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Blind Inpainting Using ℓ0 and Total
Variation Regularization
Manya V. Afonso and Joao Miguel Raposo Sanches

Abstract— In this paper, we address the problem of image
reconstruction with missing pixels or corrupted with impulse
noise, when the locations of the corrupted pixels are not
known. A logarithmic transformation is applied to convert the
multiplication between the image and binary mask into an
additive problem. The image and mask terms are then estimated
iteratively with total variation regularization applied on the
image, and ℓ0 regularization on the mask term which imposes
sparseness on the support set of the missing pixels. The resulting
alternating minimization scheme simultaneously estimates the
image and mask, in the same iterative process. The logarithmic
transformation also allows the method to be extended to the
Rayleigh multiplicative and Poisson observation models. The
method can also be extended to impulse noise removal by relaxing
the regularizer from the ℓ0 norm to the ℓ1 norm. Experimental
results show that the proposed method can deal with a larger
fraction of missing pixels than two phase methods, which first
estimate the mask and then reconstruct the image.

Index Terms— Blind inpainting, image reconstruction, total
variation, impulse noise, iterative methods.

I. INTRODUCTION

FAULTY imaging sensors or bit errors during transmission
can cause some pixels in an image to be lost or corrupted

by impulse noise [12], [42]. In the case of missing pixel values,
the corrupted pixels are assumed to have a value equal to zero,
and the problem of estimating the complete image is called
the inpainting problem [9], [48], [61].

We represent the image to be estimated with n pixels as
a vector, say in lexicographic ordering, x ∈ Rn . Let m < n
be the number of observed pixels or pixels free from impulse
noise. The process of observing a partial set of m pixels out
of n can be represented as an element-wise multiplication
of the image with a binary mask in which all but m pixels
are zero. In our representation, this observation process is
represented as a multiplication of the vector x with a size
n × n identity matrix A with the respective diagonal elements
corresponding to the (n − m) missing pixels set to zero.
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For the additive Gaussian noise model, the mapping from x
to the partially observed image y is given by,

y = A
(
x + ηG

)
, (1)

where ηG is an additive Gaussian noise term corrupting
the observed pixel values. Note that the mask A is applied
to the sum of the image and the additive noise term. For
other observation models, the mask A is applied to the
result of the algebraic operation relating the image and the
noise term corresponding to the physics of the modality. For
example, with multiplicative speckle noise which is the model
in Ultrasound (US) and Synthetic Aperture Radar (SAR)
imaging, equation (1) changes to,

y = A
(
x · ηS

)
, (2)

where the speckle noise term ηS is Rayleigh or Gamma
distributed, and the multiplication is element-wise.

When the image is corrupted by impulse noise, those
pixels of y corresponding to the zeros on the diagonal of the
observation matrix A have a value that corresponds to the noise
field η I ,

y = A
(
x + ηG

)
+ (In − A) ηI . (3)

Assuming that the pixel values of the image are in the
interval [0, 255], for the salt and pepper type of impulse noise
the noisy pixels or elements of ηI can have a value of either
zero or 255. For the more difficult case of random valued
impulse noise, the noisy pixels are uniformly distributed in
the interval [0, 255].

When the index set of the observed pixels or the observation
mask A is known, the inpainting problem can be solved by
one of several existing methods for image reconstruction from
a sparse set of observations [1], [7], [8], [21], [34], [41], [46].
Many of these methods were developed in the context of
compressed sensing [14], [27] reconstruction, although it
must be noted that in compressed sensing the observation
operator needs to satisfy conditions to lead to incoherent
observations [15]. For the removal of impulse noise, a common
approach is to estimate the support set of the noisy pixels using
an outlier detection method, to obtain an estimate of A and
then apply the reconstruction method.

Our goal in this paper is to estimate the image x from the
partial observations y without knowing the observation mask A
beforehand. Such a situation occurs, for example, when it is
not known which imaging sensors from the array are faulty,
and therefore which pixels have values that are reliable and
which ones are outliers.
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A. Related Work
The problems of reconstructing an image with missing

data and removing impulse noise basically involve detecting
outliers. Early approaches for estimating the missing values
used median filtering, which discards outliers [42]. The
Adaptive Median Filter (AMF) [42] and Adaptive Center
Weighted Median Filter [19] were developed to detect the
positions of noisy pixels with, respectively, salt-and-pepper
and random valued impulse noise. Since median filters replace
the value of the pixel at the center of the window with
the statistical median of the neighborhood, they rely on the
accuracy of the neighboring pixels and inherently cannot deal
with a large percentage of outliers. In [25] an improved
outlier detector based on thresholding, a measure called the
Rank-Ordered Logarithmic Difference with Edge Preserving
Regularization (ROLD-EPR) was proposed, for random valued
impulse noise.

Two phase methods for estimating the image involve a mask
estimation step, in which the observation mask A is estimated
using outlier detection, and a reconstruction step in which a
standard convex optimization procedure is used with the esti-
mate of A. For example, some methods such as [13] and [17]
use an absolute difference or ℓ1-data fidelity term ∥Ax − y∥1,
with an edge preserving regularizer on the image. In [13],
the total variation (TV) [18], [57] regularizer is used, leading
to an ℓ1-TV optimization problem. In [68], a combination of
ℓ1-norm and ℓ0-norm regularizers was used for simultaneous
impulse noise removal and dictionary learning, after the mask
has been estimated through outlier detection. The ℓ1 term
imposes sparsity on the difference terms corresponding to
the noisy pixels, and the ℓ0 regularizer tries to minimize the
support set of the image on the learned dictionary.

Some methods do not use a separate mask detection stage,
but estimate the mask or impulse noise field during the iterative
process. In [66], a low rank matrix recovery method is pre-
sented where division of the image into patches corresponding
to subspaces, and an alternating least squares method are used
for reconstruction. A frame based method for image deblurring
and decomposition into cartoon and texture components with
impulse noise is presented in [24]. In this method, the impulse
noise is considered additive and ℓ1 regularization is used on
both the image and noise components. An additive model
was also used for the standard inpainting problem (i.e., when
the observation mask is known), in [38] with a non-local
TV regularizer [37] on the image and ℓ1 data fidelity term.

Another single phase iterative method called blind
inpainting by Adaptive Outlier Pursuit (AOP) [69]
simultaneously estimates the image and support set of
the observed pixels, with wavelet regularization on the image
and ℓ0-norm regularization on the mask.

A method for mixed impulse and Gaussian noise removal
was proposed in [54], with an ℓ2 data fidelity term corre-
sponding to the observed pixels, an ℓ1 term corresponding to
the noisy pixels, and TV regularization on the image. The
problem is reformulated as an iteratively reweighted quadratic
problem by combining the ℓ2 and ℓ1 terms into a weighted
ℓ2 term, and the resulting ℓ2-TV problem is solved using the
iteratively reweighted norm method [55].

Several of the above methods are based on alternating
minimization, where two or more variables are iteratively
estimated through a Gauss-Seidel method [49]. A related
approach is the augmented Lagrangian (AL)/alternating
direction method of multipliers (ADMM) framework [30]
which has been used extensively in recent work on image
reconstruction/restoration because of its mathematical
elegance and computational speed [41], [70].

Finally, for the case of noise other than additive and
Gaussian, there exist methods for image reconstruction from
a partial set of pixels, such as [35], [36], and [44] for
Poisson noise, and [3], [59] for Rayleigh speckle noise. There
are also the classical interpolation methods that have been
used in ultrasound imaging [62]. However, all these methods
require the sampling matrix to be known. A method for image
inpainting for the Poisson noise model was proposed in [6].
This approach filled in missing data through the minimization
of the image gradient and an approximate solution of the
mean curvature flow equation. In [39], a denoising method
for Poisson noise was proposed, which divides the image into
patches, which are modeled using sparse representation, and
the dictionary is learnt during the denoising process. The same
authors have also extended this method for inpainting under
the Poisson noise model [40].

B. Contributions

In this paper, we propose a method to estimate the
image x without knowing apriori the observation mask A,
i.e., we simultaneously estimate the image and the mask.
We formulate the masking operation as a summation after
logarithmic compression, and apply a TV regularizer on the
term corresponding to the logarithm of the image, and an
ℓ0-norm regularizer on the term corresponding to the mask.
The TV regularizer encourages the estimate of x to be piece-
wise smooth, while the ℓ0-norm regularizer encourages the
mask term to be sparse. The problem is solved iteratively using
a Gauss-Seidel alternating minimization scheme. Experimental
results show that our proposed method can deal with as many
as 95% of the pixels missing, which is higher than reported
in literature.

We extend the method to non-Gaussian noise models,
namely multiplicative Rayleigh distributed speckle noise, and
Poisson noise, by taking into account the data fidelity terms
corresponding to their respective statistical models. Results
of experiments with medical images for these models are
presented.

A simple relaxation of the ℓ0 regularizer to the ℓ1-norm
continues to encourage the support set of the corrupted pixels
to be sparse and works well for the removal of impulse noise,
although not as well for the inpainting problem.

C. Organization of the Paper

We formulate the estimation problem for blind inpainting
for the additive and Gaussian noise model and present
our proposed method in Section II. The ℓ1 relaxation for
impulse noise removal is presented in Sub-section II-B.
We extend this method to Rayleigh speckle and Poisson noise
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in Section III. In Section IV, we present experimental results
on inpainting and impulse noise removal and comparison
with existing methods within the range of fraction of missing
pixels as reported in existing works. Sub-section IV-A
presents results for blind inpainting with the additive and
Gaussian noise model, Sub-section IV-B presents the results
for impulse noise removal, and finally the results for blind
inpainting with the Poisson and Rayleigh multiplicative noise
models are presented in Sub-section IV-A. We also include
a brief experimental study on the maximum extent to which
the proposed method can recover missing pixels and the
observation mask, in Sub-section IV-D. Section V concludes
the paper with some pointers to future work.

II. PROPOSED METHOD FOR BLIND INPAINTING

In the formulation of standard inpainting with TV
regularization, with a known observation mask A, the
problem of estimating x as reported in [1] and [21], is

x̂ = arg min
x

1
2
∥Ax − y∥2 + λ

2
T V (x), (4)

where T V (.) is the isotropic total variation function,
and λ > 0 is the regularization parameter.

In our problem, we need to estimate both the image x and
the mask A, therefore using a regularizer φ(.) on A, leading to,

(x̂, Â) = arg min
x,A

1
2
∥Ax − y∥2 + λ1

2
T V (x) + λ2

2
φ(A), (5)

where we now have two regularization parameters,
λ1, λ2 > 0, for each of the two regularizer terms. The
problem (5) is difficult to solve because it is not separable
for our variables (x, A).

In [69], the problem is addressed by splitting the mask
into the set of observed and noisy pixels. The observed
image is defined as the sum of x and the impulse noise term
y = x + v, where an element vi of the vector v is zero if the
pixel is observed or non-zero if it is a noisy observation. Thus,
a diagonal element ai of the mask A is 1 if a pixel is observed,
i.e., the corresponding element of the noise term vi = 0 or 0
if it is a noisy pixel, i.e., the corresponding element of the
noise term is non-zero. The problem solved is thus,

min
x,v

1
2
∥A(x − y)∥2 + λ1

2
J (x) + λ2

2
∥v∥0,

= min
x,A

1
2
∥A(x − y)∥2 + λ1

2
J (x) + λ2

2
∥diag(I − A)∥0,

where J (x) is a wavelet based regularizer term on x, for
example, the ℓ1-norm of wavelet coefficients in the analysis
prior case [32]. Thus at each iteration, x and A are estimated
by alternating minimization, gathering the terms containing
each variable while keeping the other fixed.

A. Blind Inpainting

We approach the problem of estimating x and A in a
different manner. We use a logarithmic transform on both to
convert the masking problem into an additive and separable
one.

Since A is a diagonal matrix A = diag(a) and the masking
operation is element-wise multiplication, we will optimize
over the vector of diagonal elements a ∈ {0, 1}n . When a
pixel with index i is observed, the corresponding mask element
ai = 1, and when pixel i is lost, ai = 0. Thus, a pixel k in
vector y is defined as the scalar product,

yi = xi × ai . (6)

We do not know apriori if a given pixel yk corresponds to an
observed one (ak = 1) or not (ak = 0).

Rather than have ai = 0 when the pixel is not observed,
we can define ai to be a small value in the order of 10−K or
smaller, K being a positive integer greater than or equal to 3.
Defining vi = log(ai ), we have,

vi =
{

0, if i is observed
−K , otherwise

(7)

If the maximum possible pixel value is 255, the value of K
must satisfy K > log 255. Assuming that y and x are always
positive, applying a logarithmic transformation on (6) converts
it into an additive model,

log yi = log(xi × ai ), (8)

log yi = log xi + log ai , (9)

gi = ui + vi , (10)

where ui = log xi , and gi = log(yi + δ). A small positive bias
term δ > 0 is added to y to guarantee positivity. The base of
the logarithm is 10, but we could use the natural logarithm or
any other base for that matter, since this would only lead to
an additive constant term.

Our problem is now estimating the vectors u and v, given
the log transformed observation g. We assume that our
image x, and therefore its logarithmic transformation u are
piece-wise smooth. In [69], the ℓ0 norm was used as the regu-
larizer directly on the binary mask. Our formulation differs in
that we apply the ℓ0-norm regularization to the log transformed
mask. The negative elements of v therefore correspond to the
non-observed pixels and those elements of v which are equal
to 0 correspond to the observed. Since the ℓ0−norm indicates
the number of non-zero elements irrespective of their sign,
minimizing ∥v∥0 minimizes the number of non-observed
pixels. We therefore apply a TV regularizer on the log
transformed image u, and the ℓ0-norm regularizer on the
log-transformed mask v. Previously, TV regularization on log
transformed images has been used in [45], [50], and [53].
Synthesis models which provide enhanced sparse
representations in transform domains such as Block-matching
and 3D filtering (BM3D) [20], [22] and K-means Singular
Value Decomposition (KSVD) [4], [56] have also been
used for image denoising and restoration, but will not be
considered in this paper.

Our estimation problem is therefore,

(û, v̂) = arg min
u,v

1
2
∥g − u − v∥2

2 + λ1

2
T V (u) + λ2

2
∥v∥0,

(11)

where λ1,λ2 > 0 are the respective regularization parameters.
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Algorithm 1 Blind Inpainting

Formulations of the form (11) with different regularizers
have appeared in the context of image decomposition [63]
and deblurring with a sum of regularizers [10]. Alternating
minimization schemes involving a sum of the ℓ0-norm and a
convex term were also used in [11] and [51] for sparse image
recovery.

Since (11) is a separable problem, we can apply a simple
iterative alternating method as in [10] rather than resort to a
variable splitting [23] and Alternating Direction Method of
Multipliers (ADMM) [30] approach.

We apply an iterative alternating minimization to solve (11),
by isolating the terms in each variable keeping the other fixed,
leading to a Gauss-Seidel scheme. Solving for u at iteration t ,

û(t) = arg min
u

1
2
∥g − u − v(t)∥2

2 + λ1

2
T V (u). (12)

This is a TV regularized denoising problem, the solution of
which can be computed efficiently using an algorithm such as
Chambolle’s algorithm [16].

Similarly, for v at iteration t we have,

v̂(t) = arg min
u

1
2
∥g − u(t) − v∥2

2 + λ2

2
∥v∥0. (13)

This problem although non-convex, has a solution given by
the hard threshold [28],

v̂(t) = H√
2λ2

(g − u(t)), (14)

where Hλ2(.) is the hard threshold operator and is defined
element-wise as,

v(t)
i =

{
0, if (gi − u(t)

i ) ≤ √
2λ2,

(gi − u(t)
i ), otherwise.

(15)

This iterative process is run until the stopping criterion is
satisfied. In practice, continuation schemes are used on the
regularization parameters λ1,λ2, in which they are multiplied
by a factor greater than one, until they reach a certain maxi-
mum value. Starting with smaller values and increasing them
slowly can be interpreted as warm starting the problem at later
iterations with the previous solutions [65]. The estimates of the
image and mask are computed by inverting the logarithmic
transformation, x̂ = 10û and â = 10v̂.

The conditions for convergence [30], [36] do not
require (12) to be solved exactly, as long as the error sequence
decreases and the parameter µ is positive. The proposed
method is summarized in Algorithm 1.

B. Impulse Noise Removal

In the case of impulse noise, the corrupted pixels are no
longer always equal to zero, but are never negative. From (3),
it is obvious that if a pixel with index i is not corrupted,
we have yi = xi and in the log domain, gi = ui + 0.
If pixel i is noisy, we have yi = ηI,i and gi = log ηI,i .
In [24], the impulse noise field was treated as an additive
component with a negative offset component to cancel out the
pixel value, thereby absorbing the mask support in the noise
value. We apply this logic to our log transformed variables,
so as to absorb the observation mask in the variable v.
We therefore use the ℓ1-norm as was done in [24]. By using
the ℓ1 norm, we are no longer using sparsity on the cardinality
of the support set of the missing pixels, but taking into account
the fact that after logarithmic transformation, corrupted pixels
have a value different from −K . The process of masking
which is a binary logical operation is transformed into an
additive operation with an offset term. In our case, we use
this manipulation after logarithmic transformation.

We make a simple change to the framework described above
for blind inpainting. We use the logarithmic transformation as
before because the non-negativity assumption holds, but we
replace the ℓ0 term in (11) with an ℓ1 term,

(û, v̂) = arg min
u,v

1
2
∥g − u − v∥2

2 + λ1

2
T V (u) + λ2

2
∥v∥1.

(16)

In this case, the variable v corresponds to (the log
transform of) the impulse noise field. For the non-corrupted
pixels, this still corresponds to summation with zero in the log
domain. Therefore, we now minimize the ℓ1−norm of the
noise field. As in the previous section, we try to impose the
condition of sparsity on the support set of the corrupted pixels.

Consequently, the solution for v at each iteration will be
different. We now have at iteration t ,

v̂(t) = arg min
u

1
2
∥g − u(t) − v∥2

2 + λ2

2
∥v∥1. (17)

This problem is convex and has a solution given by the well
known shrinkage or soft threshold operator Sλ2(.) [26], [28],

v̂(t) = Sλ2(g − u(t)). (18)

III. BLIND INPAINTING WITH NON-GAUSSIAN

NOISE MODELS

We extend the method described in the Section II to
observation models other than additive and Gaussian.
An intuitive way would be to apply a transformation such as
a logarithmic transform for multiplicative speckle noise, and
the variance stabilizing Anscombe transformation [5], [64] for
Poisson noise, to convert the observation model into an addi-
tive one. For example, a more accurate method for computing
the inverse Anscombe transform was proposed in [47]. Then,
we could apply the method described in Algorithm 1. However
this approach does not take into account the statistical model
of the noise, and the appropriate data fidelity terms.

We therefore propose an extension of the proposed blind
inpainting method to Rayleigh distributed multiplicative
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speckle noise, and Poisson noise by using the appropriate
data fidelity term. For multiplicative noise, multiplying a
pixel whose value is 0 will always lead to the corresponding
observed pixel being equal to 0 as well. In the case of
Poisson counting processes, the count is always 0 when the
parameter, in our case the pixel value, is equal to 0. Therefore,
we interchange the order of the noisy observation and masking
so that our observation y is the result of observing the masked
image Ax under the noise model. For speckle noise, the
observation model changes from (2) to,

y = (Ax) · ηS, (19)

and for Poisson noise the model is,

y = Poisson (Ax). (20)

We can thus apply the likelihood function of the respective
statistical model between y the product Ax. Recall that an
element of Ax is defined as Axi = ai xi , where ai is the
i th diagonal element of the matrix A. For the Rayleigh
multiplicative noise, the likelihood function is,

p(y|Ax) =
n∏

i=1

yi

ai xi
exp

(

− y2
i

2(ai xi )

)

. (21)

It is straightforward to show that (see [60] for more details)
the associated data fidelity term between y and Ax is,

Jr (y, Ax) =
n∑

i=1

(
y2

i

2(ai xi )
+ log(ai xi)

)

. (22)

Similarly for the Poisson model, the likelihood function is,

p(y|Ax) =
n∏

i=1

e−ai xi (ai xi )yi

yi !
, (23)

and the corresponding data fidelity term is,

Jp(y, Ax) =
n∑

i=1

(ai xi − yi log(ai xi)). (24)

In both (22) and (24), we see that there appears a term with
the product (ai xi ) and a term involving its logarithm. We can
therefore work with the log transformed variables u = log x,
and v = log a. Thus (22) changes to

Jr (y, u, v) =
n∑

i=1

(
y2

i

2
e−(ui+vi ) + ui + vi

)

, (25)

and (24) changes to

Jp(y, u, v) =
n∑

i=1

(
e(ui+vi ) − yi(ui + vi )

)
. (26)

Logarithmic transformations to deal with non-additive and
Gaussian noise have been previously used in [39] and [58] for
Poisson denoising and in [60] for Rayleigh despeckling.

We now formulate our optimization problem with
TV regularization on u and ℓ0 regularization on v. The data
fidelity term J (.) is changed accordingly. The problem (11)

for the additive Gaussian noise model changes to the more
general problem,

(û, v̂) = arg min
u,v

J (y, u, v) + λ1

2
T V (u) + λ2

2
∥v∥0. (27)

Since (25) and (26) both involve the sum of a linear term
and an exponential term, they are non-separable for u and v.
Therefore we need to use variable splitting [23] to be able
to use the AL/ADMM method to solve (27). We therefore
introduce two auxiliary variables z and w to act as the
arguments of the TV and ℓ0 regularizer terms respectively,
leading to the constrained problem,

min
u,v,z,w

J (y, u, v) + λ1

2
T V (z) + λ2

2
∥w∥0

subject to u = z, v = w. (28)

Using the augmented Lagrangian [43], [52], this problem
can be shown to be equivalent to the minimization problem,

min
u,v,z,w

J (y, u, v) + λ1

2
T V (z) + λ2

2
∥w∥0

+µ1

2
∥u − z − dz∥2

2 + µ2

2
∥v − w − dw∥2

2, (29)

where µ1, µ2 ≥ 0 are the penalty parameters, and dz, dw are
the so-called Bregman update vectors [41].

This problem is split into four problems at each iteration
by gathering all the terms in each variable, and solving for
each by keeping the others fixed. Thus, the AL algorithm
iterates between minimizing the objective function in (29) with
respect to f and u, leading to a Gauss-Seidel process (for more
details, see [1], [2], [33] and the references therein) which at
iteration t is summarized as,

u(t+1) = arg min
u

J (y, u, v(t)) + µ1

2
∥u − z(t) − d(t)

z ∥2
2

(30)

v(t+1) = arg min
v

J (y, u(t), v) + µ2

2
∥v − w(t) − d(t)

w ∥2
2

(31)

z(t+1) = arg min
z

µ1

2
∥u(t) − z − d(t)

z ∥2
2 + λ1

2
T V (z) (32)

w(t+1) = arg min
w

µ2

2
∥v(t) − w − d(t)

w ∥2
2 + λ2

2
∥w∥0 (33)

d(t+1)
z = d(t)

z + z(t+1) − u(t+1),

d(t+1)
w = d(t)

w + w(t+1) − v(t+1).

As in the case of Gaussian noise, the ℓ2-TV denoising
problem from (32) is solved using a few iterations of
Chambolle’s algorithm and the ℓ2-ℓ0 regularized denoising
problem from (33) is solved using the hard threshold.
The problems involving J (.), (30) and (31) can be solved
approximately using a few iterations of Newton’s method [49],
after plugging in either (25) or (26).

The proposed method for blind inpainting with for
Rayleigh multiplicative or Poisson noise is summarized
in Algorithm 2.

IV. EXPERIMENTAL RESULTS

In this section we compare our proposed method with
existing ones. In the synthetic experiments with the lena,
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Algorithm 2 Blind Inpainting - Non-Gaussian Noise

cameraman, and peppers images, we present measures of the
reconstruction error, and the number of incorrectly estimated
mask pixels. The results presented in Tables I, II, III, and IV
were averaged over 100 experiments. All experiments were
performed on MATLAB on an Ubuntu Linux based server
with 64 GB of RAM.

A. Blind Inpainting

To test our proposed method, we generate a random
binary mask with a fraction of its elements equal to zero
and multiply it element-wise to our image corrupted with
additive Gaussian noise. The criteria used to evaluate the
accuracy of estimation are the Improvement in Signal to Noise
Ratio (ISNR), which is defined as,

ISNR = 10 log10

(∥y − x∥2

∥y − x̂∥2

)
, (34)

the structural similarity index measure (SSIM) [67], and the
fraction of incorrectly estimated mask pixels. The latter is
computed using the binary exclusive or (XOR) operation with
the original mask, which produces a logical value equal to 1
at the mask pixels estimated incorrectly, and zero otherwise.
Hence, the sum over all the pixels of the logical XOR
operation is a measure of the errors in the estimate of the
mask.

The iterative process was run until the relative difference
between successive iterates ∥x̂(t+1)− x̂(t)∥/∥x̂(t+1)∥ fell below
a threshold of 10−3. In the results for blind inpainting, the
values of the regularization parameters used were λ1 = 0.008
and λ2 = 0.1, which were found to work well. The parameters
of other algorithms used in our comparison were the ones
suggested by the respective authors, with hand-tuning for the
best ISNRs when different images and image sizes and differ-
ent experimental setups were used. Note that some methods
may be computationally very slow or inaccurate beyond the
range of missing pixels which were reported in their respective
papers.

Figure 1 shows the worst case (i.e., the setup with
the highest fraction of missing pixels) results obtained
with the proposed method for the 512 × 512 Lena image.
The binary mask has only 5% of its pixels equal to 1,

Fig. 1. Inpainting with the Lena image - worst case (95% of pixels missing)
scenario. (a) original image; (b) observed image with additive Gaussian noise
(SNR 5 dB) and 95% pixels missing; (c) estimate of (b) using the proposed
method. ISNR = 15.12 dB; (d) observed image with additive Gaussian noise
(SNR 20 dB) and 95% pixels missing; (e) estimate of (d) using the proposed
method, ISNR = 15.86 dB.

Fig. 2. Inpainting with the Lena image - Comparison. (a) original image;
(b) observed image with Gaussian noise (SNR = 5 dB) and 70% pixels
missing; (c) estimate from (b) obtained using the proposed method;
(d) estimate from (b) obtained using KSVD; (e) observed image with Gaussian
noise (SNR = 20 dB) and 50% pixels missing; (f) estimate from (e) obtained
using the proposed method; (g) estimate from (e) obtained using KSVD;
(h) estimate from (e) obtained using AOP [69]; (i) estimate from (e) obtained
using [13].

which means that 95% of the pixels were randomly discarded.
Figures 1(b) and 1(d) show the observed images obtained
with this mask, with additive Gaussian noise with Signal to
Noise Ratios (SNR) of 5 dB and 20 dB, respectively. For
the 5 dB Gaussian noise case, the proposed method took
123.88 seconds, and produced an ISNR of 15.12 dB, and
an SSIM of 0.634. For the 20 dB case, these values were
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Fig. 3. Inpainting with the Cameraman image - Comparison. (a) original
image; (b) observed image with Gaussian noise (SNR = 5 dB) and
70% pixels missing; (c) estimate from (b) obtained using the proposed method;
(d) estimate from (b) obtained using KSVD; (e) observed image with Gaussian
noise (SNR = 20 dB) and 50% pixels missing; (f) estimate from (e) obtained
using the proposed method; (g) estimate from (e) obtained using KSVD;
(h) estimate from (e) obtained using AOP [69]; (i) estimate from (e) obtained
using [13].

132.74 seconds, ISNR: 15.86 dB, and SSIM: 0.689. The
number of mask errors through the XOR operation for the
5 dB case was 89 out of a mask of size 5122, corresponding
to 0.034% of mask pixels estimated incorrectly. There were
no mask errors in the estimate for the 20 dB case.

Figure 2 compares the estimate obtained using the proposed
method with those obtained using fast two phase deblur-
ring with TV [13],1 Adaptive Outlier Pursuit (AOP) [69],
K-ALS [66],2 and KSVD [31]3 for 50% of the pixels missing
and with Gaussian noise with SNR = 20 dB, and with 70% of
the pixels missing and with Gaussian noise with SNR = 5 dB.
Figures 3 and 4 show the estimates for the cameraman and
peppers images, under the same experimental conditions.

Table I summarizes the comparison of the proposed method
with other methods for blind inpainting, for 3 different levels
of Gaussian noise, namely, SNR = 5, 10, and 20, and
for three values of the fraction of missing pixels, namely,
0.25, 0.5, and 0.7. The methods [13], [66], and [69] were
found to not provide a significant ISNR outside the ranges
of fractions of missing pixels, as reported by their authors.
We can see from this table that KSVD [31] is computationally

1http://homepage.math.uiowa.edu/~jiancai/code/FastTV2Phase.zip
2http://www.math.duke.edu/~yiwang/kals.htm
3http://www.cs.technion.ac.il/~elad/Various/Matlab-Package-Book.rar

Fig. 4. Inpainting with the Peppers image - Comparison. (a) original
image; (b) observed image with Gaussian noise (SNR = 5 dB) and
70% pixels missing; (c) estimate from (b) obtained using the proposed method;
(d) estimate from (b) obtained using KSVD; (e) observed image with Gaussian
noise (SNR = 20 dB) and 50% pixels missing; (f) estimate from (e) obtained
using the proposed method; (g) estimate from (e) obtained using KSVD;
(h) estimate from (e) obtained using AOP [69]; (i) estimate from (e) obtained
using [13].

heavy but produced the best ISNR for most of the experiments.
Our proposed method achieves an ISNR close to the one
obtained with KSVD with a much lower computational time,
for higher percentages of missing pixels and for higher levels
of Gaussian noise. While [13] is more accurate in estimating
the observation mask, it produces a lower ISNR.

B. Impulse Noise Removal

1) Salt-and-Pepper Noise: In Figures 5 and 6,
we demonstrate salt and pepper noise removal, with
50% of the pixels corrupted and Gaussian noise with an SNR
of 5 dB, for the Lena and cameraman images. The estimate
obtained with the proposed method and those obtained with
[13], [24], [54], [66], and [69] are shown.

The results for different fractions of noisy pixels with the
Gaussian noise component with SNR equal to 10, 5 and 2 dB,
are presented in the combined Table II. We can see that overall,
the method from [54] produces a good ISNR quickly. For
higher fractions of missing pixels, [54] was found to be the
fastest method, but it produces an ISNR less than that produced
by the proposed method.

2) Random-Valued Impulse Noise: We present the noisy
Lena image with random valued impulse noise and
Gaussian noise, and the estimates obtained using our method
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TABLE I

COMPARISON FOR BLIND INPAINTING. κ INDICATES THE FRACTION OF MISSING PIXELS

and [24], [54], [66], and [69] in Figure 7, with Gaussian noise
with an SNR of 5 dB and 50% of pixels corrupted. The results
with the cameraman image under the same conditions are
presented in Figure 8. Once again, the combined Table II
contains a summary of the results obtained for different
fractions of noisy pixels with the Gaussian noise component
with SNR equal to 10, 5 or 2 dB. Overall, our method is the
significantly faster than the other methods, and produces the
best ISNR for higher levels of Gaussian noise.

For the inpainting problem however, this ℓ1 norm relaxation,
was experimentally found to produce an ISNR significantly
lower than the one obtained using the ℓ0 norm.

C. Inpainting With Non-Gaussian Noise Models

In this section, we present results for blind inpainting
with the Rayleigh multiplicative and Poisson noise models.

For the Lena image, we report the accuracy of reconstruction
in terms of the ISNR or the normalized Mean Absolute
Error (NMEA) [29] for Rayleigh noise, which is defined as,
∥x − x̂∥1/∥x∥1.

1) Poisson Noise: For the Poisson noise case, we first
multiplied the image by 0.5 to increase the level of noise,
and then corrupted it with Poisson noise. We then multiplied
the noisy image with random masks. We compare our pro-
posed method for blind inpainting with Poisson noise from
Algorithm 2 with a method for blind inpainting assuming the
additive noise model after Anscombe transformation [47]. The
additive Gaussian noise model method used was AOP, because
of its computational speed and accuracy. We summarize our
results for the lena and cameraman images for three values
of fractions of missing pixels, in Table III. We can see that
taking into account the statistical model offers an improvement
in ISNR. As with the additive and Gaussian noise case,
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Fig. 5. Salt and pepper noise removal with the Lena image. (a) cropped
original image, (b) observed image with 50% noisy pixels and SNR = 5 dB;
estimates of (b) using: (c) proposed method, (d) [54], (e) AOP [69], (f) [24],
(g) [13], and (h) KALS [66].

Fig. 6. Salt and pepper noise removal with the Cameraman image.
(a) cropped original image, (b) observed image with 50% noisy pixels
and SNR = 5 dB; estimates of (b) using: (c) proposed method, (d) [54],
(e) AOP [69], (f) [24], (g) [13], and (h) KALS [66].

the existing methods for blind inpainting do not always work
well for large fractions of missing pixels, above 50%, or take
a long time over 10 minutes.

Fig. 7. Random valued impulse noise (noisy pixels have values in the
interval [0, 255]) removal with the Lena image. (a) cropped original image,
(b) observed image with 50% noisy pixels and SNR = 5 dB; estimates of
(b) using: (c) proposed method, (d) [54], (e) AOP [69], (f) [24], (g) [13], and
(h) KALS [66].

A cropped region from the Lena image is shown
in Figure 9(a). A noisy image with 50% of the pixels missing
is shown in Figure 9(b) and the respective estimates using the
proposed method and AOP after Anscombe transformation
are shown in Figures 9(c) and 9(d). For a pixel loss of 90%,
the observed image and estimate using the proposed method
are shown in Figures 9(e) and 9(f). Blind inpainting with
Poisson noise for the cameraman image with 50% of its
pixels missing is illustrated in Figure 10.

For the fluorescence microscopy image, we do not have
access to the noiseless image. A cropped region of size
308 × 380 from the noisy 1036 × 1384 image is shown
in Figure 11(a). We show only the green component, where
the information of interest lies. The observed image with
75% pixels missing is shown in Figure 11(b). Figure 11(c)
shows the corresponding region of the estimate obtained using
the proposed method, and Figure 11(e) shows the diagonal
profile. The errors in the estimate of the mask are shown
in Figure 11(d) which is the result of the binary XOR
operation between the mask and its estimate. We can see that
most incorrectly estimated mask bits are in the region that
correspond to low pixel values in the noisy image. The total
computation time was 842.75 seconds.

2) Rayleigh Multiplicative Noise: We follow a similar pro-
tocol for the Rayleigh noise case, after normalizing the Lena
image by dividing by the maximum pixel value. Once again,
to compare our method Algorithm 2 for the Rayleigh noise
model noise, we use a logarithmic transformation followed by
inpainting using a method for inpainting with additive noise.
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TABLE II

COMPARISON FOR IMPULSE NOISE REMOVAL. κ INDICATES THE FRACTION OF CORRUPTED PIXELS

In this case, we use fast two phase deblurring [13], since
AOP, although faster, also divides the observed image by 255,
and in the case of Rayleigh speckle, the image is already
normalized. We summarize our results for the lena and
cameraman images for different fractions of missing pixels,
in Table IV. We can see that taking into account the statistical
model offers an improvement in terms of the NMAE. As with
the additive and Gaussian noise case, the existing methods for
blind inpainting do not always work well for large fractions

of missing pixels, above 50%, or take a long time, over
10 minutes.

For the Lena image, a cropped region from the
noisy image with 50% of the pixels missing is shown
in Figure 12(b) and the respective estimates using the
proposed method and [13] after logarithmic transformation
are shown in Figures 12(c) and 12(d). For a pixel loss
of 70%, the observed image and estimate using the
proposed method are shown in Figures 12(e) and 12(f).
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TABLE III

INPAINTING WITH POISSON NOISE. κ INDICATES THE FRACTION OF MISSING PIXELS. (*) AOP IS USED AFTER ANSCOMBE TRANSFORMATION

Fig. 8. Random valued impulse noise (noisy pixels have values in the
interval [0, 255]) removal with the Cameraman image. (a) Cropped original
image, (b) observed image with 50% noisy pixels and SNR = 5 dB;
estimates of (b) using: (c) proposed method, (d) [54], (e) AOP [69], (f) [24],
(g) KALS [66].

Blind inpainting with Poisson noise for the cameraman
image with 50% and 70% of its pixels missing is illustrated
in Figure 13.

Figure 14 demonstrates blind inpainting with the Rayleigh
multiplicative noise model for the transversal ultrasound (US)
image of the carotid artery. The noisy radio frequency (RF)
envelope image is shown in Figure 14(a). The observed image
with 75% of the pixels missing is shown in Figure 14(b). The
estimate using the proposed method is shown in Figure 14(c),
with the diagonal profiles shown in Figure 14(e). We can
see from the result of the binary XOR operation between the
sampling mask and its estimate shown in Figure 14(d), that the
incorrectly estimated bits are in the region of low pixel values
in the RF image. The computation time was 119.3 seconds for
the image of size 201 × 201.

Fig. 9. Blind inpainting with Poisson noise with the Lena image: (a) original
image (cropped), (b) observed image with Poisson noise and 50% of its
pixels missing; (c) estimate from (b) using the proposed method; (d) estimate
using inpainting with the additive model after Anscombe transformation;
(e) observed image with Poisson noise and 90% of its pixels missing;
(f) estimate from (e) using the proposed method.

Fig. 10. Blind inpainting with Poisson noise with the Cameraman image:
(a) original image (cropped), (b) observed image with Poisson noise and
50% of its pixels missing; (c) estimate using the proposed method; (d) estimate
using inpainting with the additive model after Anscombe transformation.

D. Maximum Extent of Missing Pixels and Sparse Recovery

We present some results of blind inpainting with the
Lena image, for different percentages of missing pixels,
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TABLE IV

INPAINTING WITH RAYLEIGH NOISE. κ INDICATES THE FRACTION OF MISSING PIXELS.

(*) THE ADDITIVE MODEL IS USED AFTER LOGARITHMIC TRANSFORMATION

Fig. 11. Blind inpainting with (Poisson) fluorescence microscopy images:
(a) noisy image, (b) observed image with 75% of the pixels missing,
(c) estimate, (d) result of the binary XOR operation between the mask and
its estimate, (e) diagonal profiles of the green component of the noisy and
estimated images.

Fig. 12. Blind inpainting with Rayleigh noise with the Lena image:
(a) original image (cropped), (b) observed image with Rayleigh noise and
50% of its pixels missing; (c) estimate from (b) using the proposed method;
(d) estimate using inpainting with the additive model after logarithmic
transformation; (e) observed image with Rayleigh noise and 70% of its pixels
missing; (f) estimate from (e) using the proposed method.

to study the fractions of missing pixels for which our method
works and the effect of λ2, the regularization parameter of the
ℓ0-norm regularizer on the mask term.

Fig. 13. Blind inpainting with Rayleigh noise with the Cameraman image:
(a) original image (cropped), (b) observed image with Rayleigh noise and
50% of its pixels missing; (c) estimate using the proposed method; (d) estimate
using inpainting with the additive model after logarithmic transformation;
(e) observed image with Rayleigh noise and 70% of its pixels missing;
(f) estimate from (e) using the proposed method.

For the case when ∥v∥0 = 0, all elements of g correspond
to observed pixels, and the mask estimate ĥ is a matrix of
binary ones. Thus all elements of the observed image are
considered valid pixels, even if they are zeros. Therefore with
few missing pixels, with a small value of the parameter λ2,
the hard threshold on v allows more elements to be different
from zero, and therefore equal to −K , thereby corresponding
to zeros (missing pixels) in the estimate of the mask after the
exponential operation, which is incorrect. A high value of λ2
forces most elements of v to be equal to zero, and consequently
correspond to ones in the mask, leading to fewer errors in the
mask estimation. We can observe this in the left hand side of
the plot of the mask errors (divided by the number of pixels),
as shown in Figure 15(a).

In the opposite case, when all elements of v are negative,
none of the elements of g would contribute to the estimation
of the image and the estimate of the image x̂ would be
a constant value. Thus, with a large fraction of the pixels
missing, with a small value of the parameter λ2, the hard
threshold on v allows more elements to be different from
zero, and therefore equal to −K , thereby corresponding to
more zeros (missing pixels) in the estimate of the mask.
A high value of λ2 forces most elements of v to be equal
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Fig. 14. Blind inpainting with (Rayleigh) transversal ultrasound image of
the carotid artery: (a) noisy radio frequency (RF) image, (b) observed image
with 75% of the pixels missing, (c) estimate, (d) result of the binary XOR
operation between the mask and its estimate, (e) diagonal profiles of the noisy
and estimated images.

Fig. 15. Evolution in errors of (a) mask estimate; (b) image estimate (MSE),
as a function of the fraction of missing pixels, for λ2 = 0.1 (optimal),
10−3 (weak), 100 (strong).

to zero, and consequently corresponding to more ones after
the exponential transformation, which leads to more errors in
the mask estimation. We can observe this in the right hand
side of the plot in Figure 15(a).

Notice from the plots of the errors in the mask estimate and
the MSE shown in Figure 15(b), that our choice of λ2, which
was arrived at by hand tuning, led to low values of both errors
roughly over the entire range of the fraction of missing pixels.
Therefore, through an optimal choice of the regularization
parameter, outliers are rejected and valid observations are
retained.

V. CONCLUSIONS AND FUTURE WORK

We have presented an iterative method for image inpainting
without knowing the locations of the missing pixels, based
on alternating minimization to simultaneously estimate the
image and observation mask. The method is computationally
faster than existing methods and can deal better with a
larger fraction of missing pixels than most existing methods.
The proposed method has been formulated for the Rayleigh

speckle and Poisson noise models as well, and was found
to be more accurate than using transforming the model into
an additive one without taking into account the respective
statistics. Overall, the method is computationally fast for the
removal of impulse noise.

Based on the results obtained with real immunofluorescence
and ultrasound images, current and future research includes
using the estimation of masks to help in obtaining opti-
mal sampling patterns and possibly even segmenting medical
images, by using our method to determine which pixel values
are reliable and which ones are outliers. This could be relevant
for speckle decomposition.
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