

[33] J. P. Costeira and T. Kanade. A multibody factorization method for independently moving
objects. Int. J. Computer Vision, 29(3):159–179, 1998.

[34] D. Cristinacce and T. F. Cootes. Boosted regression active shape models. In Proc. British

Machine Vision Conf., 2007.

[35] B. Curless and M. Levoy. A volumetric method for building complex models from range
images. In Proceedings of the 23rd annual conference on Computer graphics and inter-

active techniques, pages 303–312. ACM, 1996.

[36] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proc.

Int. Conf. Computer Vision, 2005.

[37] A. Del Bue, J. Xavier, L. Agapito, and M. Paladini. Bilinear modeling via augmented
lagrange multipliers (BALM). IEEE Trans. Pattern Anal. Mach. Intell., 34(8):1496–1508,
2012.

[38] D. DeTone, T. Malisiewicz, and A. Rabinovich. Deep image homography estimation.
arXiv preprint arXiv:1606.03798, 2016.

[39] O. Devolder, F. Glineur, and Y. Nesterov. First-order methods with inexact oracle: the
strongly convex case. Technical report, Center for Operations Research and Econometrics,
2013.

[40] O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex optimiza-

117

tion with inexact oracle. Mathematical Programming, 146(1-2):37–75, 2014.

[41] F. Diego and F. A. Hamprecht. Structured regression gradient boosting. In Proc. Conf.

Computer Vision and Pattern Recognition, 2016.

[42] T. G. Dietterich, A. Ashenfelter, and Y. Bulatov. Training conditional random fields via
gradient tree boosting. In Proc. Int. Conf. Machine Learning, 2004.

[43] P. Dollár, P. Welinder, and P. Perona. Cascaded pose regression. In Proc. Conf. Computer

Vision and Pattern Recognition, 2010.

[44] L. Ferraz, X. Binefa, and F. Moreno-Noguer. Very fast solution to the PnP problem with
algebraic outlier rejection. In Proc. Conf. Computer Vision and Pattern Recognition, 2014.

[45] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting
with applications to image analysis and automated cartography. Commun. of the ACM, 24
(6):381–395, June 1981.

[46] A. Fitzgibbon. Robust registration of 2D and 3D point sets. In Proc. British Machine

Vision Conf., 2001.

[47] J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of

Statistics, 29(5):1189–1232, 2001.

[48] G. Goh. Why momentum really works. Distill, 2017. doi: 10.23915/distill.00006. URL
http://distill.pub/2017/momentum.

[49] S. Gold, A. Rangarajan, C.-P. Lu, P. Suguna, and E. Mjolsness. New algorithms for 2D
and 3D point matching: pose estimation and correspondence. Pattern Recognition, 38(8):
1019–1031, 1998.

[50] V. Golyanik, S. Aziz Ali, and D. Stricker. Gravitational approach for point set registration.
In Proc. Conf. Computer Vision and Pattern Recognition, 2016.

[51] R. C. Gonzalez and R. E. Woods. Digital Image Processing (3rd Edition). Prentice-Hall,
Inc., 2006.

[52] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[53] L. Greengard and J. Strain. The fast gauss transform. SIAM Journal on Scientific and

Statistical Computing, 12(1):79–94, 1991.

[54] N. Hadjisavvas and S. Schaible. Generalized monotone multivalued maps. In Encyclope-

dia of Optimization, pages 1193–1197. Springer, 2001.

[55] B. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction.

118

http://distill.pub/2017/momentum
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Springer, 2004.

[56] M. Harker and P. O’Leary. Least squares surface reconstruction from measured gradient
fields. In Proc. Conf. Computer Vision and Pattern Recognition, 2008.

[57] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cambridge
university press, 2003.

[58] R. I. Hartley. In defense of the eight-point algorithm. IEEE Trans. Pattern Anal. Mach.

Intell., 19(6):580–593, 1997.

[59] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[60] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial transformer networks. In Proc.

Neural Information Processing Systems, 2015.

[61] B. Jian and B. C. Vemuri. Robust point set registration using gaussian mixture models.
IEEE Trans. Pattern Anal. Mach. Intell., 33(8):1633–1645, 2011.

[62] F. Jurie and M. Dhome. Hyperplane approximation for template matching. IEEE Trans.

Pattern Anal. Mach. Intell., 24(7):996–1000, 2002.

[63] S. Karamardian and S. Schaible. Seven kinds of monotone maps. J. Optimization and

Applicat., 66(1):37–46, 1990.

[64] Q. Ke and T. Kanade. Robust l1 norm factorization in the presence of outliers and missing
data by alternative convex programming. In Proc. Conf. Computer Vision and Pattern

Recognition, 2005.

[65] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convolutional network for real-time
6-dof camera relocalization. In Proc. Int. Conf. Computer Vision, 2015.

[66] L. Kneip, D. Scaramuzza, and R. Siegwart. A novel parametrization of the perspective-
three-point problem for a direct computation of absolute camera position and orientation.
In Proc. Conf. Computer Vision and Pattern Recognition, 2011.

[67] H. Le, T.-J. Chin, and D. Suter. An exact penalty method for locally convergent maximum
consensus. In Proc. Conf. Computer Vision and Pattern Recognition, 2017.

[68] V. Lepetit, F. Moreno-Noguer, and P. Fua. EPnP: An accurate o(n) solution to the PnP
problem. Int. J. Computer Vision, 81(2):155–166, 2008.

[69] S. Li, C. Xu, and M. Xie. A robust O(n) solution to the perspective-n-point problem. IEEE

Trans. Pattern Anal. Mach. Intell., 34(7):1444–1450, 2012.

[70] C.-H. Lin and S. Lucey. Inverse compositional spatial transformer networks. In Proc.

119

Conf. Computer Vision and Pattern Recognition, 2017.

[71] X. Liu. Discriminative face alignment. IEEE Trans. Pattern Anal. Mach. Intell., 31(11):
1941–1954, 2009.

[72] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Computer

Vision, 60(2):91–110, 2004.

[73] D. G. Luenberger. A combined penalty function and gradient projection method for non-
linear programming. J. Optimization and Applicat., 14(5):477–495, 1974.

[74] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry. An Invitation to 3-D Vision. Springer-Verlag
New York, 2004.

[75] L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient descent.
In Proc. Neural Information Processing Systems, 1999.

[76] P. Meer, D. Mintz, A. Rosenfeld, and D. Y. Kim. Robust regression methods for computer
vision: A review. Int. J. Computer Vision, 6(1):59–70, 1991.

[77] A. Mian, M. Bennamoun, and R. Owens. On the repeatability and quality of keypoints for
local feature-based 3D object retrieval from cluttered scenes. Int. J. Computer Vision, 89
(2):348–361, 2010.

[78] V. Mnih, N. Heess, A. Graves, et al. Recurrent models of visual attention. In Proc. Neural

Information Processing Systems, 2014.

[79] H. Mobahi and J. W. Fisher. Coarse-to-fine minimization of some common nonconvex-
ities. In Proc. Int. Conf. Energy Minimization Methods in Computer Vision and Pattern

Recognition, 2015.

[80] A. Myronenko and X. Song. Point set registration: Coherent point drift. IEEE Trans.

Pattern Anal. Mach. Intell., 32(12):2262–2275, 2010.

[81] Y. Nesterov. Introductory lectures on convex optimization: a basic course. Springer, 2004.

[82] A. Ng and S. Russell. Algorithms for inverse reinforcement learning. In Proc. Int. Conf.

Machine Learning, 2000.

[83] C. V. Nguyen, S. Izadi, and D. Lovell. Modeling kinect sensor noise for improved 3d re-
construction and tracking. In Int. Conf. 3D Imaging, Modeling, Processing, Visualization

and Transmission, 2012.

[84] M. H. Nguyen and F. De la Torre. Metric learning for image alignment. Int. J. Computer

Vision, 88(1):69–84, 2010.

[85] K. Nishino and K. Ikeuchi. Robust simultaneous registration of multiple range images.

120

Digitally Archiving Cultural Objects, pages 71–88, 2008.

[86] P. Ochs, A. Dosoviskiy, T. Brox, and T. Pock. An iterated `1 algorithm for non-smooth
non-convex optimization in computer vision. In Proc. Conf. Computer Vision and Pattern

Recognition, 2013.

[87] K. Paliouras and A. A. Argyros. Towards the automatic definition of the objective func-
tion for model-based 3d hand tracking. In Man–Machine Interactions 4, pages 353–363.
Springer, 2016.

[88] F. Pomerleau, M. Liu, F. Colas, and R. Siegwart. Challenging data sets for point cloud
registration algorithms. The International Journal of Robotics Research, 31(14):1705–
1711, Dec. 2012.

[89] F. Pomerleau, F. Colas, R. Siegwart, et al. A review of point cloud registration algorithms
for mobile robotics. Foundations and Trends in Robotics, 4(1):1–104, 2015.

[90] R. T. Rockafellar. Convex analysis. Princeton University Press, 1970.

[91] E. Rodolà, A. Albarelli, F. Bergamasco, and A. Torsello. A scale independent selection
process for 3d object recognition in cluttered scenes. IJCV, 102(1-3):129–145, 2013.

[92] G. Romano. New results in subdifferential calculus with applications to convex optimiza-
tion. Appl. Math. and Optimization, 32(3):213–234, 1995.

[93] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In Proc. Int. Conf.

3-D Digital Imaging and Modeling, 2001.

[94] E. K. Ryu and S. Boyd. A primer on monotone operator methods. Appl. Math. and

Computation, 15(1):3–43, 2016.

[95] J. Saragih and R. Goecke. Iterative error bound minimisation for aam alignment. In Proc.

Int. Conf. Pattern Recognition, 2006.

[96] N. Z. Shor. Minimization Methods for Non-Differentiable Functions. Springer-Verlag
Berlin, 1985.

[97] Stanford Computer Graphics Laboratory. The stanford 3D scanning repository. https:
//graphics.stanford.edu/data/3Dscanrep/, Aug 2014. Accessed: 2016-
08-31.

[98] C. V. Stewart. Robust parameter estimation in computer vision. SIAM review, 41(3):
513–537, 1999.

[99] Y. Sun, X. Wang, and X. Tang. Deep convolutional network cascade for facial point
detection. In Proc. Conf. Computer Vision and Pattern Recognition, 2013.

121

https://graphics.stanford.edu/data/3Dscanrep/
https://graphics.stanford.edu/data/3Dscanrep/

[100] Y. Tian and S. G. Narasimhan. Theory and practice of hierarchical data-driven descent for
optimal deformation estimation. Int. J. Computer Vision, 115(1):44–67, 2015.

[101] C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: a
factorization method. Int. J. Computer Vision, 9(2):137–154, 1992.

[102] G. Trigeorgis, P. Snape, M. A. Nicolaou, E. Antonakos, and S. Zafeiriou. Mnemonic
descent method: A recurrent process applied for end-to-end face alignment. In Proc.

Conf. Computer Vision and Pattern Recognition, 2016.

[103] Y. Tsin and T. Kanade. A correlation-based approach to robust point set registration. In
Proc. European Conf. Computer Vision, 2004.

[104] O. Tuzel, F. Porikli, and P. Meer. Learning on lie groups for invariant detection and
tracking. In Proc. Conf. Computer Vision and Pattern Recognition, 2008.

[105] G. Tzimiropoulos. Project-out cascaded regression with an application to face alignment.
In Proc. Conf. Computer Vision and Pattern Recognition, 2015.

[106] J. Vongkulbhisal, F. De la Torre, and J. P. Costeira. Discriminative optimization: Theory
and applications to computer vision problems. arXiv preprint arXiv:1707.04318, 2017.

[107] J. Vongkulbhisal, F. D. la Torre, and J. P. Costeira. Discriminative optimization: Theory
and applications to point cloud registration. In Proc. Conf. Computer Vision and Pattern

Recognition, 2017.

[108] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convolutional pose machines. In
Proc. Conf. Computer Vision and Pattern Recognition, 2016.

[109] T. Werner and A. Zisserman. Model selection for automated architectural reconstruction
from multiple views. In Proc. British Machine Vision Conf., 2002.

[110] T. Werner and A. Zisserman. New techniques for automated architectural reconstruction
from photographs. In Proc. European Conf. Computer Vision, 2002.

[111] J. Xie, L. Xu, and E. Chen. Image denoising and inpainting with deep neural networks. In
Proc. Neural Information Processing Systems, 2012.

[112] X. Xiong and F. De la Torre. Supervised descent method and its application to face align-
ment. In Proc. Conf. Computer Vision and Pattern Recognition, 2013.

[113] X. Xiong and F. De la Torre. Supervised descent method for solving nonlinear least
squares problems in computer vision. arXiv preprint arXiv:1405.0601, 2014.

[114] X. Xiong and F. De la Torre. Global supervised descent method. In Proc. Conf. Computer

Vision and Pattern Recognition, 2015.

122

[115] J. Yang, H. Li, D. Campbell, and Y. Jia. Go-ICP: a globally optimal solution to 3D ICP
point-set registration. IEEE Trans. Pattern Anal. Mach. Intell., 38(11):2241–2254, 2016.

[116] J.-C. Yao. Multi-valued variational inequalities with k-pseudomonotone operators. J.

Optimization and Applicat., 83(2):391–403, 1994.

[117] G. Yuan and B. Ghanem. `0TV: a new method for image restoration in the presence of
impulse noise. In Proc. Conf. Computer Vision and Pattern Recognition, 2015.

[118] S. Zhang, G. Wu, J. P. Costeira, and J. M. Moura. FCN-rLSTM: Deep spatio-temporal
neural networks for vehicle counting in city cameras. In Proc. Int. Conf. Computer Vision,
2017.

[119] Z. Zhang. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal.

Mach. Intell., 22(11):1330–1334, 2000.

[120] Y. Zheng, Y. Kuang, S. Sugimoto, K. Åström, and M. Okutomi. Revisiting the PnP prob-
lem: A fast, general and optimal solution. In Proc. Int. Conf. Computer Vision, 2013.

[121] Q.-Y. Zhou, J. Park, and V. Koltun. Fast global registration. In Proc. European Conf.

Computer Vision, 2016.

[122] K. Zimmermann, J. Matas, and T. Svoboda. Tracking by an optimal sequence of linear
predictors. IEEE Trans. Pattern Anal. Mach. Intell., 31(4):677–692, 2009.

123

	1 Learning-Based Optimization
	1.1 Motivation
	1.2 Thesis contributions
	1.3 Organization

	2 Related Works
	2.1 Optimization in computer vision
	2.2 Learning cost functions
	2.3 Learning search directions
	2.3.1 Supervised sequential update (SSU)
	2.3.2 Gradient boosting
	2.3.3 Deep neural networks

	3 Discriminative Optimization
	3.1 Learning to search for stationary points
	3.1.1 Motivation from fixed point iteration
	3.1.2 DO search algorithm
	3.1.3 Numerical example: Finding the zero of 1D functions
	3.1.4 Section summary

	3.2 Deriving feature function h
	3.2.1 Example: Deriving h for Can you guess the number?
	3.2.2 Deriving h for general residual functions
	3.2.3 Numerical example: Can you guess the number?
	3.2.4 Section summary

	4 Theoretical Analysis: Convergence and Relations to Monotonicity and Convexity
	4.1 Definitions
	4.1.1 Monotonicity at a point
	4.1.2 Relaxed Lipschitz at a point (RL)

	4.2 Convergence of the training error
	4.2.1 Analytical examples

	4.3 Relation to generalized monotonicity and generalized convexity
	4.3.1 Single-valued case
	4.3.2 Multi-valued case

	4.4 Convergence of training error with task-specific feature function h
	4.5 Chapter summary

	5 Applications to Computer Vision
	5.1 Shape-specific point cloud registration
	5.1.1 DO parametrization and training
	5.1.2 Experiments and results

	5.2 Camera Pose Estimation
	5.2.1 DO parametrization and training
	5.2.2 Experiments and results

	5.3 Image Denoising
	5.3.1 DO parametrization and training
	5.3.2 Experiments and results

	6 Generalizing DO
	6.1 Inverse Composition Discriminative Optimization (ICDO) for registration tasks
	6.1.1 A general formulation for registration tasks
	6.1.2 Forward Composition (FC) and Inverse Composition (IC)
	6.1.3 Learning IC update with DO
	6.1.4 Application: Shape-independent point cloud registration
	6.1.5 Section summary

	6.2 Representing feature function h as a combination of basis functions
	6.2.1 Learning with basis functions
	6.2.2 Discretization as basis functions
	6.2.3 Experiments
	6.2.4 Concluding remarks and discussions

	6.3 Accelerating DO with momentum
	6.3.1 Incorporating momentum into DO
	6.3.2 Experiments

	6.4 Incorporating constraints into DO
	6.4.1 Projected penalty DO (PPDO)
	6.4.2 Experiments

	6.5 Chapter summary

	7 Conclusions and Future Works
	7.1 Contributions
	7.2 Future work

	A Proofs for Theoretical Results
	A.1 Proof of Thm. 1
	A.2 Proof of Prop. 2
	A.3 Proof of Prop. 4
	A.4 Proof of Prop. 5
	A.5 Proof of Prop. 6

	B Details and Analysis of ICDO for PCReg
	B.1 Deriving the feature function
	B.2 Computational complexity
	B.3 Analyzing the maps

	Bibliography

