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Abstract

Many problems in signal processing, machine learning and computer vision can be

solved by learning low rank models from data. In computer vision, problems such as rigid

structure from motion have been formulated as an optimization over subspaces with fixed

rank. These hard -rank constraints have traditionally been imposed by a factorization that

parameterizes subspaces as a product of two matrices of fixed rank. Whilst factorization

approaches lead to efficient and kernelizable optimization algorithms, they have been

shown to be NP-Hard in presence of missing data. Inspired by recent work in compressed

sensing, hard-rank constraints have been replaced by soft-rank constraints, such as the

nuclear norm regularizer. Vis-à-vis hard-rank approaches, soft-rank models are convex

even in presence of missing data: but how is convex optimization solving a NP-Hard

problem?

This thesis addresses this question by analyzing the relationship between hard and soft

rank constraints in the unsupervised factorization with missing data problem. Moreover,

we extend soft rank models to weakly supervised and fully supervised learning problems

in computer vision. There are four main contributions of our work:

(1) The analysis of a new unified low-rank model for matrix factorization with missing

data. Our model subsumes soft and hard-rank approaches and merges advantages from

previous formulations, such as efficient algorithms and kernelization. It also provides

justifications on the choice of algorithms and regions that guarantee convergence to global

minima.

(2) A deterministic “rank continuation” strategy for the NP-hard unsupervised fac-

torization with missing data problem, that is highly competitive with the state-of-the-art

and often achieves globally optimal solutions. In preliminary work, we show that this

optimization strategy is applicable to other NP-hard problems which are typically relaxed

to convex semidefinite programs (e.g., MAX-CUT, quadratic assignment problem).

(3) A new soft-rank fully supervised robust regression model. This convex model is

able to deal with noise, outliers and missing data in the input variables.

(4) A new soft-rank model for weakly supervised image classification and localization.

Unlike existing multiple-instance approaches for this problem, our model is convex.

Keywords: Computer vision, Machine learning, Low-rank matrices, Convex opti-

mization, Bilinear factorization, Augmented lagrange multiplier method, Image classi-

fication and localization, Weakly-supervised classification, Robust regression, Structure

from motion.



Resumo

Vários problemas de processamento de sinal, aprendizagem automática e visão com-

putacional podem ser resolvidos pela representação dos dados observados por matrizes

low-rank. Particularmente na área da visão, problemas como structure from motion são

formulados como problemas de optimização restrita a subespaços de rank fixo. Estas

restrições são tradicionalmente impostas por uma factorização expĺıcita dos subespaços,

como um produto bilinear de duas matrizes. Embora desta imposição estrita das re-

strições de rank resultem algoritmos eficientes e com possibilidades de kernelização, os

problemas de optimização resultantes desta modelação são NP-Hard quando sujeitos a

omissões nos dados de entrada.

Motivados pelo progresso na área de compressed sensing, as restrições estritas têm

vindo a ser substitúıdas por uma imposição relaxada, que adiciona à função de custo

regularizadores como a norma nuclear. Em contraste com os modelos estritos, estes

modelos são computacionalmente complexos, mas convexos mesmo na presença de dados

parciais: mas como podem problemas NP-Hard ser resolvidos através da optimização

convexa?

A presente tese visa abordar esta questão através da análise da relação entre os mod-

elos estritos e relaxados, quando aplicados ao problema da factorização matricial com

dados parciais. Adicionalmente, são propostos dois modelos relaxados para aprendiza-

gem com supervisão fraca e total, aplicados ao problema da classificação de objectos e

cenário em imagens. Os resultados podem ser sumarizados em quatro contribuições:

(1) A proposta e análise de um modelo unificado para o problema da factorização ma-

tricial low-rank com dados parciais. Este modelo engloba os modelos estritos e relaxados

e apresenta vantagens de ambos, como a eficiência e a kernelização. O modelo permite

ainda justificar os algoritmos utilizados e define regiões que garantem a convergência para

mı́nimos globais.

(2) Uma estratégia determińıstica para optimização do problema da factorização com

dados parciais, que demonstra resultados competitivos com as soluções existentes na

literatura, alcançando o óptimo global com frequência. São ainda apresentados resultados

preliminares que sugerem a aplicabilidade desta estratégia a problemas combinatóricos

reformulados como programas semi-definidos positivos com restrições de rank (e.g., MAX-

CUT, QAP).

(3) Um modelo relaxado de regressão e classificação robusta. Este modelo convexo é

resiliente ao rúıdo, outliers e dados parciais nos dados de entrada.

(4) Um modelo relaxado para classificação e localização de objectos com supervisão

fraca.

Palavras chave: Visão computacional, Aprendizagem automática, Matrizes de baixo



rank, Optimização convexa, Factorização bilinear, Método ALM, Classificação e local-

ização de imagens, Classificadores com supervisão fraca, Regressão robusta, Structure

from motion.
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Chapter 1

Introduction

1.1 The role of rank

The computer vision research area stands presently in an exciting time, with the ubiquity

of imaging sensors in DSLRs, cellphones and laptops. Together with the advent of large

computing power and global internet connectivity, these factors have eased the restrictions

that limited amounts of data impose on the statistical learning of visual models, turning

the so-called curse of dimensionality into a blessing of dimensionality [1]. Nonetheless,

this new paradigm comes with its unique set of challenges: first, scalable algorithmic

solutions are needed to harness this data, which cannot be stored or processed in a

single computer; second, models that enforce Occam’s razor’s notion of simplicity become

of utmost importance, so as to preserve model interpretability and avoid the risk of

overfitting.

In this thesis, we study the topic of complexity penalization for visual learning tasks

through rank minimization models. The use of rank criteria has been pervasive in com-

puter vision applications as a mean of exploiting physical constraints of a model [2, 3, 4]

or to minimize its complexity, be it in degrees of freedom [5] or in data redundancy [6, 7].

All these problems are directly or indirectly related to the problem of recovering a rank-k

1



matrix Z (see footnote1 for notation) from a corrupted data matrix X, by minimizing

min
Z

f(X− Z)

subject to rank(Z) = k,

(1.1)

where f(·) denotes a loss function. Due to its intractability, the hard -rank constraint

in (1.1) has typically been imposed by the inner dimensions of a bilinear factorization

Z = UV>, as

min
U,V

f(X−UV>). (1.2)

The factorization approach in (1.2) has been popularized in computer vision by the

seminal work on structure from motion of Tomasi and Kanade [2]. Since then, it has

been applied to many problems, including non-rigid and articulated structure from mo-

tion, as well as photometric stereo [8] and motion segmentation [4], or even classifica-

tion [9, 10, 11]. It has been shown that when the loss function f(·) is the Least-squares

loss, i.e., f(X−UV>) = ‖X−UV>‖2
F , then (1.2) does not have local minima and also

that a closed form solution can be obtained via the Singular Value Decomposition (SVD)

of X [12].

Unfortunately, this bilinear factorization approach has several caveats: The Least-

squares loss is highly susceptible to outliers; also, the presence of missing data in X

results in local minima. Outliers can be addressed with robust loss functions [7, 13]

and optimal algorithms exist when missing data follows a Young diagram pattern [14].

However, missing data in computer vision typically exhibits random or band patterns,

and factorization with missing data has been shown to be an NP-Hard problem [15],

where many state-of-the-art algorithms fail to even reach good local optima [16]. For

1 Bold capital letters denote matrices (e.g., D). All non-bold letters denote scalar variables. dij
denotes the scalar in the row i and column j of D. 〈d1,d2〉 denotes the inner product between two
vectors d1 and d2. ||d||22 = 〈d,d〉 =

∑
i d

2
i denotes the squared Euclidean Norm of the vector d.

tr(A) =
∑

i aii is the trace of A. ‖A||2F = tr(A>A) =
∑

ij a
2
ij designates the squared Frobenius Norm

of A. ||A||∗ =
∑

i σi designates the nuclear norm (sum of singular values σi) of A. � denotes the
Hadamard or element-wise product. ⊗ denotes the Kronecker product. IK ∈ RK×K denotes the identity
matrix. diag(X) is the vector of the diagonal elements of X. Diag(X) is a matrix containing only the
diagonal elements of X.
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this reason, the optimization of (1.2) remains an active research topic, with many works

focusing on algorithms that are robust to initialization [3, 13, 17, 18, 19, 20], initial-

ization strategies [21], or incorporating additional problem constraints to achieve better

optima [8].

Recently, Candés and Recht [22] have stated that minimizing the rank function –

under broad conditions of incoherence, i.e., the unalignment of the singular vectors with

the canonical axis – can be achieved by its convex surrogate, the nuclear norm. Initially

proposed by Fazel [23], the nuclear norm permeated through many of the aforementioned

computer vision problems such as structure from motion [17, 24, 25, 26], Robust PCA [6]

and motion segmentation [27]. Here, the soft-rank regularization provided by the nu-

clear norm replaces the hard-rank constraints in the factorization approach of (1.2), by

minimizing instead

min
Z

f(X− Z) + λ‖Z‖∗, (1.3)

where λ is a trade-off parameter between the error and the low-rank regularization induced

by the nuclear norm ‖Z‖∗, the sum of singular values of Z. We provide a simple intuition

as to why the nuclear norm is in fact the largest possible convex underestimator of

the rank function, as proved by [28]: Since the singular values of matrices are always

positive, the nuclear norm can be interpreted as an `1-norm of the singular values. Under

this interpretation, one can easily identify it as the convex envelope of the rank function,

which is the cardinality (or `0-norm) of the singular values. To further understand why

the singular value sparsity induced by the nuclear norm is important, let us consider

completing the matrix

Z =




1 1

1 1

1 ?



, (1.4)

where only one entry z3,2 is unknown such that the resulting rank is the smallest possible.

The results shown in Figure 1.1 plot the nuclear norm and Frobenius norm of Z for all

possible completions in a range around the value that minimizes its rank z3,2 = 1. In

3



2 1.5 1 0.5 0 0.5 1 1.5 2

2.5

3

3.5

4

z3,2

 

 
Nuclear norm: ||Z||*
Frobenius norm: ||Z||F

Figure 1.1: Comparison of Nuclear and Frobenius norms as function of one single un-
known entry z3,2 for the matrix in (1.4).

this case, the sparsity induced by the nuclear norm (`1-norm on the singular values)

yields the optimal solution for Z with singular values σ = [2.4495 0], a rank-1 matrix.

In opposition, the Frobenius Norm (`2-norm of singular values) will set the entries to

zero, thus leading to a solution with singular values σ = [2.1358 0.6622], a rank-2 matrix.

This key difference can be attributed to the fact that completing a matrix under the

rank or nuclear norm favors the interaction between rows and columns to find a global

solution, while the Frobenius norm treats each entry in the matrix independently (recall

that ‖Z‖2
F =

∑
ij z

2
ij).

Contrary to hard-rank models, soft-rank regularization models have further extended

the use of low-rank priors to many applications where the rank is not known a priori :

colorization [29], subspace alignment [30] and clustering [31], segmentation [32], texture

unwarping [33], camera calibration [34], tag refinement [35, 36], background modeling [6,

18] and tracking [37]. Soft-rank regularizers such as the nuclear norm or the max norm

have also been proposed in machine learning as good regularizers for classification [38].

Specifically, they has surfaced as a way to penalize complexity in image classification and

regression tasks [11, 35, 39, 40, 41, 42, 43, 44], to reduce model degrees of freedom [45,

46, 47, 48], or to share properties among different classifiers [5, 47, 49].

Despite their convexity and theoretical results for the choice of λ [50], nuclear norm

4



models such as the one in (1.3) also suffer from several drawbacks. On the one hand, it

is unclear how to impose a certain rank in Z: we showed in [51] that adjusting λ such

that Z has a predetermined rank typically provides worse results than imposing this rank

directly as in (1.2). Also, the inability to access the factorization of Z in (1.3) hinders

the use of the “kernel trick” in classification and component analysis methods, and hence

disallows for non-linear kernel extensions [52]. On the other hand, (1.3) is a Semidefinite

Program (SDP). Current off-the-shelf SDP optimizers only scale to hundreds of variables,

not amenable to the high dimensionality feature inputs typically found in computer vision

problems. Several works [22, 50, 53, 54, 55, 56] ameliorate this issue by exploiting the

fact that the proximal operator of the nuclear norm

arg min
Z
‖X− Z‖2

F +
1

2
‖Z‖∗, (1.5)

has a closed form solution based on singular value thresholding. However, they still

perform a SVD of Z in each iteration. Other approaches incrementally optimize (1.3)

using gradient methods on the Grassmann manifold [57, 58, 59]. However, they rely on a

rank selection heuristic, which fails when data is not missing at random. Zaid et al. [60]

decompose the nuclear norm into a surrogate infinite-dimensional optimization, but their

coordinate descent only applies to smooth losses f(·). Thus, nuclear norm approaches

are currently unsuitable for handling dense, large scale datasets.

1.2 Main contributions

In summary, the main result of this thesis is that soft rank nuclear norm models

can be reformulated as hard rank factorization models through the variational

definition of the nuclear norm. While the variational definition was previously known

in the literature [18, 61], we are the first to propose a unification of soft and hard-rank

approaches in computer vision under one formulation.

Several implications stem from the unification of soft and hard-rank models, as we

are able to analyze the conditions under which both approaches are equivalent: for soft

5



models, we bring advantages such as scalability and kernelization, and show their limita-

tions on problems where the output rank is predetermined. For hard models, we propose

a deterministic “rank continuation” strategy for the NP-Hard factorization problem that

avoids local optima in a significant number of cases when the rank is known a priori.

We extend this strategy to the case of Binary Quadratic Problems such as the Quadratic

Assignment Problem, which can be reformulated as rank-1 problems.

Additionally, we propose new soft-rank models for visual weakly supervised learning

and fully supervised learning, two settings with different levels of information in the

training data they are provided.

First, we study the problem of weakly supervised multi-label image classification,

where images have been labeled with several present classes but their location in the image

is not known. For this problem, we propose a convex matrix completion model specifically

tailored to visual data. We also provide two alternative algorithms for optimizing this

model as well as their convergence proofs. Our model can easily cope with labeling

errors and missing data, background noise and partial occlusions. Moreover, it allows

for learning latent individual representations for all classes in the dataset. Thus, we can

recover localization information without the need for fully supervised training data with

localization information. Experimental validation on several datasets shows that our

method outperforms state-of-the-art classification algorithms, while effectively capturing

each class appearance.

Second, a fully supervised robust regression model, which learns a direct association

from data to labels. For this case, we develop the theory of Robust Regression (RR).

This framework applies to a variety of problems in computer vision including robust linear

discriminant analysis, regression with missing data, and multi-label classification. Our

framework is both convex and able to explicitly deal with missing data and outliers in

the data. These advantages are contrary to existing discriminative methods, which fail to

account for outliers that are common in realistic training sets due to occlusion, specular

reflections or noise. Several synthetic and real examples with applications to head pose

6



estimation from images, image and video classification and facial attribute classification

with missing data are used to illustrate the benefits of RR.

7



1.3 Organization

The remainder of this thesis is organized as follows.

• In Chapter 2, we show that nuclear norm (soft rank) formulations can be reformu-

lated as factorization (hard rank) formulations and unify them in a single model.

We propose an augmented lagrange multiplier algorithm to solve the unified model

and show that this equivalence result makes the kernelization of some nuclear norm

models trivial. We then split the use of soft and hard-rank models into two regions

of our unified model: when rank is known a priori or when rank is known to be low

but not precisely known. This work has been published in [51].

• In Chapter 3, we propose two new soft-rank models for visual learning tasks such

as object classification, detection, by exploiting the fact that data is known to be

low-rank but it’s specific rank is not known beforehand. This chapter contains work

published in [44, 62, 63, 64].

• In Chapter 4 we focus on problems where rank is predetermined or known a priori.

We show the limitations of soft rank models on these problems, and present “rank

continuation”, a deterministic strategy that empirically attains good solutions in

the problems of factorization and graph matching. This chapter contains work

published in [51] and extended in [65].

• Our conclusions and possible directions for future work are presented in Chapter 5.

There, we also restate our major contributions and discuss their current limitations.

8



Chapter 2

Relation between soft and hard-rank constraints

in low rank models

2.1 Definition and unification of soft and hard-rank models

As mentioned in Chapter 1, finding models that favor low rank solutions is an essential

tool for solving computer vision and machine learning problems: low rank representations

allow for reducing degrees of freedom, exploiting redundancy, and enforcing simplicity

when representating shape, appearance or motion. There are two main approaches for

imposing low-rank, which we will formally define as hard-rank and soft-rank models.

Definition 1 (Hard-rank models). Optimization models that aim to recover a rank-k

matrix Z ∈ RM×N from a data matrix X ∈ RM×N according an error function f(·), as

min
Z

f(X− Z)

subject to rank(Z) = k.

(2.1)

This constraint is typically directly imposed on the solution by optimizing a bilinear

product Z = UV> and specifying the inner dimensions of this product as k, as

min
U,V

f(X−UV>). (2.2)

9



Definition 2 (Soft-rank models). Optimization models that aim to recover a rank-k

matrix Z ∈ RM×N from a data matrix X ∈ RM×N according an error function f(·), and

a low-rank solution is sought. Thus, the problem is regularized by adding to the cost

function a regularizer such as the nuclear norm, as

min
Z

f(X− Z) + λ‖Z‖∗. (2.3)

In this chapter, we show that nuclear norm (soft rank) formulations can be reformu-

lated as factorization (hard rank) formulations and thus unify them in a single model.

Let us start by considering the nuclear norm problem in (2.3) with convex f(·): without

loss of generality, we can rewrite (2.3) as the SDP [66]

min
Z,B,C

f(X− Z) +
λ

2
(tr(B) + tr(C))

subject to Q =




B Z

Z> C


 � 0.

(2.4)

For any positive semidefinite matrix Q, we can write Q = RR> for some R. Thus, we

can replace matrix Q in (2.4) by

Q =




B Z

Z> C


 =




U

V



[

U> V>
]
, (2.5)

where U ∈ RM×r, V ∈ RN×r and r ≤ min(N,M) upper bounds rank(Z). Merging (2.5)

into (2.4) yields

10



Definition 3 (Unified model).

min
U,V

f(X−UV>) +
λ

2

(
‖U‖2

F + ‖V‖2
F

)
, (2.6)

where the SDP constraint was dropped because it is satisfied by construction. This

reformulation seems counterintuitive, as we changed the convex problem in (2.3) into a

non-convex one, which may be prone to local minima (e.g., in the case of missing data

under the least-squares loss [15]). However, we show that the existence of local minima

in (2.6) depends only on the dimension r imposed on matrices U and V. We extend the

analysis of Burer and Monteiro [67] to prove that:

Theorem 1. Let f(X− Z) be convex in Z and Z∗ be an optimal solution of the convex

nuclear norm model in (2.3) for a given λ and let rank(Z∗) = k∗. Then, any solution

Z = UV> of (2.6) with r ≥ k∗ is a global minima solution of (2.3).

Theorem 1 (which we prove in Appendix A) immediately allows us to draw one con-

clusion: By application of the variational property of the nuclear norm [66],

‖Z‖∗ = min
Z=UV>

1

2

(
‖U‖2

F + ‖V‖2
F

)
, (2.7)

many soft-rank models can be reformulated into hard-rank models. That is, the factor-

ization and the nuclear norm models in (2.2) and (2.3) are special cases of (2.6). Fig. 2.1

illustrates the result of Theorem 1 in a synthetic case. We plot the output rank of

Z = UV> in (2.6) as a function of λ for a random 100 × 100 matrix X with all entries

sampled i.i.d. from a Gaussian distribution N (0, 1), no missing data and f(·) is the least

squares loss ‖X−Z‖2
F : the factorization approach in (2.2) corresponds to the case where

λ = 0 and r is fixed, whilst the nuclear norm in (2.3) outputs an arbitrary rank k∗ as a

function of λ (the black curve). According to Theorem 1, for any r ≥ k∗ (white area),

optimizing (2.6) is equivalent to (2.3). On the other hand, when r < k∗ (grey area), the

11
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Figure 2.1: Region of equivalence between factorization (2.6) and nuclear norm ap-
proaches (2.3) for a 100× 100 random matrix and least-squares loss. When factorization
is initialized in the white area, it is equivalent to the result obtained with the nuclear
norm (black line). When the rank is known a priori, directly imposing r = k in the
factorization approach of (2.6) (gray area) is less prone to local minima than the unreg-
ularized problem (2.2) and provides better results than selecting λ in the nuclear norm
model (2.3) such that the output rank is k.

conditions of Theorem 1 are no longer valid and thus (2.6) can be prone to local minima.

A special case of Theorem 1 has been used to recommend the use of nuclear norm

approaches in the machine learning community by Mazumder et al. [61]. However, their

analysis is restricted to the least-squares loss and the case where the rank is not known

a priori (i.e., white area of Fig. 2.1). Our analysis instead extends to other convex

loss functions and is motivated by the observation that many computer vision problems

live in the grey area of Fig. 2.1. That is, their output rank k is predetermined by a

domain-specific constraint (e.g., in Structure from Motion k = 4 [2]).

The visual interpretation of Theorem 1 in Fig. 2.1 shows two clear regions of operation

of our unified model. As such, for the remainder of this thesis, we will consider the use

of soft and hard-rank models as two separate regions of our unified model: when rank is

known a priori or when rank is known to be low but not precisely known. We advocate

the use of our unified model in (2.6) for both cases over the typical soft and hard-rank

models, based on two arguments:
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When the output rank is unconstrained (white area of Fig. 2.1) soft-rank mod-

els should be used, but we can always choose r ≥ k∗ such that (2.6) provides equivalent

results to (2.3). Using the result in Theorem 1 and the analysis of Burer and Monteiro [67],

we propose an ALM algorithm in Section 2.2 using the unified model in (2.6) that has

the scalability advantages of factorization approaches, yet it is guaranteed to attain the

global optima of the original nuclear norm model. Also, we show that this equivalence

result makes the kernelization of some nuclear norm models trivial in Section 2.3. In

Chapter 3, we propose several new soft-rank models for visual learning tasks and show

our unified model is faster than state-of-the-art algorithms for optimizing nuclear norm

models.

When the output rank is known a priori (gray area of Fig. 2.1) hard-rank

models should be used, but optimizing (2.6) is preferable to (2.2) and (2.3). As we will

show in Chapter 4, optimizing (2.6) is less prone to local minima than the unregularized

problem (2.2). On the other hand, selecting λ in the nuclear norm model (2.3) such that

the output rank k is the desired value typically leads to worse results than directly impos-

ing r = k in (2.6). Based on this analysis, we propose in Sec. 4.1 a “rank continuation”

strategy, and empirically show it is able to attain global optimality in several scenarios.

2.2 An ALM algorithm for the unified model

Nuclear norm models have extended the use of low-rank priors to many applications

where Z is low rank but its exact value is not known a priori [34, 44, 50]. In this section,

we propose an algorithm for solving (2.6) and show that its complexity is lower than

proximal methods [53] for optimizing the nuclear norm model in (1.3). For the remainder

of this section, we focus our attention in the LS loss

f(W � (X− Z)) = ‖W � (X− Z)‖2
F =

∑

ij

(wij(xij − zij))2, (2.8)
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and the L1 loss

f(W � (X− Z)) = ‖W � (X− Z)‖1 =
∑

ij

|wij(xij − zij)|, (2.9)

where W ∈ RM×N is a positive weight matrix that can be used to denote missing data

(i.e., wij = 0). We note, however, that the results in Theorem 1 also apply to many other

losses such as the Huber [13, 24] and hinge loss [11, 42].

One important factor to take into account when optimizing (2.6) for the LS and L1

losses is that when either U or V is fixed, the remaining part of (2.6) becomes convex,

even in presence of a missing data pattern specified by W. However, it has been reported

that pure alternation approaches for this problem are prone to flatlining [3, 16, 19].

For smooth losses such as the LS, this can be circumvented by performing gradient steps

jointly in U,V [19]. Alternatively, we propose an Augmented Lagrange Multiplier (ALM)

method for two reasons: 1) Theorem 1 and the analysis in [67] can be used to prove our

ALM’s convergence to global optima of (1.3) when r ≥ k∗, and 2) its applicability to the

non-smooth L1 norm. Let us rewrite (2.6) as

min
Z,U,V

f(W � (X− Z)) +
λ

2

(
‖U‖2

F + ‖V‖2
F

)

subject to Z = UV>,

(2.10)

and its corresponding augmented lagrangian as

min
Z,U,V,Y

f(W � (X− Z)) +
λ

2

(
‖U‖2

F + ‖V‖2
F

)

+ 〈Y,Z−UV>〉+
ρ

2
‖Z−UV>‖2

F ,

(2.11)

where Y are Lagrange multipliers and ρ is a penalty parameter to improve conver-

gence [53]. This method exploits the fact that the solution for each subproblem in U,V,Z

can be efficiently solved in closed form. For U and V, the solution is obtained by equating

the derivatives of (2.11) in U and V to 0. For known U and V, Z can be updated by
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solving

min
Z

f(W � (X− Z)) +
ρ

2
‖Z−

(
UV> − ρ−1Y

)
‖2
F , (2.12)

which can be done in closed form by the element-wise shrinkage operator Sµ(x) =

max (0, x− µ), as

Z = W �
(
X− Sρ−1(X−UV> + ρ−1Y)

)

+ W � (UV> − ρ−1Y),

(2.13)

for the L1 loss, or

Z = W �
(

1

2 + ρ

(
2X + ρ(UV> − ρ−1Y)

))

+ W � (UV> − ρ−1Y),

(2.14)

for the LS loss. Here, wij = 1,∀ijwij 6= 0 and 0 otherwise. The resulting algorithm

is summarized in Alg. 1 and its full derivation is presented in Sec. 2.2.1. Contrary

to pure alternated methods, our numerical experiments show that this method is not

prone to flatlining due to the joint optimization being gradually enforced by the lagrange

multipliers Y.

Algorithm 1 ALM method for optimizing (2.6)

Input: X,W ∈ RM×N , params µ, λ, initialization of ρ
while not converged do

while not converged do

Update U = (ρZ + Y) V
(
ρV>V + λIr

)−1

Update V = (ρZ + Y)>U
(
ρU>U + λIr

)−1

Update Z via (2.13) for L1 loss or (2.14) for LS loss
end while
Y = Y + ρ(Z−UV>)
ρ = min (ρµ, 1020)

end while
Output: Complete Matrix Z = UV>

Assuming without loss of generality that X ∈ RM×N and M > N , we have that exact

state-of-the-art methods for SVD (e.g., Lanczos bidiagonalization algorithm with partial

reorthogonalization) take a flop count of O(MN2 +N3). The most computational costly
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step in our ALM method are the matrix multiplications in the update of U and V, which

take O(MNr + Nr2) if done naively. Given that typically k∗ ≤ r � min(M,N) and k∗

can be efficiently estimated [68], Alg. 1 provides significant computational cost savings

when compared to proximal methods which use SVDs [53].

We note that there are several recent results in optimization which tackle the com-

plexity issue of SVDs in proximal methods for the nuclear norm. For instance, there has

been recent work on online methods for factorization [69], as well as randomized or incre-

mental SVDs [70]. Also, when using a projected sub-gradient method one can easily avoid

the cost of SVD using a polar decomposition of the variable Z which can be obtained by

Halley’s method [66]. If the singular values are away from zero, this is much faster than

the original SVD algorithm. Also, there are approaches that minimize models for RPCA

in linear time. For instance, [71] solve an initial smaller problem of the dimension of the

rank r and then calculate the remainder of the matrix using projections based on the

calculated singular vector estimates. However, our result is still relevant in this case for

solving the initial problem, as the rank r may still be a large number even if considerably

smaller than the matrix dimensions min(M,N). Moreover, our result allows very scalable

solutions recently obtained for factorization methods (e.g., [72]) to be applied to nuclear

norm models by resorting to its variational definition.

2.2.1 Full derivation of Algorithm 1

We provide the full derivation of Alg. 1 in this section. Let us start by transforming the

problem

min
U,V

‖W � (X−UV>)‖1 +
λ

2

(
‖U‖2

F + ‖V‖2
F

)
, (2.15)

into the equivalent problem

min
Z,U,V

‖W � (X− Z)‖1 +
λ

2

(
‖U‖2

F + ‖V‖2
F

)

subject to Z = UV>,

(2.16)
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and write its augmented lagrangian function, as

min
Z,U,V

L = ‖W � (X− Z)‖1 +
λ

2

(
‖U‖2

F + ‖V‖2
F

)
+

〈Y,Z−UV>〉+
ρ

2
‖Z−UV>‖2

F ,

(2.17)

where Y ∈ Rd×n is a Lagrange multiplier matrix, and ρ is a penalty parameter [53]. We

solve (2.17) by an iterative Gauss-Siedel method on Z,U,V, solved by the subproblems

Z(k+1) = arg min
Z
L(Z(k),U,V,Y, ρ) (2.18)

U(k+1) arg min
U
L(Z,U(k),V,Y, ρ), (2.19)

V(k+1) = arg min
V
L(Z,U,V(k),Y, ρ), (2.20)

where k is the index of iterations. At iteration k = 0, the entries of variables U,V,Z are

initialized i.i.d. from a standard normal distribution and Y, ρ are initialized as

Y(0) = 0 (2.21)

ρ(0) = 10−5 (2.22)

After initialization,(2.18)-(2.20) are solved sequentially until convergence. In the following

subsections, we will derive the solutions of each of these subproblems.

After each Gauss-Siedel convergence, the Lagrange Multiplier matrix Y is updated

by a gradient ascent step

Y(k+1) = Y(k) + ρ(k)(Z−UV>), (2.23)

where the penalty variable ρ is updated by the expression

ρ(k+1) = µρ(k), (2.24)
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and µ > 1 is a constant. A larger µ imposes stronger enforcement of the constraint Z =

UV>, therefore faster convergence of the outer loop, but may result in poor performance

of the inner Gauss-Siedel loop and vise versa. In our experiments, we chose µ = 1.05.

Solving for U Fixing Z and V, the subproblem (2.19) is reduced to the problem

L(U) ∝ λ

2
‖U‖2

F + 〈Y,Z−UV>〉+
ρ

2
‖Z−UV>‖2

F , (2.25)

whose closed-form solution can be obtained by equating the derivative of (2.25) to 0,

resulting in

U = (ρZ + Y) V
(
ρV>V + λIr

)−1
(2.26)

Solving for V Fixing Z and U, the subproblem (2.20) is reduced to the problem

L(V) ∝ λ

2
‖V‖2

F + 〈Y,Z−UV>〉+
ρ

2
‖Z−UV>‖2

F , (2.27)

whose closed-form solution can be obtained by equating the derivative of (2.27) to 0,

resulting in

V = (ρZ + Y)>U
(
ρU>U + λIr

)−1
(2.28)

Solving for Z Fixing U, V, the cost function of subproblem (2.18) can be rewritten

in an equivalent problem

min
Z
‖W � (X− Z)‖1 +

ρ

2
‖Z−

(
UV> − ρ−1Y

)
‖2
F , (2.29)

which can be done in closed form from the fact that 0 is in the expression of the subd-

ifferential of (2.29). Using the element-wise shrinkage operator Sµ(x) = max (0, x− µ),

this condition can be written as

Z = W �
(
X− Sρ−1(X−UV> + ρ−1Y)

)

+ W � (UV> − ρ−1Y),

(2.30)
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where wij = 1,∀ijwij 6= 0, and 0 otherwise.

Stopping criteria For the outer loop in Alg. 1 in the main paper, the iteration is not

terminated until the equality constraint Z = UV> is satisfied up to a given tolerance. In

our experiments, we used ‖Z−UV>‖F ≤ 10−9‖W�M‖F . For the inner loop, since the

global optimum solution is found for (2.18)-(2.20), the objective function monotonically

decreases. As such, in our experiments the stopping criteria for the inner Gauss-Siedel

loop combines two items:

1. Small decrease of L(·): ‖L(·)(k)−L(·)(k−1)‖
‖L(·)(k−1)‖ ≤ 10−10;

2. Maximum number of iterations is reached: 5000.

2.3 Kernelization of nuclear norm methods

An important implication of Theorem 1 of Section 2 is that in (2.6) we can solve (1.3)

with access to U,V. This has one immediate implication: we can exploit the kernel trick

in nuclear norm models by resorting to their equivalent factorized formulation, which

makes kernel extensions straightforward. For example, we show in Sec. 2.3 an example

extension for Robust LDA [44].

Kernelization of PCA

When using our unified model (2.6), the kernelization of PCA follows trivially from the

classical technique, by replacing covariance matrices by their kernel versions. Moreover,

it is interesting to note that the regularization terms imposed by the nuclear norm in (2.6)

correspond to the terms λIr in the solutions for U,V in Alg. 1. This gives interpretability

to the “trick” of adding such terms in component analysis techniques to ensure proper

conditioning of the inverse when the approximated covariance matrices U>U and V>V

are singular due to the small sample size problem [52], as it can be interpreted as a soft

rank regularization being applied to the component analysis model.
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Kernelization for RLDA

In this section, we illustrate kernelization for the case of Robust LDA. Let X ∈ RD×N be

a matrix where each column is a vectorized data sample from one of C classes. D denotes

the number of features and N the number of samples. G ∈ RN×C is an indicator matrix

such that gij = 1 if xi belongs to class j, and 0 otherwise. LDA can then be formulated

as [52],

min
U,V

‖(G>G)−
1
2 (G−UV>X)‖2

F (2.31)

Note that in this case of an L1 robust function such as in [44], selecting the rank in

U,V will not yield an eigen-problem as the LS loss case, but instead a problem which

may contain several local minima. Therefore, it is best to use the soft regularization

instead, as

min
Z
‖(G>G)−

1
2 (G− ZX)‖1 + λ‖Z‖∗ (2.32)

The analysis provided in our paper allows us to reformulate (2.32) as

min
U,V

‖(G>G)−
1
2 (G−UV>X)‖1 +

λ

2

(
‖U‖2

F + ‖V‖2
F

)
, (2.33)

Having access to factors U,V and using the Mercer theorem [73], we can express V

as a linear combination of the data, as

V = Xα, (2.34)

which yields

min
U,α

‖(G>G)−
1
2 (G−Uα>X>X)‖1+

λ

2

(
‖U‖2

F + tr(α>X>Xα)
)
,

(2.35)

Since X always appears in a dot product X>X in (2.35), we can easily replace it by a

kernel matrix, thus allowing for non-linear extensions of this method.
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Chapter 3

Using soft-rank models when rank is not known

a priori

As seen in Chapter 1, soft-rank models have extended the use of low-rank priors to many

applications where the rank is not known a priori. In particular, soft-rank regularizers

such as the nuclear norm or the max norm have been proposed in machine learning as good

regularizers for classification [38]. These have surfaced as a way to penalize complexity in

image classification and regression tasks [11, 35, 39, 40, 41, 43], to reduce model degrees

of freedom [45, 46, 47, 48], for recovering localization cues from classification [39, 42], or

to share properties among different classifiers [5, 47, 49]. In this chapter, we describe our

model contributions to these visual learning tasks, split by their level of supervision. To

summarize, the main contributions of this chapter are threefold:

• In Sec. 3.1, we propose a new nuclear norm model for fully supervised robust regres-

sion, which learns a direct association from data to labels. This convex framework

applies to a variety of problems in computer vision including robust linear discrim-

inant analysis, regression with missing data, and multi-label classification. Several

synthetic and real examples with applications to head pose estimation from im-

ages, image and video classification and facial attribute classification with missing

data are used to illustrate the benefits of RR. This work was published in [44] and

currently under review in a journal submission.
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• In Sec. 3.2, we propose a new nuclear norm model for weakly supervised image

classification, where images have been labeled with several present classes but their

location in the image is not known. We cast the problem under a matrix com-

pletion transduction model, which is able to classify and localize images. Unlike

existing discriminative methods, our model is convex and is robust to labeling errors,

background noise and partial occlusions. We propose a Fixed-Point Continuation

(FPC) algorithm for solving matrix completion and prove its the convergence in Ap-

pendix B. FPC algorithms for matrix completion had been proposed previously in

the literature, but their convergence had not been proven to extend to constrained

problems. Experimental validation on several datasets shows that our method out-

performs state-of-the-art classification algorithms, while effectively capturing each

class appearance. This work was originally published in [62] and extended in [63].

• In Sec. 3.3, we analyze the application of the unified model proposed in Chapter 2

to unsupervised learning tasks such as background subtraction, using a Robust

PCA model. Experiments show that the ALM method proposed in Chapter 2 is

both faster and more accurate than state-of-the-art nuclear norm algorithms for

this task.

3.1 Fully supervised learning as a robust regression problem

Linear and non-linear regression models have been applied to solve a number of computer

vision problems (e.g., classification [74], pose estimation [75]). Although widely used, a

major drawback of existing regression approaches is their lack of robustness to outliers and

noise, which are common in realistic training sets due to occlusion, specular reflections

or image noise. To better understand the lack of robustness, we consider the problem

of learning a linear regressor from image features X to pose angles Y (see Fig. 3.1) by

minimizing

min
T
‖Y −TX‖2

F . (3.1)
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Figure 3.1: Predicting the yaw angle of the monkey head from image features. Note the
image features (image pixels) contain outliers (hands of the monkey). (Left) Standard
regression: projects a partially occluded frontal face image directly onto the head pose
subspace and fails to estimate the correct yaw angle; (Right) Robust regression removes
the intra-sample outlier and projects only the cleaned input image without biasing the
yaw angle estimation.

In the training stage, we learn the mapping T, and in testing we estimate the pose by

projecting the features xte of the test image, Txte.

Standard regression, Eq. (3.1), is optimal under the assumption that the error, E =

Y −TX, is normally distributed. The Least Squares (LS) estimate is the most efficient

unbiased estimate of T in presence of Gaussian noise. This is the well known Gauss-

Markov theorem [76]. However, a small number of gross outliers can arbitrarily bias the

estimate of the model’s parameters (T). It is important to notice that in training and

testing X is assumed to be noise free. However, a single outlier in either training or

testing can bias the projection because LS projects the data directly onto the subspace

of T. The dot product of xte with each row of T (i.e., Txte) can be largely biased by

only a single outlier. For this reason, existing discriminative methods lack robustness to

outliers.

The problem of robustness in regression has been studied thoroughly in statistics,

and the last decades have witnessed a fast paced development of the so-called robust

methods (e.g., [77, 78, 79]). For instance, M-estimators [77] assume the error has a heavy

tail and typically re-weight the whole sample inversely proportional to it using different

influence functions. That is, some robust approaches minimize a weighted regression
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∑n
i=1wi‖yi−Txi‖2

2, where wi weighs the whole sample. Other robust approaches replace

the sum (or the mean) by a more robust measure such as the median (e.g., least median

of squares) [80] or trimmed mean (e.g., least trimmed square) [78]. However, all of

the aforementioned traditional robust approaches for regression differ from the problem

addressed in this chapter in two ways: (1) these approaches do not model the error in

X but in Y − TX, (2) they mostly consider sample-outliers (i.e., the whole image is

an outlier). This work proposes an intra-sample robust regression (RR) method that

explicitly accounts for outliers in X. Our work is related to errors in variables (EIV)

models (e.g., [81, 82, 83]). However, unlike existing EIV models, RR does not require a

prior estimate of the noise and all parameters are automatically estimated.

In addition to reducing the influence of noise and outliers in regression, we extend RR

to be able to deal with missing data in regression, wherein some elements of X are un-

known. This is a common issue in computer vision applications, since unknown elements

typically correspond to unobserved local image features. Surprisingly, this problem has

been relatively unexplored in the computer vision literature. We illustrate the power of

RR in several computer vision tasks including head pose estimation from images, facial

attribute detection with missing data and robust LDA for multi-label image classification.

3.1.1 Related work

Extensive literature exists on robust methods for regression. Huber [77] introduced M-

estimation for regression, providing robustness to sample outliers. Rousseeuw and Leroy

proposed Least Trimmed Squares [78], which explicitly finds a data subset that minimizes

the squared residual sum. Parallel to developments in the statistics community, the idea

of subset selection has also flourished in many computer vision applications. Consensus

approaches such as RANSAC [84] (and its Maximum Likelihood (ML) and M-estimator

variants [85, 86]) randomly subsample input data to construct a tentative model. Model

parameters are updated when a new configuration produces smaller inlier error than its

predecessors. In spite of accurate parameter estimates, even in the presence of several

outliers, these methods heavily rely on the assumption that model generation from a
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data subset is computationally inexpensive and inlier detection can be done adequately.

Moreover, the aforementioned methods do not tackle intra-sample outliers, i.e., partial

sample corruptions.

To deal with noise in the variables, Error-In-Variable (EIV) approaches have been

proposed, see [82] for an overview. However, existing EIV approaches rely on strong

parametric assumptions for the errors. For instance, orthogonal regression assumes that

the variance of errors in the input and response variables are identical [87] or their ratio is

known [88]. Under these assumptions, orthogonal regression can minimize the Gaussian

error orthogonal to the learned regression vectors. Grouping-based methods [89] assume

that errors are respectively i.i.d. among the input and response variables, so that one can

split the data into groups and suppress the errors by computing differences of the group

sum, geometric means or instrument variables. Moment-based methods [90] learn the

regression by estimating high-order statistics, i.e., moments, from i.i.d. data. Likelihood-

based methods [83] learn a reliable regression when the input and response variables follow

a joint, normal and identical distribution. Total Least Square (TLS) [82] and its nonlinear

generalization [91] solve for additive/multiple terms that enforce the correlation between

the input and response variables. TLS-based methods relax the assumption in previous

methods to allow correlated and non-identically distributed errors. Nevertheless, they still

rely on parametric assumptions on the error. Unfortunately, in typical computer vision

applications, errors caused by occlusion, shadow and edges seldom fit such distributions.

Although regression and classification are single-handled by our framework, several au-

thors have addressed solely the issue of robust classification. The majority of these meth-

ods can be cast as robust extensions of Fisher/Linear Discriminant Analysis (FDA/LDA),

where the empirical estimation of the class mean vectors and covariance matrices are re-

placed by their robust counterparts such as MVE estimators [92], MCD estimators [93]

and S-estimators [94, 95]. In machine learning, several authors [96, 97] have proposed a

worst-case FDA/LDA by minimizing the upper bound of the LDA cost function to in-

crease the separation ability between classes under unbalanced sampling. As in previous
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work on robust regression, these methods are only robust to sample-outliers.

Our work is more related to recent work in computer vision. Fidler and Leonardis [98]

robustify LDA for intra-sample outliers. In the training stage, [98] computed PCA on the

training data, replaced the minor PCA components by a robustly estimated basis, and

combined the two basis into a new one. Then, the data was projected onto the combined

basis and LDA is computed. During testing, [98] first estimates the coefficients of a test

data on the recombined basis by sub-sampling the data elements using [99]. Finally,

the class label of the test data is determined by applying learned LDA on the estimated

coefficients. Although outliers outside of the PCA subspace can be suppressed, [98] does

not address the problem of learning LDA with outliers in the PCA subspace of the training

data. Zhu and Martinez [100] proposed learning a SVM with missing data and robust

to outliers. In [100], the possible values for missing elements are modeled by a Gaussian

distribution, and such that for each class, the input data with all possible missing elements

spans an affine subspace. The decision plane of the robustified SVM jointly maximizes

the between-class margin while minimizing the angle between the decision plane and the

class-wise affine subspaces. However, [100] requires the location of the outliers to be

known. In contrast to previous works, our RR enjoys several advantages: (1) it is a

convex approach; (2) no assumptions, aside from sparsity, are imposed on the outliers,

which makes our method general; (3) it automatically cleans the intra-sample outliers in

the training data while learning a classifier.

3.1.2 Robust Regression (RR)

Let X ∈ Rdx×n be a matrix containing n dx-dimensional samples possibly corrupted by

outliers. Formally, X = D + E, where D ∈ Rdx×n is matrix containing the underlying

noise-free component and E ∈ Rdx×n models all noise including outliers. In regression

problems, one learns a mapping T from X to an output Y ∈ Rdy×n. The outliers or the

noise-free component D are unknown, so existing methods use X in the estimation of

T. In presence of outliers, this results in a biased estimation of T. Our RR solves this

problem by explicitly decomposing X into D + E, and only computing T using the clean
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free data D. RR solves the following optimization problem

min
T,D,E

η

2

∥∥∥W(Y −TD̂)
∥∥∥

2

F
+ rank(D) + λ‖E‖0

s.t. X = D + E, D̂ = [D; 1T ], (3.2)

where W ∈ Rdy×dy is a diagonal matrix that weights the output dimensions, T ∈

Rdy×(dx+1) is the regression matrix (the extra dimension is for the regression bias term). η

and λ are scalars that weight the first and third term in Eq. (3.2) respectively. RR explic-

itly avoids projecting the outlier matrix E to the output space by learning the regression

T only from the augmented noise-free data D̂ = [D; 1T ] ∈ R(dx+1)×n. Observe that there

are infinite possible decompositions of X into D and E, so RR adds the second and third

terms in Eq. (3.2) to constrain the possible solutions. The second term constrains D to

lie in a low-dimensional subspace, which is a good prior for naturally occurring data [52].

The third term encourages E to be sparse.

It is important to notice that RR is different from cleaning the data using RPCA

and then computing LS-regression on the clean data, because RR cleans the input data

X = D + E in a supervised manner; that is, the data D will preserve the subspace of X

that is maximally correlated with Y. For this reason, the outlier component E computed

by RR is able to correct outliers both inside and outside the subspace spanned by D (see

the experiment in section 3.1.6).

The original form of RR, Eq. (3.2), is cumbersome to solve because the rank and

cardinality operators are non-convex, so these operators are respectively relaxed to their

convex surrogates: the nuclear norm and the `1-norm. Using this relaxation Eq. (3.2) is

rewritten as
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Definition 4 (Robust regression model).

min
T,D,E

η

2

∥∥∥W(Y −TD̂)
∥∥∥

2

F
+ ‖D‖∗ + λ‖E‖1

s.t. X = D + E, D̂ = [D; 1T ]. (3.3)

This problem can be efficiently optimized using an Augmented Lagrange Muliplier

(ALM) technique, wherein Eq. (3.3) is rewritten as

min
T,D,D̂,E

η

2

∥∥∥W(Y −TD̂)
∥∥∥

2

F
+ ‖D‖∗ + λ‖E‖1 (3.4)

+〈Γ1,X−D− E〉+
µ1

2
‖X−D− E‖2

F

+〈Γ2, D̂− [D; 1T ]〉+
µ2

2
‖D̂− [D; 1T ]‖2

F ,

where Γ1 ∈ Rdx×n and Γ2 ∈ R(dx+1)×n are Lagrange multiplier matrices, and µ1 and µ2

are the penalty parameters. For each of the four matrices {T,D, D̂,E} to be solved

in Eq. (3.4), the cost function is convex if the remainder three matrices are kept fixed.

Details of the ALM method to minimize Eq. (3.4) are given in Alg. 2.

3.1.3 Robust LDA: extending RR for classification

Classification problems can be cast as a particular case of binary regression, where each

sample in X belongs to one of c classes. The goal is then to learn a mapping from X to

labels indicating the class membership of the data points. LDA learns a linear transfor-

mation that maximizes inter-class separation while minimizing intra-class variance, and

typical solutions are based on solving a generalized eigenvalue problem. However, when

learning from high-dimensional data such as images (n < dx), LDA typically suffers from

the small sample size problem. While there are several approaches to solve the small

sample size problem (e.g., regularization), a more fundamental solution is to relate the

LDA problem to a reduced-rank LS problem [101]. LS-LDA [101] directly maps X to the
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class labels by minimizing

min
T

∥∥(YYT )−1/2(Y −TX)
∥∥2

F
, (3.5)

where Y ∈ Rc×n is a binary indicator matrix, such that yij = 1 if xj belongs to class i,

otherwise yij = 0 . The normalization factor W = (YYT )−1/2 compensates for different

number of samples per class. T ∈ Rc×dx is a reduced rank regression matrix, which

typically has rank c − 1 (if the data is centered). After T is learned, a test datum

xte ∈ Rdx×1 is projected by T onto the c dimensional output space spanned by T, then

the class label of the test data xte is assigned to its maximum value or using k-NN if one

wishes an additional degree of nonlinearity.

When X is corrupted by outliers, Eq. (3.5) suffers from the same bias problem as

standard regression. RR, Eq. (3.3), can be directly applied to Eq. (3.5), yielding

Definition 5 (Robust LDA model).

min
T,D,E

η

2

∥∥∥(YYT )−1/2(Y −TD̂)
∥∥∥

2

F
+ ‖D‖∗ + λ‖E‖1

s.t. X = D + E, D̂ = [D; 1T ]. (3.6)

This Robust LDA formulation can be easily solved as a special case of RR (Alg. 2).

3.1.4 Robustness in testing data

In the previous sections, we have assumed that the training set was corrupted by outliers

and noise. Similarly, the test data might contain outliers, and as in the case of training,

RR removes outliers before projection. Let us refer to Xte ∈ Rdx×nte as a set of test

samples (nte samples), and Yte ∈ Rdy×nte the estimated label, the subscript te denote the

test data. Observe that this is a non-trivial problem because the test label matrix Yte is

not available to provide the supervised information.
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Algorithm 2 ALM algorithm for solving RR Eq. (3.3)

Input: X, Y, parameters η (a positive scalar weights term
∥∥∥W(Y −TD̂)

∥∥∥2
F

), λ (a positive scalar weights term ‖E‖1), ρ

(a positive scalar for updating the Lagrange coefficients), γ (a positive scalar for regularizing the solution to T).

Initialization:D(0) = X, D̂(0) = [D(0);1T ], E(0) = X−D(0), T(0) = (D̂(0)(D̂(0))T + γIdx+1)−1Y(D̂(0))T ;

Lagrange Multiplier Initialization: Γ
(0)
1 = X

‖X‖2
,Γ

(0)
2 = D(0)

‖D(0)‖2
,µ

(0)
1 = dn

4
‖X‖1 , µ

(0)
2 = dn

4
‖D(0)‖1.

while

∥∥∥X−D(k)−E(k)
∥∥∥
F

‖X‖F
> 10−8 and

∥∥∥D̂(k)−[D(k);1T ]
∥∥∥
F

‖D̂(k)‖F
> 10−8 do

Assuming W = diag{wii}, update T(k+1) = [t1, t2, · · · , tc], where ti = w2
ii(w

2
iiD̂

(k+1)(D̂(k+1))T+γId)−1yi(D̂
(k))T ,

and γ regularizes the scale of ti.

Update D̂(k+1) =
[
η(T(k))TWTWT(k) + µ

(k)
2 Id

]−1 [
η(T(k))TWTY − Γ

(k)
2 + µ

(k)
2 [D(k);1T ]

]
;

Update D(k+1) = D1/β(Z(k+1)), where Z(k+1) = 1
β

(
Γ
(k)
1 + µ

(k)
1

(
X−E(k)

)
+
[
Γ
(k)
2 + µ

(k)
2 D̂(k)

]
(1:dx,·)

)
, and β =

µ
(k)
1 + µ

(k)
2 ;

Update E(k+1) = S
λ/µ

(k)
1

(
X−D(k) + Γ

(k)
1 /µ

(k)
1

)
;

Update Γ
(k+1)
1 = Γ

(k)
1 + µ

(k+1)
1 (X−D(k+1) −E(k+1))

Γ
(k+1)
2 = Γ

(k)
2 + µ

(k+1)
2 (D̂(k+1) − [D(k+1);1T ])

µ
(k+1)
1 = ρµ

(k)
1

µ
(k+1)
2 = ρµ

(k)
2

end while
Output: T, D, E

Algorithm 3 ALM algorithm for cleaning the test data Eq. (3.8)
Input: Xte ∈ Rdx×nte , D ∈ Rdx×n, parameters λ (a positive scalar weights term ‖E‖1, which is determined in training)

and ρt (a positive scalar for updating the Lagrange coefficients).

Initialization:Z
(0)
te = 0n×nte , where its element z

(0)
te (i, j) = 1 if i = argmini{dist (xte(j),di)}i=1,··· ,nj = 1, · · · , nte;

E
(0)
te = Xte −DZ

(0)
te ;

Lagrange Multiplier Initialization: Γ
(0)
te = Xte

‖Xte‖F
,µ

(0)
te = dn

4
‖Xte‖1.

while

∥∥∥Xte−DZ
(k)
te −E

(k)
te

∥∥∥
F

‖Xte‖F
> 10−8 do

Update S(k+1) = Z
(k)
te −

1
βte

(
−DTΓ(k) + µ

(k)
te DT

[
DZ

(k)
te − (X−E

(k)
te )

])
, where βte = µ

(k)
te ‖DTD‖2F ;

Update Z
(k+1)
te = D1/β(S(k+1));

Update E
(k+1)
te = S

λ/µ
(k)
te

(
Xte −DZ

(k)
te + Γ

(k)
te /µ

(k)
te

)
;

Update Γ
(k+1)
te = Γ

(k)
te + µ

(k)
te (X−DZ

(k+1)
te −E

(k+1)
te ), µ

(k+1)
te = ρtµ

(k)
te ;

end while
Output: Zte, Ete
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Consider Eq. (3.3) without the first supervised term,

min
Dte,Ete

‖Dte‖∗ + λ ‖Ete‖1 (3.7)

s.t. Xte = Dte + Ete,

where Dte ∈ Rdx×nte is the cleaned test data, Ete ∈ Rdx×nte is the noise/outlier matrix,

and λ is the positive scalar determined in training (see Eq. (3.3)).

Eq. (3.7) is convex and equivalent to the nuclear norm RPCA model in [50]. However,

RPCA is an unsupervised technique and it can only clean the outliers/noise that are

orthogonal to Xte. We will refer to this noise as out-of-subspace noise. If we are interested

in removing the error within the subspace of Xte, this can be done by using the cleaned

training data D. In the training stage, D is optimized to have maximum correlation with

the output labels Y. Our assumption is that the clean test data can be reconstructed as

local combinations of the training data, that is Dte = DZte, where Zte ∈ Rn×nte . In order

to make the combination locally compact, we regularize the combination coefficient Zte

by minimizing its nuclear norm [102]. The resulting objective function becomes

min
Zte,Ete

‖Zte‖∗ +
λ

‖D‖∗
‖Ete‖1 (3.8)

s.t. Xte = DZte + Ete,

where the weight λ
‖D‖∗ in front of ‖Ete‖ is used to keep the original balance between

‖Ete‖ and ‖Dte‖ = ‖DZte‖ in Eq. (3.7). Directly applying the ALM to solve Eq. (3.8)

is a challenging task because we cannot apply the standard Singular Value Thresholding

(SVT) operators on Zte. Observe that the term DZte is not the standard formulation to

be solved with SVT. We followed the idea of [103], and linearized the term DZte before

the standard SVT operation. Alg. 3 describes the optimization strategy. After solving

(3.8), the regression or classification output for Xte is computed as Yte = T[DZte; 1
T ]. In

the case of classification, Yte is typically used as decision values (for computing AUROC),
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or to produce binary class labels using the k-nearest-neighbor method.

3.1.5 Robust regression with missing data

Robust regression Eq. (3.3) can be easily extended to handle missing elements in the

input data matrix X. From now on, we will refer to this problem as “RR-Missing”.

Let Ω be the index set of observed elements in X, and PΩ be the projection operator

from the matrix space to the support of observed elements. The RR-Missing solves the

following problem

min
T,D,E

η

2

∥∥∥W(Y −TD̂)
∥∥∥

2

F
+ ‖D‖∗ + λ‖E‖1 (3.9)

s.t. PΩ(X) = PΩ(D + E), D̂ = [D; 1T ],

The algorithm for solving Eq. (3.9) is similar to Eq. (3.3). After solving Eq. (3.9), the

missing elements in X are filled by the values in D.

As in the case of RR, the test data with missing elements can be cleaned similarly to

section 3.1.4 by solving

min
Zte,Ete

‖Zte‖∗ +
λ

‖D‖∗
‖Ete‖1 (3.10)

s.t. PΩ(Xte) = PΩ(DZte + Ete).

After solving Eq. (3.10), the regression/classification output for Xte is computed as Yte =

T[DZte; 1
T ]. The extension of RR-Missing to RLDA-Missing is straightforward.

3.1.6 Experimental Results

This section compares our RR methods against state-of-the-art approaches on four ex-

periments for regression and classification.

The first experiment uses synthetic data to compare with existing approaches and

illustrate how existing robust regression methods cannot remove outliers that lie in the

subspace of the data. The second experiment applies RR to the problem of head pose

estimation from partially corrupted images. The third experiment reports comparisons of
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RR against state-of-the-art multi-label classification algorithms on the MSRC, Mediamill

and TRECVID2011 databases. The fourth experiment illustrates the application of RR-

Missing to predict facial attributes.

Robust regression (RR) on synthetic data

This section illustrates the benefits of RR in a synthetic example. We generated 200 three-

dimensional samples, where the first two components were generated from a uniform

distribution between [0, 6], and the third dimension is 0. In Matlab notation, D =

[6 ∗ rand(2, 200); 0T ], X = D + E, Y = T∗[D; 1T ], where D ∈ R3×200 is the clean data.

T∗ ∈ R3×4 is randomly generated and used as the true regression matrix. The error term,

E ∈ R3×200, is generated as follows: for 20 random samples, we added random Gaussian

noise (∼ N (0, 1)) in the second dimension, this simulates in-subspace noise. Similarly,

for another 20 random samples, we added random Gaussian noise (∼ N (0, 1)) in the

third dimension, this simulates noise outside the subspace. The output data matrix is

generated as Y = T∗[D; 1T ] ∈ R3×200. Fig. 3.2 (a) shows the clean data D with blue “o”s,

and the corrupted data X with black “×”s. For better visualization, we only showed 100

randomly selected samples. The black line segments connect the same samples before

(D) and after corruption (X). The line segments along the vertical direction are the

out-of-subspace component of E = X −D, while the horizontal line segments represent

the in-subspace component of E.

We compared our RR with five state-of-the-art methods: (1) Standard least-squares

regression (LSR), (2) GroupLasso (GLasso) [104], (3) RANSAC [84], (4) Total Least

Square (TLS) [105] that assumes the error in the data is additive and follows a Gaussian

distribution, (5) RPCA+LSR, which consists of first performing RPCA [50] on the input

data, and then learning the regression on the cleaned data using standard LSR. The

LSR learns directly the regression matrix T using the data X. The other methods (2)-

(5) re-weight the data or select a subset of the samples input data X before learning

the regression. We randomly select 100 samples for training and the remaining 100

data points for testing. Both the training and testing sets contain half of the corrupted
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Table 3.1: Relative Absolute Error (RAE) and its standard deviation for output Yte and
regression matrix T on synthetic data (10 repetitions).

RAET RAEY

LSR 0.269± 0.121 0.035± 0.012
GLasso 0.269± 0.121 0.035± 0.012

RANSAC 0.256± 0.133 0.036± 0.013
TLS 0.269± 0.121 0.925± 0.136

RPCA+LSR 0.464± 0.030 0.051± 0.006
RR 0.035± 0.015 0.015± 0.006

samples. Fig. 3.2(b-f) visualizes the results of the regression for the different methods.
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Figure 3.2: (a) Original and corrupted 3D synthetic dataset. Black lines connect data
points before (D) and after corruption (X). (b)-(e) show the input data processed by
several baselines, and (f) shows that RR removes the in-subspace outliers.

Fig. 3.2(b) shows the results of TX, once T is learned with GLasso. GLasso learns a

sparse regression matrix that re-weights the input data along dimensions, but it is unable

to handle within sample outliers. Observe how the samples are far away from the original

clean samples. Fig. 3.2(c) shows the subset of X selected by RANSAC. Although we

optimized RANSAC’s testing sample size to obtain the best testing error measures by

RAE, many of the corrupted data points are still identified as inliers. Fig. 3.2 (d) shows

results obtained by TLS, where TLS only partially cleaned the corrupted data because

the synthesized error cannot be modeled by an isotropic Gaussian distribution. Fig. 3.2

(e) shows results obtained by the method RPCA+LSR, that first computes RPCA to
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clean the data and then LSR. The data cleaned by RPCA [50], DRPCA, is displayed

with red “o”s. Because DRPCA is computed in an unsupervised manner, only the out-

of-subspace error (the vertical lines) can be discarded, while the in-subspace outliers can

not be corrected. Finally, Fig. 3.2 (f) shows the result of RR. The clean data DRR is

denoted by red“o”s. Observe that our approach is able to clean both the in-subspace

outliers (the horizontal lines) and out-of-subspace (the vertical lines). This is because

our method computes jointly the regression and the subspace estimation.

We also computed the error for the regression matrix T∗ (the first two columns) and

the testing error for Yte on the 100 test samples. Table 3.1 compares the mean regression

error measured by the Relative Absolute Error (RAE) between the true labels Yte ∈

R3×100 and the estimated labels Ỹte. RAET = ‖T̃(:,1:2)−T∗(:,1:2)‖F
‖T∗(:,1:2)‖F

and RAEY = ‖Ỹte−Yte‖F
‖Yte‖F

.

The information in the third column of T∗ is excluded in generating Y = T[D; 1T ].

Therefore, we dismiss this column when evaluating RAET. As shown in Table 3.1, RR

produces the smallest estimation error for both T∗ and Yte among the five compared

methods, while GroupLasso, RANSAC and RPCA+LSR produce small improvements

over standard LSR due to their limitation to deal with both the in-subspace and out-of-

subspace corruptions.

Figure 3.3: Projection of face images (the gray “·”s)in the output space Y =
[cos(θ), sin(θ)] by LSR, TLS, RPCA+LSR and Robust Regression(RR). The red “×”s
denote the ground truth location for pose angles θ =[−90◦, −75◦, −60◦, −45◦, −15◦, 0◦,
15◦, 45◦, 60◦, 75◦, 90◦] in the output space.
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Pose estimation as a RR problem

This section illustrates the benefit of RR in the problem of head pose estimation. We

used a subset of CMU Multi-PIE database [106] that contains 1721 face images from 249

subjects in session 1. The face regions are detected automatically using the OpenCV 1

face detector. The detected faces cover 11 head poses θ =[−90◦, −75◦, −60◦, −45◦, −15◦,

0◦, 15◦, 45◦, 60◦, 75◦, 90◦] each with a random lighting direction. Each image is cropped

around the face region and resized to 51× 61. We vectorized the images into a vector of

51×61 = 3111 dimensions in the matrix X ∈ R3111×1721 and the yaw angles of the images

are used as the output data Y = [cos(θ), sin(θ)] ∈ R2×1721. See Fig. 3.4 for examples of

cropped images.

Similar to the previous section, we have compared RR with five methods to learn

a regression from the image X to the yaw angle Y: (1) LSR, (2) GLasso [104], (3)

RANSAC [84], (4) TLS and (5) RPCA+LSR. For a fair comparison, we randomly divided

the 249 subjects into 5 folds and performed 5-fold cross-validation, at each cross-validation

train on 1 fold and test on the remaining 4. Parameters of interest in methods (2)-(4)

were selected by performing grid search over the 5-fold cross-validation. The performance

of the compared methods is measured with the averaged angle error.

Table 3.2 summarizes the results of methods (1)-(4) and RR. The LSR method pro-

duced the largest angle error with the increasing percentage of outliers. RANSAC pro-

duced comparable error as standard LSR, indicating that RANSAC is unable to select

a subset of “inliers” to robustly estimate the regression matrix. RPCA+LSR produced

relatively larger yaw angle error. This is because RPCA is unsupervised and lacks the

ability to preserve the discriminative information in X that correlates with the angles Y.

RR got the smallest error among all the compared methods.

To further illustrate how RR differs from TLS and RPCA+LSR, Fig. 3.4 visualizes

the decomposition of training images by RR (i.e., X = DRR + ERR), by TLS (i.e.,

X = DTLS + ETLS) and by RPCA (i.e., X = DRPCA + ERPCA), for the same input

1http://opencv.willowgarage.com/wiki/
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(a) Input images X at different pose angles (b) Decomposition of images in (a) as X =
DTLS + ETLS by TLS

(c) Decomposition of images in (a) as X =
DRPCA + ERPCA by RPCA

(d) Decomposition of images in (a) as X =
DRR + ERR by RR.

Figure 3.4: Decomposition of input images in (a) by (b) TLS, (c) RPCA and (d) RR.
Robust regression (RR) cleans most facial details and only preserves the correlated with
pose angles.

images. Images under pose angles contains person-specific features e.g., glasses at −30◦

and long dark hair at 30◦ (see Fig. 3.4(a)). Fig. 3.4(b)-(c) show that both TLS and

RPCA are able to remove some of the edges. While RR (Fig. 3.4(d)) preserves much

less personal facial details in DRR than TLS (DTLS) and RPCA (DRPCA) (especially

images under pose −30◦ and 30◦). With less facial details and more dominant profiles,

the regression trained on DRR (as in RR) is able to model higher correlation with the

pose angles than using DRPCA.

Fig. 3.3 visualizes the differences among LSR, TLS, RPCA+LDA and RR on both

training (the 1st row) and testing images (the 2nd row). We projected the face images (the

gray “·”s) into the output space Y = [cos(θ), sin(θ)] using the discussed four methods

(one column each). The red “×”s denote the ground true location for pose angles. The

projections (the gray “·”s) produced by LSR, TLS and RPCA+LDA are far from the

ideal outputs (the red “×”s). RR (the 4th column) is the method that improves the

correlation between inputs (the gray “·”s) and the outputs (the red “×”s), therefore is

more robust than LSR, TLS and RPCA+LSR in estimating the pose angles.
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Table 3.2: Comparison of yaw angle error and standard deviation for six methods on a
subset of CMU Multi-PIE database [106].

LSR GLasso RANSAC TLS RPCA+LSR RR
7.3o ± 6.1o 7.1o ± 5.9o 7.3o ± 6.2o 11.7o ± 10.1o 10.8o ± 9.7o 5.1o ± 4.6o

Figure 3.5: Decomposition of downsampled test images Xte in the AR face database [107].
Left: Experiments on original images (0% corruption). Right: Experiments on syntheti-
cally corrupted images (5% corruption). (a) Input test images; (b) Reconstructed test im-
ages (XZSRC) and the outliers (Xte−XZSRC) by Sparse Representation for Classification
(SRC) [108], where X is the training images and ZSRC is the sparse coefficient for the test
images Xte; (c) Reconstructed test images (DZRLDA) and the outliers (Xte −DZRLDA)
by Robust LDA (RLDA), where D is the cleaned training images by solving Eq. 3.6, and
ZRLDA is the RLDA coefficient computed by Eq. 3.8. Observe that RLDA cleaned more
intra-sample outliers and reconstruct more facial details than SRC.

Robust LDA (RLDA) for face recognition

This section evaluates our Robust LDA (RLDA) method for face recognition with syn-

thetically corrupted images.

We used the AR database [107]. There are over 4, 000 frontal face images of 126

subjects under illumination change, expressions, and facial disguises. 26 pictures were

taken for each subject and organized in two sessions. In the experiment, we used the

cropped and aligned face images provided in [107]: 50 male subjects and 50 female

subjects. For each subject, 13 images from Session 1 were used for training, and the rest

13 images from Session 2 for testing. Each image was cropped and resized to 165× 120
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and converted to gray-scale (see the first row on the left of Fig. 3.5 for examples). To

evaluate robustness of algorithms, we randomly corrupted the image by replacing image

pixels using black squares (see the first row on the right half of Fig. 3.5 for examples).

We followed the settings in [108], and used two types of features that produced the

highest performance of Sparse Representation for Classification (SRC) in [108]: (1) Down-

sampled face: downsample the cropped images by 1/6, and vectorize a downsampled

image into a 540 dimensional vector; (2) Laplacian face: compute Laplacian face fea-

tures [109] on the original 165×120 image and select the top 540 components. Fig. 3.5 il-

lustrates decomposition of downsampled test images Xte (a) in the AR face database [107]

by SRC and our Robust LDA (RLDA) approach. The Left part of Fig. 3.5: Experiments

on original images (0% corruption). The Right part of Fig. 3.5: Experiments on synthet-

ically corrupted images(5% corruption). Using SRC [108] (Fig. 3.5(b)), the test images

were reconstructed as (XZSRC), where X is the training images and ZSRC is the sparse

coefficient. The outliers was then computed as (Xte −XZSRC). Observe that SRC pro-

duced little outliers. This is because both the training and testing images of the same

subject contain similar expression, illumination, glasses and scarf. SRC computed the

sparse representation of test images Xte using similar training images in X. Fig. 3.5(c)

shows the reconstructed test images (DZRLDA) and the outliers (Xte − DZRLDA) by

RLDA, where D is the cleaned training images by solving Eq. 3.6, and ZRLDA is the

RLDA coefficient obtained by Eq. 3.8. Note different to SRC, our RLDA approach used

the cleaned training images D instead of the original training images X. We can see from

Fig. 3.5(c) that RLDA cleaned more intra-sample outliers and reconstruct more facial

details than SRC.

In Table 3.3, we compared face recognition accuracy of linear SVM, SRC and RLDA

using the both the downsampled images and the Laplacian face as classification features.

As shown in the first row (0%) in Table 3.3 , RLDA produced the higher accuracy than

SRC and SVM on downsampled images, and comparable accuracy to SRC on Laplacian

features. From the 2nd to 4th row, with the higher corruption, all methods showed lower
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accuracy. Furthermore, because the Laplacian features were not computed in the robust

manner, under high corruptions (the 3rd to 4th row in Table 3.3), the results with La-

plancian features were worse than RLDA with the downsampled images. Comparing to

SVM and SRC, RLDA showed the best robustness for it consistently produced the best

results.

Table 3.3: Face recognition accuracy on AR face database [107] under synthetic cor-
ruption. The percentages in the brackets denotes the portion of images covered by the
synthetic squares. Higher value indicates better performance. Best results are in bold.

%-pixel corruption 1-NN SVM SRC RLDA
Downsample (0%) 68.5% 76.4% 88.0% 89.8%

Laplacian (0%) 90.8% 80.6% 94.7% 94.8%
Downsample (5%) 33.7% 64.7% 80.8% 85.1%

Laplacian (5%) 54.5% 74.5% 71.7% 77.2%
Downsample (20%) 9.7% 44.5% 67.5% 72.4%

Laplacian (20%) 47.8% 67.9% 63.6% 64.9%
Downsample (40%) 7.4% 35.5% 52.9% 61.4%

Laplacian (40%) 33.7% 56.5% 48.2% 51.4%

RLDA for object classification, action recognition and video indexing

This section evaluates our Robust LDA (RLDA) method on two multi-label and one multi-

class classification tasks: object categorization on the MSRC dataset, action recognition

in the MediaMill dataset and event video indexing on the TRECVID 2011 dataset. Each

dataset corpus and features is described below:

MSRC Dataset (Multi-label)2 has 591 photographs (see Fig. 3.6(a)) distributed

among 21 classes, with an average of 3 classes per image. We mimic [74] and divide each

image into an 8× 8 grid and calculate the first and second order moments for each color

channel on each grid in the RGB space. This results in a 384 dimensional vector, which

we use to describe each image.

Mediamill Dataset (Multi-label) [110] consists of 43907 sub-shots (see Fig. 3.6(c))

divided in 101 classes. We followed [74] and eliminated classes containing fewer than 1000

samples, leaving 27 classes. Then, we randomly selected 2609 sub-shots such that each

class has at least 100 labeled data points. Each image was therefore characterized by a

120-dimensional feature vector, as described in [110].

2http://research.microsoft.com/en-us/projects/ObjectClassRecognition/
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PASCAL VOC 2007 Dataset (Multi-label) consists of 9963 images labeled with

at least one of 20 classes, split into trainval and test sets. We used state of the

art features obtained from Overfeat, a Convolutional Neural Network trained on Ima-

geNet [111]. We rescaled every image to 221 × 221 pixels and obtained a single 4096

dimensional feature vector as the output from layer 22 of the network for every image in

the dataset.

TRECVID 2011 Dataset (Multi-class)3 consists of video data in MED 2010 and

the development data of MED 2011, totaling 9822 video clips belonging exclusively to one

of 18 classes. We first detected 100 shots for each video and then used their center frames

as keyframes. We described each keyframe using dense SIFT descriptors. From these,

we learned a 4096 dimension Bag-of-Words dictionary. Each video was represented by a

normalized histogram of all of its feature points. We used a 300 core cluster to extract

the SIFT features, which took about 1500 CPU hours in total. In the experiment, we

randomly split the dataset into two subsets: 3122 entries for training and 6678 for testing.

We compared RLDA to the state of the art approach for Multi-Label LDA (MLDA) [74],

and to Robust PCA [50] followed by traditional LDA (RPCA+LDA). For control, we also

compare to LDA, PCA+LDA (preserving 99.9% of energy) and a linear one-vs.-all SVM.

For the classic LDA-based testing procedure, one first projects the test points using

the learned T from training; then for each projected test sample, we find the k-nearest-

neighbor (kNN) from the training samples projected by T; finally, we select the class

label from the class labels of k-neighbors by majority voting. However, this procedure is

not appropriate in our evaluation for two reasons: (1) it’s not fair to use a fixed k for

classes with different number of samples, e.g., samples per class are in [19, 200] for MSRC,

[100, 2013] for Mediamill; (2) kNN introduces nonlinearity to the LDA-based classifiers,

which is unfair to linear SVM. For these reasons, we use Area Under Receiver Operating

Characteristic (AUROC) as our evaluation metric. AUROC summarizes the cost/benifit

ratio over all possible classification thresholds. We report the average AUROC (over 5-

3http://www-nlpir.nist.gov/projects/tv2011/
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Figure 3.6: Multi-label datasets for object recognition and action classification. Exam-
ple images in (a) MSRC and (b) PASCAL VOC 2007 , and (c) example keyframes in
Mediamill.
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fold Cross Validation) for each method under their best parameters in Table 3.4. In the

MSRC dataset results in Table 3.4, LDA performs the worst since it’s most sensitive to

the noise in data. SVM performs better than PCA+LDA and RPCA+LDA. Our method

(RLDA) leads to significant improvements over the others due to its joint classification

and data cleaning (for both Gaussian and sparse noise in the input). For Mediamill,

LDA is just slightly worse than PCA+LDA and RPCA+LDA due to the low noise level

in the data. In this case, RLDA does not “over-clean” the data, and performs similar to

PCA+LDA and RPCA+LDA. In the PASCAL VOC 2007 dataset results, performance

increases become less accentuated, with baseline methods yielding good performance due

to the recent advances in representation provided by Overfeat [111]. MLDA, on the other

hand, results in a poorer score because it heavily relies on the normalization based on

inter-class correlations.

Table 3.4: AUROC for Multi-label Object (MSRC), Action (Mediamill) and Image (Pas-
cal VOC) classification. Higher value indicates better performance. Best results are in
bold.

Database LDA SVM PCA+LDA MLDA RPCA+LDA RLDA
MSRC 0.65 0.79 0.76 0.63 0.75 0.83

Mediamill 0.77 0.64 0.77 0.67 0.77 0.76
Pascal VOC2007 0.92 0.90 0.92 0.79 0.87 0.94

To test our method in a large scale dataset, we run experiments on the TRECVID2011

dataset. We used the Minimum Normalized Detection Cost (MinNDC), the evaluation

criteria for MED 2010 and MED 2011 challenges, as suggested by NIST. Fig. 3.7 shows

that RLDA achieved the best class-wise MinNDC for 9 out of 18 classes over other linear

methods, i.e., LDA/MLDA, SVM and RPCA+LDA. Note because the classes are mu-

tually exclusive, MLDA is identical to LDA. SVM is heavily affected by outliers for the

“Wedding Ceremony”, “Getting a vehicle unstuck” and “Making a sandwich” cases. For

some classes, LDA and RPCA+LDA are similar or better than RLDA. We believe this

is due to: (1) the data features computed by Bag-of-Words model smoothed/regularized

some outliers; (2) the nonlinear nature of the classification task. Therefore some error

patterns modeled by LDA and RPCA enhanced their discriminative ability. Nevertheless,

43



among all linear algorithms, our method (RLDA) obtains the best average MinNDC. In

addition, to show how nonlinearity affects the performances, we compared the kernelized

version of the LDA (KLDA), RPCA+LDA (KRPCA+KLDA) and RLDA (KRDA). Here

we apply the homogeneous kernel maps technique [112] to obtain a three order approxi-

mation of the χ2 kernel. Other more accurate approximations are possible [113]. Fig. 3.7

shows that KRDA still obtains better results, 9 out of 18 best class-wise MinNDC and

best average MinNDC over all classes.

Figure 3.7: MinNDC results for Media Event Detection on TREC2011. Lower value
indicates better performance. Best results are in bold.

RLDA with missing data

This section illustrates the use of RLDA-Missing to perform attribute classification on

the PubFig database [114]. We predict 7 facial attributes (Gender, Asian, White, Indian,

Black, Glasses and Beard/Mustache) from facial features. That is, we formulate the facial

attribute detection as a multi-label classification problem, each image has 7 attribute

labels, where a binary indicator vector yi ∈ R7×1, such that yij = 1 if xi belongs to class

j otherwise yij = 0 (j = 1, · · · , 7). In testing (see section 3.1.4), a testing data point

xte is cleaned to produce dte and the indicator vector yte = T[dte; 1] ∈ R7, which then

is used as decision values (for computing AUROC), or produces binary class labels using

the k-nearest-neighbor method.
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To train our facial attribute detector, we used training images from the PubFig

database that have been labeled with 49 landmarks and images from Multi-PIE database [106]

that have been labeled with 68 landmark points. This is a challenging problem because

the regressor will have input features of different dimensions. In this section we will show

how RR is able to merge information from these two databases to get improved results

on estimating facial attributes.

The PubFig database [114] consists of 58, 797 images of 200 people collected from

the internet. Classifiers will be trained to recognize these facial attributes from image

features. The images in the PubFig database are taken in completely uncontrolled situ-

ations with non-cooperative subjects. Thus, there are large variations in pose, lighting,

expression, occlusion, scene and camera parameters. These imaging conditions pose great

difficulties in classifying the facial attributes. Besides the PubFig database, we also used

5683 face images from the Multi-PIE database. These images include all 249 subjects

under the frontal lighting and yaw angle between −45◦ and +45◦.

Given the images that have been labeled with the seven attributes, we compute the

image features as follows. First, we used the supervised descent method [115] to detect 49

facial landmarks in the PubFig database. Second, we compute a 8-dimensional Histogram

of Gradient (HoG) vector around each facial point, (the size of each pixel block is 1/6 of

the length of the nose). Finally, we concatenate all the point HoGs to form a 8×49 = 392-

dimensional feature vector for the image. See Fig. 3.8 for an example. In the case of the

Multi-PIE images, faces have been manually labeled and we proceed as before and extract

a 544 feature vector, see Fig. 3.8 (b).

As a baseline experiment, we applied the RLDA proposed in section 3.1.3, using only

data from the PubFig database. In this experiment, we perform grid-search for RR

parameters (η and λ) with a 4-fold cross validation. At each trial of cross-validation we

left one fold (50 persons) out for testing, and the rest three folds (images of 150 persons)

for training. The averaged AUROCs over 4-fold cross-validation are reported at the

optimal parameters (Table. 3.5 the “PubFig only” row). We added data from MultiPIE
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Figure 3.8: Training RLDA-Missing classifier on a concatenated data matrix X consisting
data from the (a) PubFig database (49 facial points detected) and (b) the MultiPIE
database (68 facial points detected). In the original concatenated matrix “X” (c), observe
that the data block of PubFig contains missing elements. In the clean/filled data matrix
“D” (d), the missing elements are automatically filled. In testing, we only use the PubFig
part of D to clean the testing data.

database to conduct a“PubFig&MultiPIE” experiment. At each trial of cross-validation

we added the 5683 MultiPIE images (544-dimensional features) to the 3 PubFig training

folds (392-dimensional features). The 544− 392 = 52-dimensional unavailable features in

the PubFig dataset are considered as missing data (see Fig. 3.8 (c) for the concatenated

training data matrix “X”). We train RLDA with missing data as in section 3.1.5, the

missing elements in “X” is filled in the cleaned/filled training data the “D” (Fig. 3.8 (d)).

Finally in testing, we only used the PubFig part of “D” to clean the testing data (the

remaining 1 PubFig fold). All quantitative results are shown in Table. 3.5. In addition

to the “PubFig only” baseline, we added one more baseline “PubFig (49pts)&MPIE

(49pts)” by using features from the 49pts that are common to both datasets. We also

implemented the discriminatively trained LDA for missing data in [116], a standard LDA-
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Table 3.5: AUROCs of facial attribute classification on the PubFig data. Each row
contains results using different method and training data, as specified in the first column
”Methods: training data”. Higher value indicates better performance. Best results are
in bold.

Methods: training data \ Attributes Gender Asian White Indian Black Glasses Beard Average
RLDA: PubFig (49pts) only 0.92 0.50 0.60 0.50 0.72 0.77 0.68 0.67

RLDA:PubFig (49pts)&MPIE (49pts) 0.90 0.62 0.57 0.60 0.69 0.76 0.70 0.69

LDA-missing[116]: PubFig (49pts)&MPIE(68pts) 0.82 0.57 0.54 0.59 0.61 0.78 0.67 0.65
RLDA-missing: PubFig (49pts)&MPIE(68pts) 0.91 0.66 0.70 0.56 0.69 0.81 0.71 0.72

based approach for missing data. The approach used the same missing training data as

RLDA-missing, and the results were reported in Table. 3.5 (”LDA-missing”). Comparing

to the two baseline methods (“RLDA: PubFig only” and ”RLDA: PubFig (49pts)&MPIE

(49pts)”), our RLDA-missing approach have additional 52-dimensional features learned

from the MultiPIE data. Comparing to “LDA-missing” [116], our approach does not rely

on explicit assumption on the missing values. “LDA-missing” [116] explicitly models the

missing values by Gaussian distribution, whereas the missing elements in this experiment

are structured (blocked). As shown in Table. 3.5, our RLDA-missing produced improved

results in both class-wise and average AUROCs.

3.2 Weakly supervised learning as a matrix completion problem

Most methods for visual recognition are fully supervised in nature, as they make use

of bounding boxes or pixelwise segmentations to locate objects of interest. A major

limitation of these approaches, however, is that the location for objects of interest has

to be known in the training images, usually in the form of bounding boxes or a full-

blown pixelwise segmentation. While efforts have been made to provide datasets with

this information [117, 118], manual labeling is still labor intensive, subjective and an

error prone process. Moreover, it has been shown that manual segmentations are not

necessarily the optimal spatial enclosure for object classifiers [119]. To cope with an

increasing number of concepts and larger scale datasets, there has been an increased

interest in transitioning away from these fully supervised approaches.

Weakly-supervised algorithms [119, 120, 121, 122] relieve the labeling burden by learn-

ing from labels with less information. Figure 3.9 illustrates this setting and the problem
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Figure 3.9: In a weakly-supervised method for multi-label image classification, the train-
ing set images (a) are labeled with the objects that are present but their location in the
image is unknown. Given unseen test images (b), our method is able to classify which
classes are present in the image and segment the image into regions that correspond to
the classes.

himg = ↵ · hcow + � · hgrass + � · hbg

Figure 3.10: The left image represents the original training image that has been labeled
with the words grass and cow. Our algorithm decomposes the histogram of this image as
a linear combination of two class histogram basis (cow, grass) plus another histogram hbg

modeling errors and the background. Class localization can be visualized on the image
by interpreting each histogram as a probability distribution of which words belong to the
class.

we address in this section: given a weakly-labeled training set (Figure 3.9(a)), we segment

and label new test images (Figure 3.9(b)). To solve this problem, we propose to cast it

under a matrix completion framework. Several Multiple Instance Learning (MIL) meth-

ods [119, 123, 124, 125, 126, 127, 128] have been proposed in the literature for solving this

type of weakly supervised learning problem. However, existing MIL methods have four

major drawbacks: (1) The MIL problem is usually cast as a NP-hard binary quadratic

problem. Consequently, most existing algorithms to solve MIL are highly sensible to

initialization. (2) The extension of MIL to the multi-label case is not trivial. Current

multi-label MIL approaches [124, 125, 126] heavily rely on an explicit enumeration of

instances, which are then solved by single class MIL or Multi-label learning. (3) They

lack robustness to outliers. Recall from Section 3.1 that most discriminative approaches

project data directly onto linear or non-linear spaces [119, 123, 127]. Thus, a single outlier
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can bias the solution, severely degrading classification performance. (4) It is unclear how

existing MIL approaches can be extended to use partial information, such as incomplete

label assignments or missing feature descriptions.

We observe that the image classification and localization problem has more structure

than what’s exploited by MIL problems. MIL approaches consider images as bags with

many instances denoting possible regions of interest. Instead, we make use of the additive

property of histogram representations such as Bag of Words (BOW) [129]: the histogram

of an entire image is a sum of the histogram information of all of its subparts (see

Figure 3.10). By using this property, image classification can be posed as a low-rank

matrix completion problem, since class histograms are shared across images, and the

number of class histograms is small compared to the number of images. Contrary to

typical MIL approaches, our matrix completion model is convex. Figure 3.11 illustrates

the main idea in this section. Each column of Zobs has a concatenation of the labels (1

if the class is present and zero otherwise) and the histogram htri for one training image

(Figure 3.11 (a)). In the test set (Figure 3.11 (b)), labels are unknown and denoted as

question marks (?). Our method fills the unknown entries and corrects known features

and labels such that Z has the smallest rank possible. It can also infer the feature

descriptor of a particular class (Figure 3.11 (c)). This is achieved by looking for the

unknown histograms whose label vector denotes the presence of only this class. In doing

so, we obviate the need for training with precise localization or expensive combinatorial

MIL models, as required by previous methods.

3.2.1 Related work

Since the seminal work of Barnard and Forsyth [130], many researchers have addressed the

problem of associating words to images. Image semantic understanding is now typically

formulated as a multi-label problem. In this setting, each image may be simultaneously

assigned to more than one class. This is an important difference from multi-class clas-

sification, where classes are assumed to be independent and mutually exclusive. While

multi-label can trivially be handled in multi-class approaches by dropping the mutual ex-
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Figure 3.11: Our weakly supervised classification algorithm works by completing a matrix
Zobs as shown above, where the question marks denote unknown entries. We complete
this matrix such that it can be factorized into a low rank matrix Z and an error matrix
E. This ensures that background distributions and feature/label outliers are captured
in E, since they increase the rank of Z. In the training submatrix (a), the ith column
concatenates the image histogram htr

i with its respective {0, 1} label assignments. Note
that a partially labeled example such as the second training image (a) is trivially handled
by our framework. In the test submatrix (b), the jth column is a concatenation of
histogram htst

j with unknown assignments. In this transductive setting, the statistics of
the test set are also used in the learning. By completing (c), we obtain a representative
histogram for each class, in spite of their co-occurrence in the images.

clusivity constraint, Desai et al. [131] have shown the need to model object interactions.

Therefore, many multi-class techniques such as SVM and LDA have been modified to

make use of label correlations to improve multi-label classification performance [132]. In

these approaches, localization is achieved by detection, using e.g., a sliding window. This

is, however, at the expense of a fully supervised training set where localization is known

a priori.

Several researchers have addressed the problem of classifying an image and providing

precise class localization. Deselaers et al. [133] used a CRF to learn new class appearances

from previously known ones obtained with supervised training. Blaschko et al. [134]

learned a supervised structured output regression where the outputs are coordinates of

a bounding box enclosing the object. Jamieson et al. [122] associated configurations of

SIFT features to captions. Tighe and Lazebnik [135] proposed lazy learning for large

scale image parsing.

Alternatively to these approaches, Multiple Instance Learning (MIL) has surfaced as

a reliable framework for performing learning in the presence of unknown latent factors.
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First proposed in [136], this class of learning problems extends the typical classification

setting to the case where labels are no longer applied individually, but to multi-sets or

“bags”: a bag is labeled positive if at least one of its instances is positive and negative if

none of its constituents are. In computer vision, this framework has been used for weakly

supervised learning tasks such as learning deformable part models [127] and to explicitly

model the relations between labels and specific regions of the image, as initially proposed

by Maron and Lozano-Perez [137].

This method allows for the localization and classification tasks to benefit from each

other, thus reducing noise in the corresponding feature space and making the learned

semantic models more accurate [39, 119, 123, 124, 125, 126, 138]. Although promising, the

MIL framework is combinatorial, so several approaches have been proposed to avoid local

minima and deal with the prohibitive number of possible subregions in an image. Zha et

al. [125] made use of hidden CRFs while Vijayanarasimhan et al. [126] recurred to multi-

set kernels to emphasize instances differently. Yang et al. [123] exploited asymmetric

loss functions to balance false positives and negatives. These methods, however, require

an explicit enumeration of instances in the image. This is usually obtained by breaking

images in a small fixed number of segments or applied in settings where detectors perform

well, such as the problem of associating faces to captioned names [139]. On the other

hand, to avoid explicitly enumerating the instances, Nguyen et al. [119] coupled constraint

generation algorithms with a branch and bound method for fast localization. This is also

seen in the negative data-mining process of [127]. Yakhnenko et al. [39] proposed a MIL

algorithm of linear complexity in the number of instances by using a non-convex Noisy-

Or model. Multi-task learning has also been proposed as a way to regularize the MIL

problem to avoid local minima due to many available degrees of freedom. In this setting,

the MIL optimization is jointly learned with a fully supervised task [138].

To the best of the authors’ knowledge, the only work modeling MIL as a convex prob-

lem is by Li and Sminchisescu [128]. They replace the classifier loss and the non-convex

constraints on the positive bags by convex alternatives (f-divergence family loss and class
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likelihood ratios for each instance). They show promising results over standard MIL for-

mulations as the ratio of positive instances in positive bags increase. Unfortunately, this

is not the setting in image classification, as the percentage of possible negative bounding

boxes in an image largely exceeds that of the positives. This work can also relate to

Latent Semantic Analysis, as the low rank justifications provided in Sec. 3.2.2 are simi-

lar in nature to the ones provided for subspaces obtained from document-term matrices.

Bosch et al. [140] provided preliminary results that visual words associated with high

probability to a given category can provide cues for localization.

3.2.2 Matrix completion for multi-label classification of visual data

This subsection describes the main contributions of this section: We start by presenting

the use of matrix completion for general classification tasks. Then, we describe its use

for weakly supervised multi-label image classification and localization.

Classification as a matrix completion problem

In a supervised setting, a classifier learns a mapping W : X → Y between the space of

features X and the space of labels Y . This learning is done from a dataset of N training

tuples (xtri ,y
tr
i ) ∈ RD × RK , where D is the feature dimension and K the number of

classes. In particular, linear classifiers minimize a loss l(·) between the output space and

the projection of the input space, as

minimize
W,b

N∑

i=1

l


ytri , [W

> b]




xtri

1





 , (3.11)

where parameters W ∈ RD×K and b ∈ RK×1 describe the class decision boundaries.

After the training stage, these parameters are used to estimate unknown labels for test

samples ytstj from their feature descriptors xtstj . This is typically done independently for

each test entry, as

ytstj = [W> b]




xtstj

1


 . (3.12)
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In this section, we formulate the problem of jointly classifying M test samples as one

of matrix completion. For this purpose, let us define the feature matrices Xtr ∈ RD×N

and Xtst ∈ RD×M . These matrices respectively collect in each column feature vectors for

N training and M test samples. Without loss of generality, the linear model assumed

in (3.12) can be written in matrix form. Specifically, it states that Ytr ∈ RK×N , the

matrix concatenating the labels for all training images, can be obtained by the linear

combination

Ytr = [W> b]




Xtr − Etr
X

1>


− Etr

Y , (3.13)

where EY
tr and EX

tr denote errors in the known labels and features, respectively. The

test labels Ytst ∈ RK×M are obtained as

Ytst = [W> b]




Xtst − Etst
X

1>


 , (3.14)

with no error in the labels since they are unknown. Concatenating labels and features in

(3.13) and (3.14) in one matrix yields

Z =




Ytr Ytst

Xtr Xtst

1>



−




Etr
Y 0

Etr
X Etst

X

0>




= Zobs − E, (3.15)

where Zobs ∈ R(K+D+1)×(M+N) holds all observed entries (with Ytst unknown) and E is

a matrix of errors, also unknown. Note that according to (3.13) and (3.14), the matrix

Z defined in (3.15) is rank deficient. That is, the rows comprising the labels are linearly

dependent on the feature rows. In the absence of error (E = 0), the input matrix Zobs is

also low rank, as

rank(Z) = rank(Zobs) = rank







Xtr Xtst

1>





 . (3.16)
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In this case, we observe that (3.13) becomes

Ytr = [W> b]




Xtr

1>


 , (3.17)

and thus the Ytst in (3.14) does not increase the rank of Z, since

Ytst = [W> b]




Xtst

1>


 . (3.18)

Using this result, Goldberg et al. [49] suggested that unknown test labels in Ytst can be

recovered by completing these entries such that the rank of Z is minimized. This can be

written as

minimize
Ytst

rank(Z)

subject to Z =




Ytr Ytst

Xtr Xtst

1>



.

(3.19)

In practice E 6= 0, so we modify (3.19) to include (3.15). To avoid trivial solutions, we

penalize errors with a loss l(·), as

minimize
Ytst,EtrY ,EX

rank(Z) + λl(E)

subject to Z =




Ytr Ytst

Xtr Xtst

1>



−




Etr
Y 0

EX

0>



,

(3.20)

where λ is a tradeoff parameter and EX = [Etr
X Etst

X ]. We discuss the choices of loss

functions l(·) in detail in Sec. 3.2.2.

Since the rank is a highly non-convex and non-differentiable function, it is nontrivial

to minimize. Therefore, we relax (3.20) by using its convex envelope, the nuclear norm.
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Therefore, we rewrite (3.20) as

minimize
Ytst,EY

tr,EX

‖Z‖∗ + λl(E)

subject to Z =




Ytr Ytst

Xtr Xtst

1>



−




Etr
Y 0

EX

0>




. (3.21)

There are three fundamental advantages in casting a general classification problem as

the matrix completion in (3.21). First, it bypasses the estimation of the model parameters

W and b. This allows our formulation to estimate errors in the features EX . Parametric

models that estimate W and b (such as linear regression or SVMs) do not model this

error, and thus implicitly assume EX = 0. Note that the product W>EX in (3.13)

will result in a non-convex problem when both W and EX are considered as optimization

variables, whereas our model (3.21) is convex. Second, errors and missing data in features

and labels are estimated jointly. Third, we minimize the rank of Z, containing training

and test samples. This transductive setting allows the model to leverage the statistics of

the test set.

Adding robustness into matrix completion

In practical applications, we have several sources of errors in the features (e.g., changes

in pose, illumination, background noise) and missing data in the training samples (e.g.,

missing labels), which will translate into nonzero error matrices in the models of (3.15)

and (3.35). We account for these possible violations by allowing the matrix Z in (3.21) to

deviate from the original data matrix. The resulting optimization problem finds the best

label assignment Ytst and error matrices EX = [EXtr EXtst ] ,EY tr such that the rank of

Z is minimized, as
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minimize
Ytst,EY tr ,EX

µ‖Z‖∗ + lx(EX) + λly(E
tr
Y )

subject to Z =




Ytr Ytst

Xtr Xtst

1>



−




Etr
Y 0

EX

0>



.

(3.22)

Here, distortions of Z from known labels and features are penalized according to ly(·)

and lx(·), respectively. The parameters λ, µ are positive trade-off weights between better

feature adaptation and label error correction. We rewrite (3.22) by defining sets ΩX and

ΩY of known feature and label entries and ZY ,ZX ,Z1 as the label, feature and last rows

of Z, as

minimize
Z

µ‖Z‖∗ +
1

|ΩX |
∑

ij∈ΩX

lx(zij, z
obs
ij )

+
λ

|ΩY |
∑

ij∈ΩY

ly(zij, z
obs
ij )

subject to Z1 = 1>

, (3.23)

where the constraint that Z1 be equal to one is necessary for dealing with the bias b in

(3.13). The model in (3.23) can be solved using Fixed Point Continuation [55], described

in Sec. 3.2.3.

In [49], lx(·) was defined as the least squares error and ly(·) a log loss to emphasize

the error on entries switching classes as opposed to their absolute numerical difference.

We note that in this model (MC-1), the log loss in ly(·), albeit asymmetric, incurs in

unnecessary penalization of entries belonging to the same class as the original entry (see

Figure 3.12). Therefore, we generalize this loss to a smooth approximation of the Hinge

loss, controlled by a parameter γ. For labels {−1, 1}, we have

ly(zij, z
obs
ij ) =

1

γ
log(1 + exp (−γzobsij zij)), (3.24)

and for the case of labels {0, 1}, we have
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Figure 3.12: Comparison of Generalized Log loss with Log loss (γ = 1).

ly(zij, z
obs
ij ) =

1

γ
log
(
1 + exp

(
−γ(2zobsij − 1)(zij − zobsij )

))
. (3.25)

Also, in the bag of words model, visual data are encoded as histograms. In this setting,

(3.23) is inadequate as it introduces negative values to the histograms in ZX . Thus, we

replace the least-squares penalty in lx(·) by a χ2 distance,

χ2(zj, zj0) =
F∑

i=1

χ2
i (zij, z

obs
ij ) =

F∑

i=1

(
zij − zobsij

)2

zij + zobsij
. (3.26)

and constrain all feature vectors to be positive

Definition 6 (MC-Pos model).

minimize
Z

µ‖Z‖∗ +
1

|ΩX |
∑

ij∈ΩX

χ2
i (zij, z

obs
ij )

+
λ

|ΩY |
∑

ij∈ΩY

ly(zij, z
obs
ij )

subject to ZX ≥ 0

Z1 = 1>,

(3.27)

or in the Probability Simplex P
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Definition 7 (MC-Simplex model).

minimize
Z

µ‖Z‖∗ +
1

|ΩX |
∑

ij∈ΩX

χ2
i (zij, z

obs
ij )

+
λ

|ΩY |
∑

ij∈ΩY

ly(zij, z
obs
ij )

subject to ZX ∈ P

Z1 = 1>,

(3.28)

depending on whether we wish to perform normalization on the data or not. Observe

that for the presented losses lx(·) and ly(·), (3.23) and (3.28) are both convex in their

domains.

3.2.3 Fixed point continuation (FPC) for MC-Pos/MC-Simplex

Albeit convex, the nuclear norm makes (3.27) and (3.28) not smooth. Since nuclear norm

problems are naturally cast as Semidefinite Programs, existing interior point methods are

inapplicable due to the large dimension of Z. Thus, several methods have been devised to

efficiently optimize this problem class [22, 53, 54, 55, 56, 57, 58]. The FPC method [55],

in particular, consists of a series of gradient descent updates h(·) = I(·)− τg(·) with step

size τ and gradient g(·) as

g(zij) =





λ
|ΩY |

−zobsij
1+exp (γzobsij zij)

if zij ∈ ΩY ,

1
|ΩX |

z2ij+2zijz
obs
ij −3zobsij

2

(zij+zobsij )2
if zij ∈ ΩX ,

(3.29)

and 0 otherwise. These steps are alternated with a shrinkage operator Sν(·) = max (0, · − ν)

on the singular values of the resulting matrix, to minimize its rank. Provided h(·) is non-

expansive, FPC converges to the optimal solution for the unconstrained problem. FPC

was originally devised in [55] for unconstrained problems and extended in [49] to solve the

formulation MC-1 (3.23) by adding a projection step. However, its convergence to the
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global optima of the problem was only empirically verified. In Appendix B, we prove the

convergence of FPC for (3.23), (3.27), (3.28) using the fact that projections onto convex

sets are non-expansive.

Key to the feasibility of FPC is an efficient way to project Z onto the constraint sets in

(3.27) and (3.28). While for MC-Pos (3.27) the non-negative orthant projection is done by

setting negative components to zero, efficiently projecting onto the probability simplex in

MC-Simplex (3.28) is not straightforward. By exploring the dual of the projection prob-

lem we obtain a closed form, cf. [62, 141]. The algorithms are summarized in Alg. 4 and

we prove their convergence in Appendix B. The computational bottleneck is the computa-

tion of the SVD of Z. State-of-the-art methods for SVD (e.g., Lanczos bidiagonalization

with partial reorthogonalization) take a flop count of O((K+D+1)(M+N)2+(M+N)3).

Algorithm 4 FPC for MC-Pos (3.27) and MC-Simplex (3.28)

Input: Initial Matrix Zobs, known entries sets ΩX ,ΩY

Initialize Z as the rank-1 approximation of Zobs

for µ = µ1 > µ2 > · · · > µk do
while Rel. Error > ε do

Gradient Descent: A = Z− τg(Z)
Shrink 1: A = UΣV>

Shrink 2: Z = USτµ(Σ)V>

Project ZX : ZX = max (ZX ,0) for (3.27)
Project ZX onto the probability simplex P for (3.28)
Project Z1: Z1 = 1>

end while
end for

Output: Complete Matrix Z

3.2.4 Low-rank assumption for histograms in image classification

In spite of justifying the applicability of matrix completion as a generic classification

framework, the explanation provided by Goldberg et al. [49] described in Sec. 3.2.2 only

spans the row space of Z. In this section, we provide an alternative explanation for the

low rank of Z in (3.15), based instead on its column space. Let us assume the case when

histograms are used as feature vectors. Note that several popular techniques for obtaining

global representations of images in computer vision, such as Bag of Words or HOG, fall
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under this assumption. Let hi denote such a histogram representation for image i. In this

case, the feature submatrix X = [Xtr Xtst] in (3.15) contains one histogram per column,

as

X =

[
htr1 · · · htrN htst1 · · · htstM

]
. (3.30)

One property of image histograms is that they can be represented by a sum of the

histograms of its segments. We consider these latent histograms as Ck ∈ RD×Nk , the Nk

canonical histogram representations for class k. Therefore, we have that the histogram

of image i can be written as a sum of class representatives Ck weighted by coefficients

ak,i ∈ RNk×1, as

hi =
∑

k

Ckak,i + EXi, (3.31)

where EXi collects errors (e.g., words in the background that do not pertain to any class).

If we concatenate the representatives Ck in the matrix

C =

[
C1 C2 · · · CK

]
, (3.32)

and collect weights ak,i in a matrix A we can write (3.30) as

X = CA + EX . (3.33)

Additionally, since we postulated each ckj as belonging to only class k, the correspondent

label matrix for C is given by

YC =

[
e11

>
N1
· · · eK1>NK

]
, (3.34)
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where ei denotes the ith canonical vector. Merging (3.30) and (3.34), we obtain the data

matrix Zobs in (3.15) as

Zobs =




YC

C


A +




EY

EX


 = Z + E, (3.35)

the sum of a low rank component matrix Z with an error matrix E. A close inspection of

(3.35) allows us to state that Zobs is low rank also due to its column space, in absence of

background noise, since class histograms are shared across images and therefore
∑

kNk <

N + M . Additionally, it allows for the observation that the appearance of individual

classes can be recovered from a multi-label dataset by estimating C. In this chapter,

we assume that for localization purposes, each class can be well represented by a single

histogram. In this case, (3.34) becomes YC = IK , and therefore our approach can obtain

an estimate of C by completing in Zobs the features correspondent to the canonical labels

(see Figure 3.11 (c)). By directly estimating C, we are able to recover the appearance

of each class and thus provide the localization for each concept in the images. This is

done despite the weakly supervised setting and bypassing the combinatorial nature of

searching for bounding boxes such as in MIL problems. Also, note that this assumption

is not used in the classification, where our algorithm estimates class subspace dimensions

automatically.

Low rank assumption validation

We empirically validated the low-rank assumption that histograms of objects of the same

class share a low-dimensional subspace in two multi-label datasets, MSRC4 and SIFT-

Flow [142]. We constructed a bag of words representation for the MSRC dataset, which

consists of 591 real world images distributed among 21 classes, with an average of 3

classes present per image. To replicate the setup of [125, 126], we dismissed the classes

void, mountain and horse. To obtain a bag of words (BOW) descriptor, we clustered

4http://research.microsoft.com/en-us/projects/objectclassrecognition/
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Figure 3.13: Comparison of singular value distribution of matrices X1 with histograms of
the same class (solid) versus corresponding matrices X2 of the same dimension with an
equal amount of histograms from all classes (dashed) for different classes on the MSRC
dataset.

texton filter responses [143] obtained from all three CIELab color channels into a code-

book by applying k-means to a random subset of 40, 000 descriptors. In this model [129],

images are encoded as histograms representing the distribution of the 400 words from

the codebook. Then, using the ground truth segmentation labeling, we collected feature

matrices X1 by concatenating all the histograms of the same class. We compared these

with feature matrices X2 of the same dimension with an equal amount of elements from

all classes (including elements from the class of X1). In order to compare the singular

value distribution of these matrices, we normalized them so columns have unit `2 norm.

Then, we measured their nuclear norm ratio (NNR), defined as

NNR(X1,X2) =
‖X1‖∗
‖X2‖∗

. (3.36)

This measure provides an empirical validation of our assumption and is linked to what

our model is optimizing and is an indirect measure of the rank of a matrix. Results on

Table 3.6(a) show that for all classes in the MSRC dataset, we obtained a NNR lower

than 1. An assignment of test entries to incorrect class labels yields a higher nuclear norm

of Z, thus validating our model. For visualization, we plot the singular value distribution

of X1 and corresponding X2 for some classes in the dataset (Figure 3.13).

It might be argued that explanation of (3.35) only holds when the columns dominate
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Table 3.6: Nuclear norm ratios (NNR) for all classes in the MSRC dataset (a) and for all
classes which have more than 200 segments in the SIFTflow dataset (b).

(a) MSRC dataset.

Class NNR
building 0.8595

grass 0.6987
tree 0.8325
cow 0.9092

sheep 0.7653
sky 0.4530

aeroplane 0.7831
water 0.8224
face 0.6622
car 0.8392

bicycle 0.6525
flower 0.8741
sign 0.9491
bird 0.8793
book 0.9217
chair 0.9397
road 0.7070
cat 0.8402
dog 0.8420

body 0.9465
boat 0.9123

(b) SIFTflow
dataset.

Class NNR
building 0.9074

tree 0.8620
car 0.8989
sky 0.8455

window 0.7513
mountain 0.8657

road 0.8568
person 0.8673
plant 0.8655

sidewalk 0.9038
rock 0.8728
door 0.6554
sea 0.6073
field 0.7719
sign 0.9098
grass 0.8181

streetlight 0.9439
river 0.8719

balcony 0.7458

the estimate of the rank, i.e., rank(

[
Xtr Xtst

]
) ≤ N + M ≤ F . However, we also

validated this hypothesis in the case when the feature dimension F is smaller than the

number of images N + M in the dataset. Since there are only 591 images in the MSRC

dataset and some classes exhibit a small number of exemplars, we validated this assump-

tion in the larger scale SIFTFlow dataset [142]. This dataset is a collection of 2, 688

images distributed among 33 classes. Following [142], we extracted a dense HoG feature

map [144] from every image in the dataset and built a BoW codebook of 200 words. We

collected the histograms for all the 25, 758 ground truth segments in the dataset according

to their class label. Then, we calculated the distribution of singular values for matrices

X1 as aforementioned, for all classes with more than 200 samples in the dataset. We com-

pared the NNR of the matrices X1 with matrices X2 of the same dimension comprised

by an equal amount of elements from all classes. Results in Table 3.6(b) corroborate the

MSRC dataset results, showing our assumption is also valid when the feature dimensions

are smaller than the number of images.
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3.2.5 Comparison to other subspace techniques

It is important to note that many standard dimensionality reduction techniques such

as PCA and LDA have been robustified by using a nuclear norm penalization typically

coupled with an `1 error function [44, 145]. The differences and similarities between the

method presented in Section 3.2.2 and these techniques can be analyzed if one interprets

(3.27),(3.28) as forms of PCA with missing data. Our method can be seen as an extension

of Robust PCA in two ways: 1) it includes labels as additional “features” in the data

samples 2) it penalizes label and features errors with different losses lx and ly.

A comparison between the behavior of PCA, LDA, RPCA [145], RLDA [44] and our

method in the presence of noise can be seen in Figure 3.14. We generated a two-class

dataset of 2, 000 500-dimensional vectors. The positive and negative classes (resp.) have

1, 000 samples of the form −1500 and 1500 (resp.). We refer to this as clean data. The

first two principal components of this clean data are in Figure 3.14(a). Then, we added

to the clean data noise sampled from a Normal distribution with zero mean and standard

deviation 20I500×500. We plot the two principal components data in Figure 3.14(b). Note

that PCA does not recover the underlying structure of the clean data due to the significant

amount of noise.

In this example, because the data does not have outliers and the noise does not follow

a Laplacian distribution, the `1 error function assumed by RPCA [145] is not able to clean

the noisy data (Figure 3.14(c)). Similarly, augmenting the space by adding the labels as

an additional dimension does not help since for RPCA the errors in features and labels

are weighted equally. In both these cases, the output of RPCA (Figure 3.14(c)) is similar

to the one obtained by regular PCA (Figure 3.14(b)). LDA (Figure 3.14(d)) is able to find

a projection which classifies most of the points correctly. However, observe that it fails

to clean the data, which results in several misclassified points on the class boundary. Our

matrix completion approach, in turn, balances a trade-off between correcting the data

points, correcting the labels and minimizing the rank. Therefore, it is able to correct the

feature data (Figure 3.14(e)) by giving more weight to the information on the labels. This
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capability of correcting the errors in features is only matched by our work in Robust LDA

[44], which achieved the result in Figure 3.14(f). While this method has the advantage

of obtaining an explicit transformation from the feature to the label space, the matrix

completion has the ability to clean the test data during training.

3.2.6 Experimental results

This section presents the evaluation of the algorithms MC-Pos (3.27) and MC-Simplex

(3.28) in several tasks. In Sec. 3.2.6, we evaluated the classification and localization

performance of our method on the CMU-Face dataset [119] (a two-class problem). Second,

we evaluated the performance of our method for multi-label classification in the MSRC

and PASCAL VOC2007 datasets. Lastly, we also perform an experiment for localization

in MSRC.

Parameters

For MC-Pos, MC-Simplex and MC-1, the values considered for parameter tuning were

γ ∈ [1, 30], λ ∈ [10−4, 102]. The continuation steps require a decreasing sequence of µ,

which we chose as µk = 0.25µk−1, stopping when µ = 10−9. We used µ0 = 0.25σ1, where

σ1 is the largest singular value of Zobs, with unknown entries set to zero. Convergence was

defined as a relative change in the objective function smaller than 10−2. In a transduction

setting, since the task is to classify an already known test set, one could choose the

parameters which perform best on the final test set. However, to be fair to other baselines,

we tuned the parameters in a cross validation setting. As such, the results reported are for

the choice of parameters which, from the aforementioned ranges, yielded the best average

result on all the validation sets provided by cross-validation. The results reported for the

SVM baselines were obtained using libSVM, with parameter C ∈ [10−6, 106].

Classification and localization on a two-class problem

In this experiment, we tested the classification performance of our method in a two-

class classification problem. We used the CMU Face dataset [146], which consists of 624

images of 20 subjects. All subjects are captured with varying expression and poses, with
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(c) RPCA [145] of noisy data
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(e) PCA of MC-1 (λ = 100)
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(f) RLDA [44] of noisy data

Figure 3.14: Comparison of results obtained for two-class classification of the random
dataset in 3.2.5. Unlike others, the error correction in Robust LDA (f) and Matrix
Completion (e) allow for recovery of the original data.
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and without sunglasses. Figure 3.15 shows examples of our positive (wearing sunglasses)

and negative class (not wearing sunglasses). We have two goals: First, we want to

build a classifier that, given a new face image, determines whether the subject is wearing

sunglasses or not. Second, Nguyen et al. [119] argue that better results are obtained when

the classifier training is restricted to the region that has the discriminative information

(e.g., the glasses region in this case). They propose using a Multiple Instance Learning

framework (MIL-SegSVM) that localizes the most discriminative region in each image

while learning a classifier to discriminate between classes. We show how our method

is also able to estimate the histogram of the discriminative region (i.e., sunglasses) and

localize it in the training and test set.

To allow for direct comparison, we used the setup and features of [119]: Our train-

ing set is built using images of the first 8 subjects (126 images with sunglasses and 128

without), leaving the remainder for testing (370, equally split among the positive and

negative classes). We represented each image with the BoW model by extracting 10, 000

SIFT features [147] at random scales and positions and quantizing them onto a 1, 000

visual codebook, obtained by performing hierarchical k-means clustering on 100, 000 fea-

tures randomly selected from the training set. For the first part of the experiment, we

compared the results of our classifier to what is obtained using several methods: (1)

SVM-Img: a Support Vector Machine (SVM) trained using the entire image, (2) SVM-

FS: an SVM trained using a manually labeled discriminative region (in this case, the

region of the glasses), (3) MIL-SegSVM: a MIL SVM method proposed by [119]. For

MC-1, MC-Pos and MC-Simplex, we proceeded as follows: we built Z with the label

vector and the BoW histograms of each entire image and left the test set labels Ytst as

unknown entries. For the MC-Simplex case, we further preprocessed Z by dividing each

histogram in ZX by its sum.

The performance, measured using the area under ROC curve (AUROC), is shown

in Table 3.7. These results indicate both the fully supervised (SVM-FS) and the MIL

approach (MIL-SegSVM) are more robust to the noise introduced by non-discriminative
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(a) (b)

Figure 3.15: Example images of the CMU-Face dataset. (a) shows the positive class
(wearing sunglasses) and (b) shows the negative class (no sunglasses).

parts of the images, when compared to training without localization (SVM-Img). How-

ever, this is done at either the cost of labeling efforts or by iteratively approximating the

solution of the MIL problem, an integer quadratic problem. The matrix completion ap-

proaches (MC-1, MC-Pos, MC-Simplex), in turn, are able to surpass these classification

scores by solving a convex minimization.

Beyond improving the classification performance, our algorithm is able to localize

the discriminative region of interest (the sunglasses region, in this dataset). Recall that

the error EX removes the portion of the histogram introduced by the non-discriminative

regions of the image. To illustrate this property, after we run the matrix completion clas-

sification, we obtain the most discriminative bounding box for all images in the dataset.

For each image i in the dataset, we searched for the bounding box that best matches the

features of the i-th column of the completed matrix zX
i = hi − eX

i (recall Figure 3.11).

We use a sliding window detector varying scale and position using the size criteria in [119]

and measure similarity using the χ2 distance. The results are shown in Figure 3.16 for

MC-Pos (similar results were obtained with MC-Simplex). Similarly to MIL-SegSVM,

which used a linear SVM score for the subwindow search, our methods correctly localized

the eyes region, that discriminates between the classes. Note that MC-1 does not allow

to pursue localization of the class representative since it may introduce negative numbers

in the histograms.
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Figure 3.16: A sliding window search shows that histograms corrected by MC-Pos (3.27)
are most similar to the discriminative region of the eyes in the images.

Table 3.7: AUROC result comparison for the CMU Face dataset.
Method AUROC

SVM-Img [119] 0.90
SVM-FS [119] 0.94

MIL-SegSVM [119] 0.96
MC-1 [49] 0.96
MC-Pos 0.97

MC-Simplex 0.96

Classification in multi-label datasets

In this experiment, we ran our method on two multi-label datasets: MSRC and PASCAL

VOC 2007. The MSRC dataset consists of 591 photos distributed among 21 classes, with

an average of 3 classes present per image. We mimicked the setup of [125, 126] and

used as features histograms of textons [143]. Then, we obtained a 400 word codebook by

applying k-means clustering to a random subset of 40, 000 descriptors.

In this task, all training images are labeled with one or several classes, and the goal is

to label the test images. Observe that the test image can have several labels (i.e., it’s a

multi-label classification task). We proceeded as in the experiment described in Sec. 3.2.6.

We compared MC-Pos and MC-Simplex with MC-1 and several state-of-the-art multi-

label MIL approaches: Multiple Set Kernel MIL (MSK-MIL) by Vijayanarasimhan and

Grauman [126], Multi-label Multiple Instance Learning (ML-MIL) by Zha et al. [125],

Discriminative Multiple Instance Multiple Label model by Yakhnenko and Honavar [39].

We also compared to a one-vs-all linear SVM.

The obtained average AUROC classification scores on the test set using 5-fold cross

validation are shown in Table 3.8(a). Results show that our methods outperformed MC-1,

thus showing the improvement introduced by the additional constraints and improved loss
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Table 3.8: Classification performance in multi-label datasets.

(a) 5-Fold cross valida-
tion average AUROC
comparison for image
classification tasks on
MSRC dataset.

Method Image
MSK-MIL[126] 0.90
ML-MIL [125] 0.90
DMIML-`2 [39] 0.91

MC-1 [49] 0.91
MC-Pos 0.95

MC-Simplex 0.92
Linear SVM 0.89

(b) Mean Average Precision classification
task result comparison in the PASCAL VOC
2007 challenge for two sets of features.

Method mAP BoW mAP Overfeat
INRIA Genetic 0.48 –

MC-1 [49] 0.48 0.73
MC-Pos 0.50 0.73

MC-Simplex 0.50 0.72
Linear SVM 0.49 0.73

functions. Moreover, they outperformed results given by state-of-the-art MIL techniques,

including the non-linear classifier MSK-MIL. This can be explained by the fact that MIL

methods select regions from images to be the positive examples for a class while learning

that class boundary. Since possible regions are enumerated by a segmentation algorithm,

it is not guaranteed they match exactly the ground truth segmentation. The feature error

correction in MC-Pos and MC-Simplex does not require this segmentation step and thus

allows for superior results in this weakly supervised multi-label scenario.

We also tested our method in the PASCAL VOC 2007 dataset. This dataset con-

sists of 9963 images labeled with at least one of 20 classes, split into trainval and

test sets. We used the same features as the winning approach (INRIA Genetic) [117].

This method achieved a mean average precision (mAP) of 0.542. Given that it is a

non-linear fusion method, we compare to its simplest feature setting to ensure a fair com-

parison. We represented each image by extracting dense SIFT features [147] and quan-

tizing them onto a 4, 096 dimension codebook, built by k-means clustering on features

randomly selected from the training set followed by `2 normalization, as implemented

in VlFeat [148]. INRIA Genetic reports a mAP of 0.48 for these features. Results in

Table 3.8(b) show increased performance for the same features compared to the state of

the art circa 2007.Furthermore, we tested using state of the art features obtained from

Overfeat, a Convolutional Neural Network trained on ImageNet [111]. We rescaled every

image to 221 × 221 pixels and obtained a single 4096 dimensional feature vector as the
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output from layer 22 of the network for every image in the dataset. Our independent

testing corroborates the results obtained in [149], and the difference to Bag of Words

models shows the impressive boost in recognition research in the past 6 years. From

these tests, we can conclude Matrix Completion classifiers obtain performances compara-

ble to a linear SVM classifier, while being more versatile in allowing for missing data, as

well as noise in labels and features. Moreover, our approach is able to tackle multi-label

classification directly and can be useful for object localization, as shown in the following

sections.

Localization in a multi-label dataset

In this section, we propose an alternative exploratory paradigm for the association of

labels to regions in the image. The purpose of the method presented herein is not to

provide competitive state-of-the-art results for semantic segmentation, but merely to build

a working prototype that builds on the histogram representatives naturally obtained by

our method, and discuss its advantages and current limitations. Recall that in the two-

class example of Sec. 3.2.6, we used each corrected histogram in the training and test set

to localize the bounding box containing the most discriminative region. In the multi-label

case, however, several classes coexist in one image. Since corrected histograms contain a

mixture of classes, they can’t be used for class localization in the images.

One possible approach to solve this problem is to pre-segment the test images and use

the learned class models to classify each region individually. However, this approach has

several drawbacks: 1) having to select a fixed number of segments, 2) the segments are

obtained through only texture and color cues, so they might not match the ground truth

regions of the classes, and 3) contextual information between segments is lost, which

results in poorer classification performance when compared to the classifiers learned on

the entire image.

We propose an alternative method that does not suffer from these drawbacks, by

explicitly recovering representative histograms for each class. We proceeded as in 3.2.6,

but padded the matrix Z with 21 extra columns where the labels are the identity and

71



the features are unknown, to recover one representative histogram per class (see Fig-

ure 3.11(c)). Observe that we do not require segmentation for this classification. For

each class in an image (Figure 3.17 (a)), we plot a heatmap of which words belong to

the class using its respective histogram (Figure 3.17(b)). Then, we oversegmented each

image using the hierarchical segmentation of Arbelaez et al. [150] (Figure 3.17(c)). We

used code provided by the authors and set the parameter boundary segmentation scale

to k = 0.1. Last, in order to get the localization for a class in an image, we used the class

histograms and the obtained segments for that image as the input to the Efficient Region

Search (ERS) method of Vijayanarasimhan and Grauman [151]. ERS selects a group of

connected segments (Figure 3.17(d) that maximizes a detection score as measured by an

SVM classifier. Since the output of our algorithm is a probability map, we emulated the

SVM weight vector by using the class representative subtracted by its mean. We show

qualitative results of this approach on Figure 3.2.6 for independent recovery of classes

in the same image. The failures of our approach can be generally attributed to one of

two cases: class confusion in both the classification and the fact that ERS is applied

individually to each class (Figure 3.19(a)); the fact that the solution obtained by ERS is

by design a single contiguous region (Figure 3.19(b)).

3.3 Unsupervised learning as a robust PCA problem

In this section, we analyze the application of the unified model proposed in Chapter 2

to Robust PCA, an example of an unsupervised learning tasks where label information is

not available. We use Robust PCA for the task of background subtraction, which aims

to recover a low-rank data matrix Z from a data matrix X, as

Definition 8 (Robust PCA model).

min
Z
‖X− Z‖1 + λ‖Z‖∗, (3.37)
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(c) Over-segmentation

(d) Efficient Region Search (ERS)

(b) Class representative

(a) Input image

Figure 3.17: Illustration of our method for Matrix Completion localization.

As seen in Chapter 2, by using a bilinear factorization of Z = UV>, the robust PCA

model can be equivalently written as (recall (2.6))

min
U,V

‖X−UV>‖1 +
λ

2

(
‖U‖2

F + ‖V‖2
F

)
. (3.38)

We show the ALM algorithm proposed in Sec. 2.2 is both faster and more accurate than

state-of-the-art nuclear norm algorithms for this problem.

3.3.1 Experimental results

In this section, we validated the lower computational complexity of the algorithm pro-

posed in Sec. 3.3, when the output rank is not known a priori. We compared to state-of-

the-art nuclear norm and Grassmann manifold methods: GRASTA [59], PRMF [18] and

RPCA-IALM [53] in a synthetic and real data experiment for background modeling. We

use implementations provided in authors’ websites for all baselines. For all experiments,

we fix µ = 1.05 initialize ρ = 10−5 in Alg. 1. All experiments were run in a desktop with

a 2.8 GHz Quad-core CPU and 6 GB RAM.

73



Water ObjectsImage Grass

Flower

Chair

Bird

Dog

Sheep

Sky

Boat

Bird

Sunday, December 2, 12

(a)

Water ObjectsImage Grass

Flower

Chair

Bird

Dog

Sheep

Sky

Boat

Bird

Sign

Cat

Flower

Building

Flower

Chair

Aeroplane

Sign

Saturday, January 12, 13

(b)

Water ObjectsImage Grass

Flower

Chair

Bird

Dog

Sheep

Sky

Boat

Bird

Sunday, December 2, 12

(c)

Water ObjectsImage Grass

Flower

Chair

Bird

Dog

Sheep

Sky

Boat

Bird

Sunday, December 2, 12

(d)

Water ObjectsImage Grass

Flower

Chair

Bird

Dog

Sheep

Sky

Boat

Bird

Sunday, November 4, 12

(e)

Figure 3.18: Histograms corrected by our method in the MSRC dataset preserve seman-
tic meaning. The input image is shown in (a). The heatmap generated by the class
representative histogram is shown in (b). ERS [151] uses the heatmap in (b) and the
over segmentation in (c) to produce the segmentation in (d). (e) shows some multi-label
segmentation results.

Cow

Sky

Grass

(a) Class confusion and ERS is not multi-label.
Top: Sky, Middle: Grass, Bottom: Cow Thin objects

ERS selects contiguous regions

(b) ERS result is a contiguous region

Figure 3.19: Multi-label segmentation failure cases. Left: Original Image. Middle:
Heatmap generated by the class representative histogram. Right: Segmentation obtained
by ERS with class representatives.
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Table 3.9: Performance comparison of state-of-the-art methods for Robust PCA. Time
is in seconds. Error has a factor of 10−8.

Matrix RPCA-IALM [53] GRASTA [59] PRMF [18] Ours
N r Error Time Error Time Error Time Error Time

100 3 1.4872 0.3389 226.46 1.7656 3338.7 0.4704 0.5286 0.1734
200 5 1.5599 2.3575 241.99 2.7282 2687.5 1.0382 0.7182 0.5739
500 10 3.2595 10.501 263.55 9.5399 1692.4 6.2480 0.1273 3.2373
1000 15 0.3829 44.111 286.17 23.535 1145.8 30.441 0.0701 14.339
2000 20 0.6212 196.89 329.11 83.010 808.20 126.95 0.0308 60.658
5000 25 0.2953 1840.0 379.94 507.57 504.08 1307.4 0.0589 556.21

Synthetic data We mimicked the setup in [53] and generated low-rank matrices X =

UV>. The entries in U ∈ RM×r,V ∈ RN×r with M = N and each element sampled

i.i.d. from a Gaussian distribution N (0, 1). Then, we corrupted 10% of the entries with

large errors uniformly distributed in the range [−50, 50]. The error support was chosen

uniformly at random. Like [53], we set λ =
√
N and use the L1 loss. We varied the

dimension N and rank r and measured the algorithm accuracies, defined as ‖Z−X‖2‖X‖2 , and

the time they took to run. The results in Table 3.9 corroborate experimentally the com-

plexity analysis of the algorithm performed in Sec. 2.2: as N grows significantly larger

than r, the smaller runtime complexity of our method allows for equally accurate recon-

structions in a fraction of the time taken by RPCA-IALM. While PRMF and GRASTA

are also able to outperform RPCA-IALM in time, these methods achieve less accurate

reconstructions due to their alternated nature and sampling techniques, respectively.

Real data Next, we compared these methods on a real dataset for background model-

ing. Here, the goal is to obtain the background model of a slowly moving video sequence.

Since the background is common across many frames, the matrix concatenating all frames

is a low rank matrix plus a sparse error matrix modeling the dynamic foreground.

We followed the setup of [18] and used the Hall sequence5. This dataset consists of 200

frames of video with a resolution of 144×176, and we set the scope of the virtual camera

to have the same height, but half the width. We simulated a camera panning by shifting

20 pixels from left to right in frame 100 to simulate a dynamic background. Additionally,

we randomly dropped 70% of the pixels. We proceeded as in the previous synthetic

5http://perception.i2r.a-star.edu.sg/bk model/bk index.html
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Figure 3.20: Results for background modeling with virtual pan. The first row shows the
known entries used for training in frames 40, 70, 100, 130, 170, 200. The remaining rows
show the results obtained by PRMF, GRASTA and our method, respectively.

experiment. Fig. 3.20 shows a visual comparison of the reconstruction of several methods.

Results corroborate the experiment in Tab. 3.9 and show that the lower accuracies of

GRASTA and PRMF yield noisier reconstructions than our method.
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Chapter 4

Optimizing hard-rank models

when rank is known a priori

In Chapter 3, we have focused in soft-rank models and showed that these provide a useful

technique where a low-rank solution is sought but its rank is not predetermined. However,

many problems in computer vision involve the recovery of shape, appearance or motion

representations with a predetermined rank k. Since the recovery of these representations

is done from data which is noisy and only partially observed [2, 4, 8], this problem is

typically modeled as:

Definition 9 (Rank-k factorization with missing data). Optimization models that aim

to recover a rank-k factorization UV> ∈ RM×N from a data matrix X ∈ RM×N with

missing entries, as

min
Z
‖W � (X−UV>)‖2

F , (4.1)

where W ∈ RM×N is a positive weight matrix that can be used to denote missing data

(i.e., wij = 0), and the rank-k is specified by the inner dimensions of the product UV>.

Unfortunately, (4.1) is an NP-Hard problem where many state-of-the-art algorithms

even fail to reach good local minima [15, 16]. For this reason, the optimization of (4.1)

remains an active research topic, with many work focusing on algorithms that are robust

to initialization [3, 8, 17, 18] or initialization strategies [21]. Buchanan et al. [19] show
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that alternated minimization algorithms are subject to flatlining and propose a Newton

method to jointly optimize U and V. Okatani et al. [20] show that a Wiberg marginaliza-

tion strategy on U or V is very robust to initialization. However, its high memory usage

makes it impractical for medium-size datasets. These methods have also been extended to

handle outliers [3, 7, 13]. Ke and Kanade [13] suggest replacing the LS error with the L1

norm, minimized by alternated linear programming. Similarly to the LS case, Eriksson

et al. [3] show this approach is subject to flatlining and propose a Wiberg extension for

L1. Wiberg methods have also been extended to arbitrary loss functions by Strelow [72],

but exhibit the same scalability problems as its LS and L1 counterparts. The addition

of additional problem specific constraints e.g., orthogonality of U, has also been shown

to help algorithms in attaining better minima in structure from motion [8, 17]. However,

these methods are not generalizable to several other computer vision problems which are

modeled as low-rank factorization problems [8, 9, 10, 11].

In this Chapter, we show that recent soft rank models (recall (2.3)),

min
Z
‖W � (X− Z)‖2

F + λ‖Z‖∗, (4.2)

are inept to solve problems with a specific predetermined rank-k constraint. To un-

derstand why this is the case, let us consider the example of rank-k factorization of a

matrix X under the LS loss with no missing data (i.e., W = 1M1>N). For this case,

both (4.1) and (4.2) have closed form solutions in terms of the SVD of X = UΣV
>

, i.e.,

UV> = UΣ1:kV
>

and Z = USλ
2
(Σ)V

>
. In the case of noisy data, while the former yields

the optimal rank-k reconstruction, we need to tune λ in the latter such that σk+1 = 0.

If the λ required to satisfy this constraint is high, it may severely distort the non-zero

singular values σ1:k, resulting in poor reconstruction accuracy.

Instead, we argue for using our regularized unified model (recall (2.6))

min
U,V

‖W � (X− Z)‖2
F +

λ

2

(
‖U‖2

F + ‖V‖2
F

)
. (4.3)
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While the analysis in Chapter 2 shows that rank restrictions typically lead to local minima

when missing data are present, this problem is exacerbated when regularization is not

used (i.e., λ = 0): in addition to gauge freedom1, it is clear that not all weight matrices

W admit a unique solution [19]. As an extreme example, if W = 0, any choice of U

and V yields the same (zero) error. Thus, the unregularized factorization in (4.1) will be

more prone to local minima than its regularized counterpart (4.3). The two arguments

presented against (4.1) and (4.2) provide an argument for choosing our unified model (4.3)

and a general guideline for choosing λ: it should be selected as non-zero to ameliorate the

local minima problem of (4.1), but small enough such that the first r singular values are

not distorted. Moreover, the result in Theorem 1 of Chapter 2 that our model is equivalent

to the convex nuclear norm model in (4.2) when k is selected to be big enough allows us

to provide a deterministic sequence of initializations for this problem. To summarize, the

main contributions of this chapter are:

• In Sec. 4.1, we propose a “rank continuation” deterministic optimization scheme for

the NP-Hard factorization problem that avoids local optima in a significant number

of cases. This work has been published in [51].

• In Sec. 4.2, we extend the “rank continuation” to the problem of optimizing binary

quadratic problems and show an application example for finding correspondences

in pairs of images using a max cut formulation. This is currently under review in a

journal submission.

4.1 Rank continuation for matrix factorization

Given that for any fixed λ, as shown in Theorem 1 of Chapter 2, (4.3) always has a region

with no local minima, we propose the following “rank continuation” strategy: we initialize

(4.3) with a rank r ≥ k∗ matrix (i.e., white region of Fig. 2.1, where this problem is

equivalent to its convex counterpart), to guarantee its convergence to the global solution.

Note that in the absence of an estimate for k∗, we can always use r = min(M,N). Then,

1for each solution UV>, any solution (UR)(R−1V>) where R ∈ Rr×r is an invertible matrix will
provide an equal cost.
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Figure 4.1: Illustration of our proposed rank continuation procedure. Starting with a
full rank matrix, we solve the problem and obtain a solution of rank k∗. Under these
conditions, Theorem 1 guarantees the our ALM convergens to the global solution and is
equivalent to the convex problem. Then we solve a sequence of problems of decreasing
rank and initialized with the solution of the previous problem, until the desired rank r is
attained.

we use this solution as initialization to a new problem (4.3) where the dimensions r of

U,V,Σ are decreased by one, until the desired rank is attained. This reduction can be

done by using an SVD projection. This approach is summarized in Alg. 5 and illustrated

in Fig. 4.1. Note this is similar in philosophy to [152] but significantly different in the

problem being solved and the continuation path used.

Algorithm 5 Rank continuation

Input: X,W ∈ RM×N , output rank k, parameter λ, an optional estimate of the output
rank k∗ of (1.3)
Initialize U,V randomly, with k∗ ≤ r ≤ min (M,N)
Solve for Z in (4.3) with Alg. 1
for r = rank(Z)− 1, . . . , k do

SVD: Z = UΣV
>

Rank reduce: Ur = UΣ
1
2
1:r, V>r = Σ

1
2
1:rV

>

Solve Z in (4.3) with initialization Ur,Vr using Alg. 1
end for

Output: Complete Matrix Z with rank k

Rank continuation provides a deterministic optimization strategy that empirically is

shown to find good optima, compared to other baseline algorithms for this family of

problems. In particular, we show in the experimental section that global minima of (4.3)

are achieved with this strategy in several cases.
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4.1.1 Experimental results

In this section, we empirically validated the “rank continuation” strategy proposed in

Sec. 4.1, in several synthetic and real data problems where the output rank is known

a priori. We compared our method to state-of-the-art factorization approaches: the

damped Newton in [19], the LRSDP formulations in [153] and the LS/L1 Wiberg methods

in [3, 20]. Following results reported in the detailed comparisons of [3, 16, 17, 19, 20,

72], we dismissed alternated methods due to their flatlining tendency. To allow direct

comparison with published results [17, 19, 20, 153], all methods solved either (4.1) or

(4.3) without additional problem specific constraints and we fixed λ = 10−3. For control,

we also compared to two nuclear norm baselines: NN-SVD, obtained by solving (4.2)

with the same λ used for other models and projecting to the desired rank with an SVD;

NN-λ, obtained by tuning λ in (4.2) so the desired rank is obtained.

Synthetic data

We assessed the convergence performance of our continuation strategy using synthetic

data. We performed synthetic comparisons for two loss choices: LS loss f(·) = ‖W �

(X− Z)‖2
F and the L1 loss f(·) = ‖W � (X− Z)‖1.

For the LS loss, we generated rank-3 matrices X = UV>. The entries in U ∈

R20×3,V ∈ R25×3 were sampled i.i.d. from a Gaussian distribution N (0, 1) and Gaussian

noise N (0, 0.1) was added to every entry of X. For the L1 loss, we proceeded as described

for the LS case but additionally corrupted 10% of the entries chosen uniformly at ran-

dom with outliers uniformly distributed in the range [−2.5, 2.5]. We purposely kept the

synthetic experiments small, due to the significant memory requirements of the Wiberg

algorithms. We varied the percentage of known entries and measured the residual over

all observed entries, according to the optimized loss function. We chose this measure

as it allows for direct comparison between unregularized and regularized models. We

ran damped Newton, LRSDP and Wiberg methods 100 times for each test with random

initializations.
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Figure 4.2: Comparison of convergence to empirical global minima (Min) for the LS and
L1 losses in synthetic data. The minima are found as the minimum of all 100 runs of all
methods for each test.

Fig. 4.2 shows the results for the LS and L1 loss cases. We show two representatives

cases for the percentage of known entries (75% and 35%, the breakdown point for L2-

Wiberg methods), both for missing data patterns at random (M.A.R.) and with a pattern

typical of SfM matrices (Band), generated as in [20]. The theoretical minimum number

of entries to reconstruct the matrix is the same as the number of parameters minus

factorization ambiguity Mr + (N − r)(r + 1), which for this case is 29.6% [20]. We

verified the behavior of all methods when more than 40% of the entries are known is

similar to the result shown for 75%.

For the LS case, results in Fig. 4.2(a) show that our deterministic continuation ap-

proach always reaches the empirical optima (found as the minimum of all runs of all

methods), regardless of the number of known entries or pattern of missing data. Note

the minimum error is not zero, due to the variance of the noise. As reported previously

[16, 17, 20], we observe that L2-Wiberg is insensitive to initialization for a wide range of

missing data entries. However, we note that its breakdown point is not at the theoretical

minimum of 35%, due to the lack of regularization. The LRSDP method for optimizing

(4.3) outperforms the Wiberg method in this region, suggesting that similar convergence

properties of the Wiberg can be obtained without its use of memory. The baseline NN-
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SVD performed poorly, showing that the estimation of the nuclear norm fits information

in its additional degrees of freedom instead of representing it with the true rank.

NN-λ, on the other hand, oversmooths the cost function which might destroy the error

function landscape, as is the case for L1 error or when few known entries are available.

A visualization of this over-smoothing can be seen in Fig. 4.3, where we reproduce the

setup of [15] and plot the landscape of the cost function of (4.3) for a factorization of a

3× 3 data matrix (i.e., W = [1 0 1; 0 1 1; 1 1 1],X = [1 100 2; 100 1 2; 1 1 1]) for r = 1

and several values of λ spanning the grey and white areas in Fig. 2.1. From the figure, it

can be seen that while convexifying the landscape is appealing for minimization purposes,

some global minima might disappear. For the value of λ chosen, however, it seems we

benefit from this smoothing without destroying the global minima landscape. This can

be seen in Fig. 4.4(a), where we ran Algorithm 1 100 times with random initialization

for a 20 × 25 rank-3 matrix with 50% missing entries generated with band pattern as

described in the beginning of this section. For each rank, we plotted the minima attained

by the algorithm, and compared it with the path obtained by rank continuation. In this

figure, it can be seen that 1) regularized model exhibits a smaller spread in the number

of local minima, and 2) the algorithms directly enforcing the solution converge to several

local minima with higher cost, whereas rank continuation attains the correct solution in

the final stage. One explanation for why rank continuation attains the optima is that

the subspace of rank 3 is contained in the one obtained in the convex problem, i.e., the

solution obtained when initializing Z with full rank. This can be seen in Fig. 4.4(b),

where we measured the Normalized Subspace Inclusion (NSI) [154] between the column

subspaces Ui obtained in each rank step i of the continuation (the row subspaces exhibit

the same behavior).

NSI(Zi,Zj) =
trace(U>i UjU

>
j Ui)

min(i, j)
(4.4)

For the L1 loss case, results in Fig. 4.2(b) show that our continuation strategy no
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Figure 4.3: Visualization of the cost function in (4.3) for a rank-1 3 × 3 matrix X for
several values of λ, showing the several local minima existing in the original problem, and
that the smoothing induced by the nuclear norm convexifies the problem but its global
optima may not necessarily coincide with the original problem’s position.
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Figure 4.4: Intuition behind Rank Continuation. (a) Visualization of minima attained for
100 random runs of Alg. 1 for a rank-3 25×20 matrix X with and without regularization
λ shows the several local minima existing in the cost function landscape, and that the
smoothing induced by the nuclear norm allows for avoiding some of these. The rank
continuation (solid) attains the global optima in the last rank. (b) Normalized Subspace
Inclusion index NSI(Zi,Zj) measured between the subspaces for each solution step in
the continuation for a rank-3 25× 20, showing the desired rank-3 subspace is included in
the one obtained for the convex region (20).
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Table 4.1: Real datasets for problems with known output rank-k.
Dataset Size Output rank k Known entries

Dino 319× 72 4 28%
Giraffe 240× 167 6 70%
Face 2944× 20 4 58%

Sculpture 26260× 46 3 41%

longer attains the empirical optima. We note that this is not surprising since the problem

of factorization with missing data is NP-Hard. However, its deterministic result is very

close to the optima. Our continuation method regained empirical optimality when only

2% of outliers were present in the data, suggesting a dependency on the noise for the

L1 case. In this case, our performance is comparable to what is obtained with the L1-

Wiberg algorithm [3] on average. Thus, continuation is a viable alternative to the memory

expensive Wiberg method.

Real data

Next, we assessed the results of our continuation approach in real data sequences. We

used four popular sequences2: a) Dino, for affine SfM; b) Giraffe, for non-rigid SfM, and c)

Face and d) Sculpture, both photometric stereo sequences. Their details are summarized

in Table 4.1. The dimension of these datasets make the usage of the Wiberg algorithms

[3] prohibitive in our modest workstation, due to their memory requirements. For the

Sculpture dataset, we treated as missing all pixels with intensity greater than 235 or

lower than 20 (e.g., in Fig. 4.6(b), the yellow and purple+black masks, resp.). All other

datasets provide W.

Table 4.2 shows a comparison of average error over all observed entries for the con-

tinuation proposed in Alg. 5 and several methods, according to the loss functions L1/LS.

“Best” denotes the best known result in the literature. As explained in Sec. 4.1, we

observe that nuclear norm regularized approaches NN-SVD and NN-λ result in bad ap-

proximations when a rank restriction is imposed. This can be seen by the high values of

λ that have to be used to obtain the desired rank in the variation plots of 4.7. Similar

2http://www.robots.ox.ac.uk/˜abm/
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Table 4.2: Comparison of LS/L1 average error over all observed entries for structure
from motion and photometric stereo datasets. State-of-the-art results in best column
have been reported in [8, 17, 19, 156]

Dataset f(·) Best NN-λ NN-SVD Ours

Dino
LS 1.0847 6.1699 35.8612 1.0847
L1 0.4283 7.6671 80.0544 0.2570

Giraffe
LS 0.3228 0.4370 0.6519 0.3228
L1 – 1.8974 11.0196 0.2266

Face
LS 0.0223 0.0301 0.0301 0.0223
L1 – 0.0287 0.6359 0.0113

Sculpt
LS 24.6155 44.5859 31.7713 22.8686
L1 17.753 21.828 33.7546 12.6697

to the results in the synthetic tests, our method always attained or outperformed the

state-of-the-art result for the LS loss. The convergence studies in [19, 20] performed op-

timization on the first three datasets several times with random initializations, so their

reported results are suspected by the community to be the global optima for these prob-

lems. At the cost of solving several rank constrained problems, our method consistently

attains these results in a deterministic fashion, as opposed to state-of-the-art methods

which get stuck in local minima several times. As a control experiment, we also ran our

continuation strategy for the unregularized case (λ = 0) on the Dino sequence with LS

loss, which resulted in a RMSE of 1.2407. We attribute this to the fact that this case is

more prone to local minima, as mentioned in Sec. 4.1.

For the L1 loss, continuation outperforms the state-of-the art in all datasets. It might

be argued that problem specific constraints are required to obtain clean reconstructions,

but we reiterate the importance of escaping local minima. While there are certainly

degenerate scenarios which can only be solved with such constraints [155], Alg. 1 (and

consequently, Alg. 5) can be trivially extended to handle such cases. For example, the

projection step on U for SfM in [8] can be added to Alg. 1 or the problem can be

reformulated as a different SDP [153] with a rank constraint, which can be tackled by

our continuation strategy in Alg. 5.
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(a) Input (b) Best L2 [19]

(c) RL1NN [17] (d) Continuation

Figure 4.5: Structure from motion Dino sequence. Our L1 continuation method (d) is
less prone to local minima and thus can get appealing reconstructions without the use of
the additional orthogonality constraints in (c).

(a) Input (b) Mask (c) NN-λ (d) NNSVD (e) Ours

Figure 4.6: Results for frame 17 of the sculpture sequence for photometric stereo. While
(c) smooths out the image and (d) fails to reconstruct it, our continuation approach (e)
is able to obtain reconstructions that preserve finer details, such as the imperfections on
the cheek or chin.
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Figure 4.7: Region of equivalence between factorization (4.3) and nuclear norm ap-
proaches (4.2) for several real matrix factorization with missing data datasets using the
least-squares loss.

4.2 Rank continuation for binary quadratic problems

In this Section, we show that the rank continuation strategy devised in Section 4.1 can be

applied as a black box optimization strategy in problems where a rank constraint exists.

One special case of rank constrained problems are binary quadratic problems (BQPs),

where we wish to recover a binary vector x that maximizes a pairwise cost given by a

matrix C, as

max
x

x>Cx

subject to x ∈ {−1, 1}
(4.5)

Eq. (4.5) is a special case of a rank constrained model since we can rewrite it without

any loss of generality, by lifting the variable product xx> to a new matrix X, as

max
X

trace(C>X)

subject to diag(X) = 1,

X � 0,

rank(X) = 1.

(4.6)

While important optimization results exist for special cases of these problems — e.g.,

they become globaly solvable when C is submodular [157] — the binary constraint in (4.5)

makes this general problem NP-Hard and thus intractable in high dimensionality settings.
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These models are very common in computer vision for problems including partitioning

and grouping [158]. In fact, graph cuts [157] and Markov Random Fields [159, 160]

approaches are the cornerstone to many computer vision algorithms, such as computing

depth fields, regularizing image segmentation, or graphical model inference in object

classification.

There are two main approaches for solving general large scale BQPs in computer

vision: Semidefinite programming (SDP) approaches, obtained by dropping the rank

constraint in (4.6), and spectral approaches3. SDP approaches, in particular, work by

relaxing intricate constraints of the problem into convex sets in higher-dimensional spaces.

Thus, they can been used to obtain upper bounds for combinatorial problems. In fact,

these SDP relaxations have been shown to provide better bounds than spectral approaches

for many combinatorial problems [158, 162, 163]. Moreover, spectral methods cannot

handle inequality constraints, which are necessary in formulations such as segmentation

with priors (i.e., biased normalized cuts [164]).

However, three problems remain with SDP approaches. First, they are impaired by

the speed of numerical solvers for this problem class. Although off-the-shelf interior point

methods can solve SDPs in polynomial time, for many relaxations the exponent in the

polynomial complexity bounds is too high for scaling to the large problem sizes typically

found in computer vision. Recently, there have been efforts made in the direction of find-

ing scalable and fast approaches for solving this family of SDP problems [165]. However,

the effort of obtaining faster algorithmic solutions typically results in bounds that are not

as tight as the original SDP formulations. Bie and Cristianini [162] have shown that spec-

tral and SDP relaxations have a continuum of models in between them, and proposed a

cascade of relaxations tighter than spectral and looser than SDP. Second, while provable

tight bounds have been discovered for specific problems such as the max cut problem,

no general result exists on the tightness of bounds when using SDP reformulations for

general BQPs. Several efforts have been made in the literature to further tighten the

3as can be seen in [161], the “recipe” for obtaining spectral relaxations is to interpret the binary
reformulation in (4.5) as ‖x‖22 = 1 and reformulate the problem as a generalized eigenvalue problem.
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bounds provided by SDP for many problems by adding additional constraints, but often

at the cost of exacerbating its scalability problems. Third, the feasible set of the SDP

relaxation is convex but not polyhedral, so it is not guaranteed to return a solution in the

initial binary domain. Thus, algorithms using these bounds have to rely on postprocess-

ing rounding procedures such as randomized rounding [163], voting schemes or totally

unimodular LP projections [166], whose choice varies according to the problem.

Instead of performing the standard SDP relaxation, we note that the low-rank+SDP

formulation in (4.6) has a striking similarity to the formulations of (1.2) and the low-

rank SDP models of [67]. The surprising results of [67] allow for the feasibility of large

scale SDP problems of this class, by resorting to a factorization model akin to (4.1).

Moreover, the deterministic rank continuation strategy we proposed in Sec. 4.1 for the

NP-Hard factorization problem that avoids local optima in a significant number of cases

is extendable to this family of problems. That is, we propose to solve a sequence of prob-

lems that start in a SDP relaxation and gradually decrease the solution rank until they

reach a rank-1 problem, which guarantees a binary solution for (4.5). We show experi-

mentally in Sec. 4.2.1 that this continuation strategy avoids local optima in a significant

number of cases, akin to the results obtained for the factorization problem described in

Sec. 4.1.1. Thus, we believe that rank continuation can be extended to a generic black

box optimization strategy for many NP-Hard problems of interest in the computer vision

domain that can be formulated as rank constrained problems. Contrary to algorithms

designed specifically for each problem, our approach covers graph-optimization problems,

unsupervised and supervised classification tasks, and inference on Markov random fields

without depending on specific assumptions or problem formulations. For instance, im-

age segmentation using normalized cuts [167], matching using the quadratic assignment

problem [168], and solving Markov Random Fields have all been formulated as low-rank

SDP problems (cf., [162, 169, 170], respectively).

To exemplify how rank continuation problems can be applied to BQPs, let us consider

the graph problem below.
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Graph Matching

Figure 4.8: Example application for a graph matching BQP: finding correspondences
between two figures. Adapted from [168].

One BQP problem of interest in computer vision is that of finding correspondences

between two images (see Fig. 4.8): in this graph matching problem, each image has a

graph of m and n nodes representing interest points, and the goal is to match nodes

across images using their similarities and also their shape relationships with neighboring

points (modeled as edges on each graph) [168]. This can be given by the formulation

max
x∈{0,1}mn

k>x + αx>Kx

subject to
∑

i

xij = 1, ∀1, . . . ,m

∑

j

xij ≤ 1, ∀1, . . . , n

(4.7)

which maximizes the point similarities kij of matched pairs and also the edge similarities

Kij,kl between the graphs in both images. In this formulation, the element xij is 1 if the

node i on image 1 is to be matched to node j on image 2 and 0 otherwise. By defining

K̂ as

K̂ =




0 0.5k>

0.5k αK


 (4.8)
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and following the “recipe” mentioned in Sec. 4.2, we lift the binary variable x to a higher

dimensional variable

X̂ =




1 x>

x xx>


 (4.9)

and rewrite (4.7) as

max
X̂

trace(K̂X̂)

subject to x̂1,1 = 1,

2Diag(X̂) = X̂1,: + X̂>:,1,

Hdiag(X) = 1m,

X̂ � 0,

rank(X̂) = 1,

(4.10)

where H = Im ⊗ 1>n , and X̂1,: corresponds to MATLAB notation and denotes the first

column of X̂.

The feasible set of the SDP relaxation of (4.10) obtained by dropping the rank con-

straint is convex but not polyhedral. It contains the set of matrices corresponding to the

permutations xx>. But the SDP relaxation solutions discussed above can contain many

points not in the affine hull of the constraint set. In particular, it can contain matrices

with nonzeros in positions that are zero in the affine hull of the constraint set. So we add
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additional constraints corresponding to these zeros, which results in

max
X̂

trace(K̂X̂)

subject to x̂1,1 = 1

2Diag(X̂) = X̂1,: + X̂>:,1

Hdiag(X) = 1m

X�M = 0

X̂ � 0,

rank(X̂) = 1,

(4.11)

where M = Im⊗ (1>n1n− In) + (1>m1m− Im)⊗ In is the “gangster operator”4. The latter

rank constraint in (4.11) can be dropped to form an SDP, as

max
X̂

trace(K̂X̂)

subject to x̂1,1 = 1

2Diag(X̂) = X̂1,: + X̂>:,1,

Hdiag(X) = 1m,

X�M = 0,

X̂ � 0.

(4.12)

If the optimizer of (4.12) has rank 1, then it is guaranteed to be the optimal result for

the original problem (4.7). For the majority of cases, however, the result of (4.12) has

higher rank, and thus it is used as an upper bound for (4.7) in the input to a heuristic

randomized rounding algorithm [163].

However, the rank of the resulting SDP has been shown to provide useful information

when computing bounds [171] or providing strategies for minimization [152]. In fact,

4M is known in the literature as the “gangster operator” since it shoots holes (zeros) in X. We
note that additional constraints can be introduced to tighten the bounds obtained by the SDP, as in
[67, 165, 171], but this incurs in even more scalability problems as the number of constraints increase.
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if we examine the equivalent reformulation of (4.11) in the light of the observations in

Chapter 2, it is clear that BQPs are a special case of rank constrained problems. Thus, the

rank continuation proposed in Sec. 4.1 is directly applicable to this problem class. After

reformulating the original BQP as an equivalent low-rank formulation, we can solve it by

a sequence of problems starting with a convex problem (4.12) and decreasing the rank

until a rank 1 problem is achieved. In Sec. 4.2.1, we show that the rank continuation

strategy performs competitvely (and even outperforms in some cases) state-of-the-art

algorithms specifically designed for graph matching.

4.2.1 Experimental results

In this section, we compare our rank continuation with SDPCut and several rounding

methods, as well as state of the art methods for approximating SDPs in the BQP graph

problem of Graph Matching.

Graph Matching

This section reports experimental results on two datasets (one synthetic and one real)

and compares our method against the state-of-the-art algorithm for graph matching in

computer vision [168]. As a baseline, we also compared to spectral matching [172] and

the use of the minimization algorithm with the rank-1 constraint directly imposed in [67]

with a random initialization (sdplr1).

This experiment performed a comparative evaluation of four algorithms on randomly

synthesized graphs following the experimental protocol of [168]. For each trial, we con-

structed two identical graphs, G1 and G2, each of which consists of 10 inlier nodes and

later we added outlier nodes to both graphs. For each pair of nodes, the edge is ran-

domly generated according to the edge density parameter ρ ∈ [0, 1]. Each edge in the

first graph was assigned a random edge score distributed uniformly and the correspond-

ing edge in the second graph is perturbed by adding a random Gaussian noise N (0, σ2).

The node-affinity was set to zero. We tested the performance of GM methods under

three parameter settings. For each setting, we generated 100 different pairs of graphs
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and evaluated the average accuracy, obtained by comparing the resulting matrix x with

ground truth, and objective ratio w.r.t. to FGM, by computing the cost function in the

original model of (4.7) using the obtained x for each method. In the first setting (Fig. 4.9

left), we increased the number of outliers from 0 to 10 while fixing the noise to zero and

considering only fully connected graphs (i.e., ρ = 1). In the second case (Fig. 4.9 middle),

we perturbed the edge weights by changing the noise parameter σ from 0 to 0.2, while

fixing the number of outliers to 0 and ρ = 1. In the last case (Fig. 4.9 right), we verified

the performance of matching sparse graphs by varying ρ from 1 to 0.3.

Under varying parameters, it can be observed that in most cases, our method achieves

state-of-the-art performance in terms of both accuracy and objective ratio, being compa-

rable to FGM [168]. We note that there are cases when FGM achieves higher accuracies.

This occurs for results which have a smaller cost function than the one obtained by con-

tinuation. This can be attributed to the fact that the optimization problem in (4.7) does

not model the rigid matching problem entirely, since rigid motion requires higher order

constraints instead of the second order constraints imposed by the model [173].

Additionally, we compared these methods in a real image sequence. The CMU house

image sequence is commonly used to test the performance of graph matching algorithms

(see(Fig. 4.10)). This dataset consists of 111 frames of a house, each of which has been

manually labeled with 30 landmarks. We used Delaunay triangulation to connect the

landmarks. The edge weights are computed as the pairwise distance between the con-

nected nodes, as in [168]. We tested the performance of all methods as a function of the

separation between frames. We matched all possible image pairs, spaced exactly by 0

: 10 : 90 frames and computed the average matching accuracy and objective ratio per

sequence gap. We tested the performance of graph matching methods under two scenar-

ios. In the first case (Fig. 4.11 left) we used all 30 nodes (i.e., landmarks) and in the

second one (Fig. 4.11 right) we matched sub-graphs by randomly picking 25 landmarks

from each graph. It can be observed that in the first case, FGM, sdplr1 and our method

obtained perfect matching of the original graphs. As some nodes became invisible and

96



Figure 4.9: Accuracy and objective function result for the graph matching problem of
(4.7) in synthetic data for rank continuation (RC), spectral matching (SM), Burer and
Monteiro [67] (sdplr1) and Factorized graph matching [168] (FGM). Notice that a ratio
bigger than 1 means RC obtains a higher cost function than that of the baseline (FGM).
Left: varying number of outliers with no noise and fully connected graphs. Middle:
varying edge deformation by changing the noise parameter σ from 0 to 0.2, with zero
outliers and fully connected graphs. Right: varying edge sparsity with zero outliers and
no noise.
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(a) (b)

(c)

Figure 4.10: An example pair of frames (0 and 99) of the House dataset. An example
pair of frames with the correspondence generated by FGM [168], where the blue lines
indicate incorrect matches.

the graph got corrupted (Fig. 4.11 right), the performance of all the methods degrades.

However, our method consistently achieved the best maximum in the objective function.

The results show that rank continuation outperforms all baselines and performs com-

parably and in some cases better than FGM, which is considered the state-of-the-art for

this problem. We note that this algorithm is sophisticated in its use of the specific struc-

ture of the graph matching problem, whereas our strategy is general for rank constrained

problems.
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Figure 4.11: Accuracy and objective function value results for the graph matching prob-
lem of (4.7) in the CMU House dataset for each baseline (frame distance) using rank
continuation (RC), spectral matching (SM), Burer and Monteiro [67] (sdplr1) and Fac-
torized graph matching [168] (FGM). Left: Full data used (30 landmarks). Right: results
of randomly picking 25 landmarks on each frame.
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Chapter 5

Thesis conclusions and future work

5.1 Major contributions

In our works [44, 51, 62, 63, 64, 174], we answered questions that we summarize below:

Rank continuation, unified model and algorithms The theoretical results and

algorithms presented in Chapter 2 show that future work in factorization algorithms

should optimize the presented unified model, since it subsumes and inherits benefits

of both traditional factorization and the nuclear norm regularized approaches. Based on

this analysis, in Chapter 4 we proposed a deterministic “rank continuation” strategy that

outperforms state-of-the-art factorization approaches in several computer vision applica-

tions with outliers and missing data. Preliminary results show that this strategy is also

generalizable for binary quadratic problems such as the quadratic assignment problem.

In Chapters 2 and Section 3.2, we have presented Augmented Lagrange Multiplier and

Fixed-Point Continuation methods to optimize nuclear norm problems and have stud-

ied their convergence properties. An alternative method for incremental nuclear norm

optimization, not included in this thesis, can be found in [174].

Robust regression We addressed the problem of robust discriminative learning, and

presented a convex formulation for Robust Regression (RR). Our approach jointly learns

a regression, while removing the outliers that are not correlated with labels or regression

outputs. We illustrated the benefits of RR in several computer vision problems includ-
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ing facial attribute detection, head pose estimation, and image/video classification. We

showed that by removing outliers, our methods consistently learn better representations

and outperform state-of-the-art methods in both the linear and kernel spaces (using ho-

mogeneous kernel maps). Finally, our approach is general and can be easily applied to

robustify other subspace methods such as partial least square or canonical correlation

analysis.

Weakly supervised image classification and localization using matrix comple-

tion We formulated the weakly-supervised image classification as a low-rank matrix

completion problem. Compared to previous work, our proposed framework has three ad-

vantages: (1) Unlike existing solutions based on multiple-instance learning methods, our

model is convex. (2) Unlike existing discriminative methods, our algorithm is robust to

labeling errors, background noise and partial occlusions. (3) Our method can be used for

semantic segmentation, despite its weakly-supervised training set, where class locations

are unknown. Experimental validation on several datasets showed that our method out-

performs state-of-the-art classification algorithms, while effectively capturing each class

appearance and allowing for their localization in images.

5.2 Limitations and future work

At the time of writing of this thesis, some questions still remain open. We provide a

summary of these below:

Applications of classification with missing data The robust regression and matrix

completion methods proposed in Chapter 3 can naturally deal with missing data in the

training set. We presented one possible application when merging two different datasets

where only a subset of features are common (e.g., color and BW images). However,

classifying with missing data has more domains of application. For instance, it may

also be applicable in secure multi-party classification tasks, as one might be interested

in learning from a collective dataset of medical data, where each party only releases a

subset of descriptors to protect the privacy of its patients’ data [175]. Alternatively, it
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could provide an additional framework for multi-view learning [176].

Can matrix completion localization be extended to multiple exemplars? One

caveat of the localization method presented in Sec. 3.2.6 is that only one representative

descriptor can be recovered for each class. At the moment, it is unclear for multi-modal

class distributions, which direction the algorithm picks or how to extend matrix comple-

tion to provide a subspace to represent the class. A partial answer to this is provided

in our work [64], where we provide space-time localization of human actions in video by

using a union of subspace clustering approach. As an extension of a component analysis

technique, this matrix completion classifier should also be kernelized by either the use of

homogeneous kernel maps or the results in Sec. 2.3, to couple the feature error correction

and the use of non-linear techniques into a single framework.

How do distributed alternatives for matrix factorization with constraints com-

pare to Wiberg? Our work has shown that, for the factorization problem, ALM is

a strong contender in terms of attaining global minimum solutions. However, one prob-

lem with this framework is its inability to tackle very large scale datasets, such as the

ones in [72, 177]. While there has been a surge of research in distributed algorithms for

ALM [178] and parallel implementations for matrix completion using stochastic gradient

descent [61], further investigation is required to compare these models to recent work in

Wiberg algorithms, which look very promising in terms of its applicability to large-scale

problems [72].

Why does Rank Continuation work and are there faster alternatives? One

explanation for why the rank continuation presented in Chapter 4 attains good optima

is that the solution subspace of rank-k is contained in the one obtained in the convex

problem, i.e., the one obtained when initializing Z with full rank. The original convex

solution containing the desired subspace opens the potential for more efficient ways to

select the desired subspace from the former, rather than having to run multiple iterations

of the algorithm with decreasing rank. One potential solution would be to tackle the
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problem as a combinatorial problem, similarly to [179], but formulating it as a selection

problem from the basis obtained in Z and potentially exploiting totally unimodularity in

order to obtain a solution from convex programming, as done in [180].

Can Rank problems help explain/improve deep neural nets? Recently, there

has been a surge of impressive results in the area of object classification, provided by fea-

tures learned by deep neural networks. However, one problem these approaches currently

face is the fact that the neural network topology has to be configured manually. While

insights exist on how to perform this task [181], it still mainly is done by a process of

trial and error, and due to the large size of these networks [111, 182], at the expense of

a significant use of computation power.

We notice that in the past, component analysis techniques have been related to neural

networks and this connection has been used to explain the inexistence of local minima in

the principal component analysis factorization cost function [12], which enabled for least

square based algortihms which enabled the use of this technique in very large datasets [52].

Since early termination been shown to enforce sparsity in the networks and can be seen

as a connection to l1-normalization [183] (early stopping is also a known trick in l1-

minimization norma algorithms for obtaining sparse solutions) and since linear auto-

encoder networks can be shown to be equivalent to a hard-rank matrix factorization

model (PCA), we wonder if by modeling auto-encoders as a rank problem and replacing

them with soft-rank regularizers could help in automatically discovering good topologies.

Can rank continuation be extended to cardinality problems? In Sec. 4.2, we

showed that the strategy devised for matrix factorization with missing data problems can

be extended to Binary Quadratic Problems which can be reformulated as SDP problems

with a rank constraint. Since the nuclear norm (the sum of the singular values) can

be seen as an `1-norm in the matrix domain, one could potentially extend our findings

to LASSO-like problems, comprised by an error function and an `1-norm regularization
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together with a cardinality constraint, as

min
x

‖y − x‖2
2 + λ‖x‖1

subject to card(x) = k

(5.1)

These models are used in dictionary learning [184] and regression problems. Decimation

algorithms with cardinality constraints are also especially important in computer vision

for the simplification of noisy meshes of regular structures obtained from multi-view

stereo pipelines [185], as is the case of buildings in e.g., google street view. One might

extend the strategy of rank continuation to cardinality problems of (5.1), by solving

initially the convex `1 problems (dropping the cardinality constraint) and then a sequence

of problems with decreasing cardinality constraints. Furthermore, the existing study

of parameters in LASSO problems and the connections of this problem to its matrix

counterpart in [186] could yield important insights about the parameter λ in nuclear

norm regularized problems.
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Appendix A

Proof of equivalence between LR-SDP

and nuclear norm models

To show this, we first note that (2.6) uses the variational formulation of the nuclear norm

in (2.7), and that [61] showed the following result:

Lemma 2. For any Z ∈ RM×N , the following holds: If rank(Z) = k∗ ≤ min (M,N),

then the minimum of (2.7) is attained at a factor decomposition Z = UM×k∗V
>
N×k∗.

This result allows us to prove the desired equivalence:

Proof. Applying Lemma 2, we can reduce (2.6) to

min
U,V

f(X−UV>) + λ‖UV>‖∗

= min
Z,rank(Z)=k∗

f(X− Z) + λ‖Z‖∗

= min
Z

f(X− Z) + λ‖Z‖∗.

(A.1)
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Appendix B

Proof of convergence of MC-1/Pos/Simplex

This appendix proves the convergence of FPC in Alg. 4 by the fact that projections

onto Convex sets are non-expansive; thus, the composition of gradient, shrinkage and

projection steps is also non-expansive. Since the problem is convex, a unique fixed point

exists in its optimal solution.

Lemma 3. The gradient operator h(·) for (3.24), (3.25), (3.26) is non-expansive for step

sizes τ ∈ [0,min (4|ΩY |
λγ

, τX |ΩX |)].

Proof. These values are obtained from (3.29) by noting the gradient of the Log loss

function is Lipschitz continuous with L = 0.25 and choosing τX such that the χ2 error,

for the Non-Negative Orthant, is Lipschitz continuous with L = 1.

Lemma 4. Let pC(·) be a projection operator onto any given convex set C. It follows that

pC(·) is non-expansive and ‖pC(Z)− pC(Z∗)‖ = ‖Z− Z∗‖ iff pC(Z)− pC(Z∗) = Z− Z∗.

Proof. For non-expansiveness, [187, Prop. 3.1.3] states that

‖pC(Z)− pC(Z∗)‖2
F ≤ 〈pC(Z)− pC(Z∗),Z− Z∗〉. (B.1)

Applying the Cauchy-Schwarz inequality to (B.1) yields

‖pC(Z)− pC(Z∗)‖F ≤ ‖Z− Z∗‖F . (B.2)
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For the equivalence part, let us write

‖pC(Z)− pC(Z∗)− (Z− Z∗) ‖2
F =

‖pC(Z)− pC(Z∗)‖2
F + ‖Z− Z∗‖2

F (B.3)

−2〈pC(Z)− pC(Z∗),Z− Z∗〉,

where the inner product can be bounded by (B.1), yielding

‖pC(Z)− pC(Z∗)− (Z− Z∗) ‖2
F ≤ ‖pC(Z)− pC(Z∗)‖2

F (B.4)

+‖Z− Z∗‖2
F − 2‖pC(Z)− pC(Z∗)‖2

F .

Since our hypothesis ‖pC(Z)− pC(Z∗)‖ = ‖Z− Z∗‖, (B.4) is

‖pC(Z)− pC(Z∗)− (Z− Z∗) ‖2
F ≤ 0, (B.5)

from which we conclude an equality is in place.

Theorem 5. Let Z∗ be an optimal solution to (3.27) or (3.28). Then Z is also an optimal

solution if

‖pC(Sν(h(Z)))− pC(Sν(h(Z∗)))‖ = ‖Z− Z∗‖. (B.6)

Proof. By non-expansiveness of operators pC(·), Sν(·) and h(·) (Lemma 4 and [55, Lemmas

1,2]), we can write

‖Z− Z∗‖ = ‖pC(Sν(h(Z)))− pC(Sν(h(Z∗)))‖ ≤

≤ ‖Sν(h(Z))− Sν(h(Z∗))‖ ≤ (B.7)

≤ ‖h(Z)− h(Z∗))‖ ≤ ‖Z− Z∗‖,

so we conclude the inequalities are equalities. Using the second part of the Lemmas, we
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get

pC(Sν(h(Z∗)))− pC(Sν(h(Z))) =

= Sν(h(Z∗))− Sν(h(Z)) = h(Z∗)− h(Z) = Z− Z∗.

Since Z∗ is optimal, by the projected subgradient method and [55, Corollary 1], we have

that

pC(Sν(h(Z∗))) = Z∗ =⇒ pC(Sν(h(Z))) = Z, (B.8)

from which we conclude Z is an optimal solution to (3.23).

Theorem 6. A sequence {Zk} generated by Alg. 4 converges to Z∗, an optimal solution

of (3.27) ( (3.28), resp.).

Proof. We can use the same rationale as in [55, Theorem 4], once we note the non-

expansiveness of pC(·), Sν(·) and h(·) ensures the composite operator pC(Sν(h(·))) is also

non-expansive. Therefore, the sequence {Zk} lies in a compact set and must have a limit

point, which we define as Ẑ = limk→∞ Zk. Also, for any solution Z∗ ∈ Z∗, we have

‖Zk+1 − Z∗‖ = ‖pC(Sν(h(Zk)))− pC(Sν(h(Z∗)))‖ ≤

≤ ‖Sν(h(Zk))− Sν(h(Z∗))‖ ≤ (B.9)

≤ ‖h(Zk)− h(Z∗))‖ ≤ ‖Zk − Z∗‖,

so we conclude the sequence {‖Zk−Z∗‖} is monotonically non-increasing and culminates

in any limit point Ẑ, i.e.,

lim
k→∞
‖Zk − Z∗‖ = ‖Ẑ− Z∗‖. (B.10)

On the other hand, by the continuity of pC(Sν(h(·))), we have that the image of Ẑ is

pC(Sν(h(Ẑ))) = lim
k→∞

pC(Sν(h(Zk))) = lim
k→∞

Zk = Ẑ (B.11)
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is also a limit point of {Zk}, yielding

‖pC(Sν(h(Ẑ)))− pC(Sν(h(Z∗)))‖ = ‖Ẑ− Z∗‖, (B.12)

from which we can recall Theorem 5.
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