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a b s t r a c t

In this paper, we present a method for reconstructing images or volumes from a partial set of
observations, under the Rayleigh distributed multiplicative noise model, which is the appropriate
algebraic model in ultrasound (US) imaging. The proposed method performs a variable splitting to
introduce an auxiliary variable to serve as the argument of the total variation (TV) regularizer term.
Applying the Augmented Lagrangian framework and using an iterative alternating minimization method
lead to simpler problems involving TV minimization with a least squares term. The resulting Gauss
Seidel scheme is an instance of the Alternating Direction Method of Multipliers (ADMM) method for
which convergence is guaranteed. Experimental results show that the proposed method achieves a
lower reconstruction error than existing methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Images acquired using any modality need to be denoised before
further processing or analysis. The problem of estimating the
image from the noisy and possibly incomplete observations is an
ill-posed one [1], necessitating regularization or some assumption
on the nature of the image. The statistical distribution of the noise
and the algebraic observation model that leads to the image
formation depends on the physics of the modality. Further,
depending on hardware and sensing limitations as well as trans-
mission errors, the image may need to be reconstructed from a set
of partial observations. This is also the case in the sampling/
acquisition methodology known as compressive sensing [2,3]
wherein the image needs to be reconstructed from an under-
sampled set of incoherent observations.

Several methods exist to solve the denoising and reconstruc-
tion problems for the classical additive and Gaussian noise model,
using non-smooth regularization such as total variation (TV) [4–6]
which encourages the solution to be piece-wise smooth. Recent
methods have focussed on the augmented Lagrangian/alternating
direction method of multipliers (AL/ADMM) method [7,8] to solve
the convex optimization formulations for these TV regularized
problems [9–11] because of its computational speed. In this paper,
we propose a TV and ADMM based method for image denoising
and reconstruction from partial observations for the case when the

noise is multiplicative and Rayleigh distributed, which is the
model in Ultrasound (US) imaging for the radio frequency (RF)
envelope image [12].

Ultrasound has emerged as a popular medical imaging mod-
ality in a number of medical imaging applications because of its
low cost, wide reach, flexibility, lack of radiation, and intra-
operability [13–15]. Because 2D US images are acquired as slices
representing a thin plane from the volume, it is difficult to
reproduce for follow-up, i.e., image at the exact location again.
Therefore three dimensional (3D) US imaging is being increasingly
used for characterizing diseases such as carotid atherosclerosis,
requiring a 3D volume to be reconstructed from a series of 2D
slices. The slices can be acquired mechanically in a predetermined
manner, or freehand wherein the user can manually position and
orient the probe. It has also been reported that segmentation and
classification based on 3D US has advantages compared to those
based on 2D [16,17].

1.1. Related works

For the additive and Gaussian noise case, solvers for 2D and 3D
reconstruction from partial data using TV regularization include
the Sparse Reconstruction by Separable Approximation [18], (Con-
strained) Split Augmented Lagrangian Shrinkage Algorithm [11,19],
split Bregman method [10], Fast TV deconvolution (FTVd) [9], and
the Nesterov method based solvers, mxTV [20], and NESTA [21].
Sparse MRI [22] for MRI reconstruction also uses a TV
regularizer term.
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A despeckling method for US images called Rayleigh Log-
Euclidean Total Variation (RLTV) was proposed in [23,24], in which
a logarithmic compression was used on the image, and then a TV
regularizer term was applied on the transformed image. The
resulting convex optimization problem was solved iteratively
using Newton's method. The same denoising formulation was
solved in multiplicative image denoising by augmented Lagrangian
(MIDAL) method [25] in the context of Synthetic Aperture Radar
(SAR) images, but solved using an AL/ADMM method. MIDAL also
does not use a logarithmic compression. Another TV based
denoising method for gamma distributed multiplicative speckle
noise is the variational formulation based on mth root transforma-
tion called linearized proximal alternating minimization algorithm
(LPAMA/mV) [26,27]. This method was proposed for the applica-
tion of multi-look SAR images. The Nakagami distribution was
assumed as the statistical model in the denoising method pre-
sented in [28]. A denoising method was presented in [29],
assuming that the multiplicative noise (in natural images) was
one-sided exponentially distributed, and with an ℓ1 data fidelity
term.

A variational model for deblurring under multiplicative noise
was proposed in [30], which uses a quadratic penalty term and is
strictly convex under mild conditions. The formulation is solved
using a primal-dual algorithm.

The above listed methods solve the despeckling problem when
there is no loss of pixels. To solve the harder problem of image
reconstruction, in [24], the authors first perform a voxel inter-
polation over the grid to obtain a noisy image without missing
pixels, and then apply RLTV to despeckle it.

Interpolation algorithms such as the Pixel Nearest Neighbor
(PNN) [31], Voxel Nearest Neighbor (VNN) [31], and Pixel-Based
Interpolation with Distance Weighting (PBM-DW) [32] do not use
any regularization or a priori information about the volume to be
reconstructed. A comprehensive review of interpolation methods
for US reconstruction can be found in [14].

Other non-TV-based methods for 3D US reconstruction have
been reported in the literature. These include the Cyclic Regular-
ized Savitzky–Golay (CRSG) filter method [33] which estimates
unobserved voxels through a local 3D least squares polynomial
fitting. Results reported in this work showed that CRSG was able to
obtain a lower normalized reconstruction error (0.032) than PNN-
DW (0.047) in 3D synthetic experiments. Others such as [13]
perform an interpolation and coordinate mapping over each
unobserved voxel. Spline interpolation to connect regions across
observed slices acquired freehand has also been proposed [34].
In this work, results were reported for different conditions of the
carotid artery (normal or with plaque stenosis), without compar-
ison with existing methods. A despeckling filter based on aniso-
tropic diffusion without a linear approximation (DPAD) was
proposed in [35] for denoising and separating the speckle
component.

1.2. Contributions

In this paper, we extend the TV regularized despeckling
formulation from [23,25] to the more general problem of estimat-
ing the image from a partial set of noisy pixels. This is a more
difficult and ill-posed [1] problem than denoising, because some
pixel/voxel values are unknown. This is a relevant problem from
the point of view of reconstructing a 3D volume from a partial set
of acquired 2D slices. We solve the resulting convex problem using
an AL/ADMM approach which leads to an alternating minimiza-
tion in which at every iteration a sequence of simpler problems
has to be solved. The proposed method for reconstruction is a
more general formulation of the method for solving the denoising
problem alone. We test the proposed method with synthetic data

simulating both linear mechanical and random freehand scanning,
as well as real US images. Preliminary results were presented in
[36], which showed that the proposed method is more accurate
than interpolation methods, and is faster than all methods except
the Pixel Nearest Neighbor (PNN) interpolation which is the
crudest interpolation technique. In this paper, we compare our
method against PNN interpolation followed by despeckling meth-
ods which take into account the statistical model. Synthetic
experiments show that the proposed method achieves a lower
mean square error than existing methods.

In Section 2, we formulate the optimization problems to be
solved for estimating the despeckled image, with and without
missing data. We present the proposed approach for solving the
denoising and reconstruction problems in Section 3. In Section 4,
we present experimental results on 2D and 3D reconstruction,
with synthetic examples and real US images. Section 5 concludes
the paper.

2. Problem formulation

The image is represented as a vector, say, in lexicographic
ordering, as xARn, where n is the number of pixels or voxels.
When there is no loss of pixels, the dimensionality of the observed
image y is the same as that of x. Each element of y is the product of
the corresponding element from x and the corresponding element
from the noise field η. The observation model is therefore the
element-wise multiplication:

y¼ x " η: ð1Þ

In the case of partial observations, the number of elements of y
is less than the size of x. This is the case in the problem of
inpainting, wherein pixels damaged or lost because of transmis-
sion errors have to be estimated [37–39]. The acquisition metho-
dology of compressive sensing also involves observing an
incomplete set of incoherent observations to speed up and
simplify the sensing process and hardware [22]. When the number
of observed pixels is mon, we model the observation process as a
multiplication of xARn by a linear operator AARm%n:

y¼ ðAxÞ " η: ð2Þ

In this case, y;ηARm. The matrix A maps a pixel or a voxel in the
grid to a pixel in the set of observed slices, and discards the pixels
or voxels in x which do not correspond to a pixel in y. Hence, the
matrix A is essentially the n% n identity matrix with n&m rows
(corresponding to non-observed voxels) removed. The position
and orientation of each slice must be known to construct the
matrix A. For a denoising problem, i.e., when all elements are
observed (m¼n), it is equal to the identity matrix A ¼ I.

Assuming that the speckle field η is Rayleigh distributed, when
there are no missing observations the likelihood is

pðyjxÞ ¼ ∏
n

i ¼ 1

yi
xi

exp &
y2i
2xi

! "
; ð3Þ

where xi is the ith element of the vector x. After logarithmic
compression, this leads to the log-likelihood function:

Eðy; xÞ ¼ & log pðyjxÞð Þ ¼ ∑
n

i ¼ 1

y2i
2xi

þ log xi

! "
: ð4Þ

In [40], a logarithmic compression f ¼ log ðxÞ is applied and a
TV regularizer term is applied on the transformed variable, leading
to the convex optimization problem:

min
f

∑
i

y2i
2
e& f i þ f i

! "
þ
λ
2
TVðfÞ; ð5Þ
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where as before, fi represents a pixel or a voxel from the vector
representation of the volume f, and λ40 is the regularization
parameter. Because both the TV function and the log transforma-
tion are convex, adding the term TVðfÞ to the data fidelity term
from (4) leads to the same minimizer as applying the TV
regularizer on x, TVðxÞ. For more details see [41].

The isotropic TV semi-norm for the 2D case is defined as

TVðfÞ ¼ ∑
ði1 ;i2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf i1 ;i2 & f i1 &1;i2 Þ

2þðf i1 ;i2 & f i1 ;i2 &1Þ
2

q
; ð6Þ

where the coordinates ði1; i2Þ are the row and column indices for a
pixel, respectively. Similarly, in 3D the TV function is

TVðfÞ ¼∑
i

ðf i1 ;i2 ;i3 & f i1 &1;i2 ;i3 Þ
2þðf i1 ;i2 ;i3 & f i1 ;i2 &1;i3 Þ

2þ⋯
$

þðf i1 ;i2 ;i3 & f i1 &1;i2 ;i3 &1Þ
2
%1=2

; ð7Þ

where the voxel indices are ði1; i2; i3Þ. It must be noted that with
vector representation, neighboring pixels or voxels do not neces-
sarily occupy contiguous positions in the vector. Throughout the
paper, we assume that a voxel indexed by the subscript i
corresponds to a set of coordinate values ði1; i2; i3Þ.

We follow a similar approach for the case with partial observa-
tions (2). The likelihood function from (3) now changes to

pðyjxÞ ¼ ∏
m

i ¼ 1

yi
ðAXÞi

exp &
y2i

2ðAxÞi

! "
; ð8Þ

where ðAxÞi is the ith element of the sampled vector Ax. The
associated log-likelihood function is therefore

Eðy; xÞ ¼ & log pðyjxÞð Þ ¼ ∑
m

i ¼ 1

y2i
2ðAxÞi

þ log ðAxÞi

! "
: ð9Þ

To formulate the problem of estimating the volume x, given y
with the statistical model (8), we apply the logarithmic transfor-
mation, f ¼ log ðAxÞ, and again formulate the estimation problem
as the problem of minimizing the sum of the data fidelity term (9)
and a TV regularizer term. In this case, however, we cannot apply
the TV term on f because it is not of the same dimensions as x.
Therefore, we define our variable as ðx; fÞ, resulting in the
constrained convex problem:

min
x;f

∑
i

y2i
2
e& f i þ f i

! "
þ
λ
2
TVðxÞ; subject to Ax¼ ef : ð10Þ

This formulation is the generalized form of the TV regularized
despeckling problem (5).

3. Proposed method

In [40], the denoising problem (5) was solved using Newton's
method. An ADMM based method was presented in [25] for
solving a problem similar to (10) but without logarithmic com-
pression, for the case of multiple look Synthetic Aperture Radar
(SAR) imaging. The advantage of the AL/ADMM framework is that
it requires simpler, separable problems to be solved at each
iteration, leading to computational simplicity.

We first briefly review the concepts of variable splitting,
augmented Lagrangian, and the alternating direction method of
multipliers before applying them to our problems (5) and (10).
Indeed, the denoising problem (5) is a particular case of the more
general reconstruction problem (10), and the development of the
respective methods will be shown in a unified manner.

3.1. The AL/ADMM method

Consider an unconstrained optimization problem in which the
objective function is of the form

min
uARn

f 1ðuÞþ f 2 gðuÞð Þ; ð11Þ

where g : Rn-Rd. Using variable splitting [42], a new variable, say
v, is created to serve as the argument of f2, under the constraint
that gðuÞ ¼ v. We now have the equivalent constrained problem

min
uARn ; vARd

f 1ðuÞþ f 2ðvÞ

subject to gðuÞ ¼ v: ð12Þ

The split-Bregman methods [10] attack the constrained pro-
blem using a Bregman iterative algorithm [8]. It has been shown
that, when g is a linear function, i.e., gðuÞ ¼ Gu, the Bregman
iterative algorithm is equivalent to the augmented Lagrangian
method [8].

Consider the constrained optimization problem

min
zARn

EðzÞ

s:t: Az&b¼ 0; ð13Þ

where bARp and AARp%n. There are p linear equality constraints.
The so-called augmented Lagrangian function for this problem is
defined as

LAðz;λ;μÞ ¼ EðzÞþλT ðb&AzÞþ
μ
2
‖Az&b‖22; ð14Þ

where λARp is a vector of Lagrange multipliers and μZ0 is called
the penalty parameter [43].

The so-called augmented Lagrangian method (ALM) [43], also
known as the method of multipliers (MM) [44,45], iteratively and
alternatingly minimizes LAðz;λ;μÞ with respect to z, and λ. The
ALM/MM can be summarized as follows:

Algorithm. ALM/MM.

1. Set k¼0, choose μ40, z0, and λ0.
2. repeat
3. zkþ1Aarg minz LAðz;λk;μÞ
4. λkþ1 ¼ λkþμðb&Azkþ1Þ
5. k’kþ1
6. until stopping criterion is satisfied.

The ALM/MM does not require μ to be updated to infinity to
guarantee convergence to the solution of the constrained problem
(13) [46, Chapter 9]. It can be verified that the terms added to EðzÞ
in the definition of the augmented Lagrangian LAðz;λk;μÞ in (14)
can be written as a single quadratic term in z plus a constant,
leading to the following alternative form of the algorithm (which
makes clear its equivalence with the Bregman iterative method
[8]):

Algorithm. ALM/MM (version II).

1. Set k¼0, choose μ40 and d0.
2. repeat
3. zkþ1Aarg minz EðzÞþμ

2JAz&dk J22
4. dkþ1 ¼ dkþðb&Azkþ1Þ
5. k’kþ1
6. until stopping criterion is satisfied.

where d is the vector of dual variables. With adequate initializa-
tions, the ALM/MM generates the same sequence as a proximal
point algorithm applied to the Lagrange dual of problem (13) [47].
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Moreover, the sequence fdkg converges to a solution of this dual
problem and all cluster points of the sequence fzkg are solutions of
the (primal) problem (13) [47].

In the particular case when gðuÞ ¼Gu, where GARd%n, ALM/
MM can be applied to problem (12) as follows:

min
uARn ;vARd

f 1ðuÞþ f 2ðvÞ

subject to Gu¼ v: ð15Þ

Problem (15) can be written in the form (13) using the following
definitions:

z¼
u
v

& '
; b¼ 0; A¼ ½&G I); ð16Þ

and

EðzÞ ¼ f 1ðuÞþ f 2ðvÞ: ð17Þ

With these definitions in place, Steps 3 and 4 of the ALM/MM
(version II) can be written as follows:

ukþ1; vkþ1
( )

Aarg min
u;v

f 1ðuÞþ f 2ðvÞ

þ
μ
2
‖Gu&v&dk‖22 ð18Þ

dkþ1 ¼ dkþGukþ1&vkþ1 ð19Þ

The minimization problem (18) is not trivial since, in general, it
involves non-separable quadratic and possibly non-smooth terms.
A natural way to address (18) is to use a non-linear block-Gauss-
Seidel (NLBGS) technique, in which (18) is solved by alternatingly
minimizing it with respect to u and v, while keeping the other
variable fixed. Experimental evidence in [10] suggests that an
efficient algorithm is obtained by running just one NLBGS step.
It turns out that the resulting algorithm is an instance of the so-
called alternating direction method of multipliers (ADMM) [7],
which works as follows:

Algorithm. ADMM.

1. Set k¼0, choose μ40, v0, and d0.
2. repeat
3. ukþ1Aarg minu f 1ðuÞþ

μ
2‖Gu&vk&dk‖22

4. vkþ1Aarg minv f 2ðvÞþ
μ
2‖Gukþ1&v&dk‖22

5. dkþ1 ¼ dkþGukþ1&vkþ1
6. k’kþ1
7. until stopping criterion is satisfied.

3.2. Reconstruction

We now apply the framework described in the previous sub-
section to address the non-separable problem (10) of reconstruct-
ing the image from speckled and incomplete observations. We
perform a variable splitting by introducing an auxilliary variable u
to serve as the argument of the TV term, leading to a problemwith
the variables ðx; f;uÞ and two constraints:

min
x;f;u

∑
i

y2i
2
e& f i þ f i

! "
þ
λ
2
TVðuÞ; subject to Ax¼ ef ; x¼ u: ð20Þ

Recall that our original data fidelity term is (9). Problem (20) is
equivalent to,

min
x;u;v

∑
i

y2i
2vi

þ log vi

! "
þ
λ
2
TVðuÞ; subject to Ax¼ v; x¼ u: ð21Þ

It will be clear later in this sub-section that the formulation
(20) has advantages.

Applying the AL/ADMM framework from algorithm ADMM, the
problem to be minimized at iteration k is

min
x;f;u

∑
i

y2i
2
e& f i þ f i

! "
þ
λ
2
TVðuÞþ

μf

2
‖Ax&ef&dk

f ‖22þ
μu
2
‖x&u&dk

u‖22;

ð22Þ

where μf , μu40 are the two penalty parameters corresponding to
the two constraints, with the respective Bregman update vectors
df and du.

As in the case of (15), this problem is split into three problems
at each iteration by gathering all the terms in each variable x, f and
u, and solving for each by keeping the others fixed. The ADMM
algorithm iterates between minimizing the objective function in
(22) with respect to each of x, f and u, leading to a Gauss–Seidel
process which at iteration k is summarized as

fkþ1 ¼ arg min
f

∑
i

y2i
2
e& f i þ f i

! "
þ
μf

2
‖Axk&ef

k
&dk

f ‖22; ð23Þ

ukþ1 ¼ arg min
u

λ
2
TVðuÞþ

μu
2
‖xk&u&dk

u‖22; ð24Þ

xkþ1 ¼ arg min
x

μf

2
‖Ax&ef

kþ 1
&dk

f ‖22þ
μu
2
‖x&ukþ1&dk

u‖22 ð25Þ

dkþ1
f ¼ dk

f &ðAxkþ1&ef
kþ 1

Þ ð26Þ

dkþ1
u ¼ dk

u&ðxkþ1&ukþ1Þ: ð27Þ

Problem (24) can be recognized to be a TV regularized quad-
ratic minimization problem. However, since the TV function does
not have an associated Moreau Proximal mapping [48] which
yields an exact solution to the ℓ2þTV denoising problem, step (33)
is solved approximately using Chambolle's algorithm [6].

The objective function in (23) is separable for each voxel fi, and
can be decomposed into m problems:

f kþ1
i ¼ arg min

f i

y2i
2
e& f i þ f iþ

μf

2
ðAxkÞi&ef i &ðdf Þ

k
i

$ %2
: ð28Þ

This is a convex function and can be solved using a few iterations
of Newton's method, as in [25]. Using the formulation (21) would
have led to a non-convex function

vkþ1
i ¼ arg min

vi

y2i
2vi

þ log viþ
μf

2
ðAxkÞi&vi&ðdf Þ

k
i

$ %2
: ð29Þ

The step (23) is the only point where the exponential or the
logarithmic relation between the partial observations Ax and f or
u comes into the picture. Because the ADMM algorithm solves
alternatingly with respect to each variable keeping all others fixed,
the update steps

dkþ1
f ¼ dk

f &ðAxkþ1&ef
kþ 1

Þ;

and

dkþ1
f ¼ dk

f &ðAxkþ1&vkþ1Þ;

are equivalent.
Since the objective function in subproblem (25) is a sum of

least squares terms, the minimizer at each iteration is

xkþ1
i ¼ arg min

xi

μf

2
‖Ax&ef

kþ 1
&dk

f ‖22þ
μu
2
‖x&ukþ1&dk

u‖22 ð30Þ

¼ μfA
TAþμuI

$ %&1
μf ðe

fkþ 1
þdk

f Þþμuðu
kþ1þdk

uÞ
$ %

: ð31Þ

This step can be computed efficiently because the structure of A
implies that ðμfA

TAþμuIÞ
&1 is a diagonal matrix. Matrix A is an

m%n binary matrix, with mon, which is a subset of the rows of
an identity matrix. Due to this particular structure, the product
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ATA is a diagonal matrix with diagonal elements equal to 1 at the
positions corresponding to observed pixels, and 0 otherwise.
Therefore the matrix ðμfA

TAþμuIÞ is a diagonal, invertible matrix
with diagonal elements equal to μf þμu at the positions corre-
sponding to observed pixels, and μu otherwise. Therefore, the
inverse of this term is also diagonal, and the matrix multiplication
in (30) is computed by a weighted element-wise multiplication of
the residual term μf ðe

fkþ 1
þdk

f Þþμuðukþ1þdk
uÞ.

The proposed method is summarized in algorithm ADMM-
Reconstruction.

Algorithm. ADMM-Reconstruction.

1. Set k¼0, choose λ;μf ;μu40, x0, f0, u0, d0
f , and d0

u.
2. repeat
3. Compute fkþ1, by solving Eq. (28) for i¼ 1;…;m, using

Newton's method,
4. Compute ukþ1, by solving Eq. (24) using Chambolle's

algorithm,

5. xkþ1
i ¼ μfA

TAþμuI
$ %&1

μf ðe
fkþ 1

þdk
f Þþμuðukþ1þdk

uÞ
$ %

,

6. dkþ1
f ’dk

f &ðAxkþ1&ef
kþ 1

Þ,

7. dkþ1
u ’dk

u&ðxkþ1&ukþ1Þ,
8. k’kþ1
9. until stopping criterion is satisfied.

Even though (24) and (23) are not solved exactly, the conver-
gence conditions for ADMM [7] only require that their error
sequences decrease monotonically and μu and μf be positive.

3.3. Denoising

For denoising when there is no loss of pixels, we havem¼n and
A ¼ I. Therefore applying variable splitting to (5) leads to an
optimization problem with only one constraint f ¼ u:

min
f;u

∑
i

y2i
2
e& f i þ f i

! "
þ
λ
2
TVðuÞ; subject to f ¼ u: ð32Þ

It is straightforward to show that applying AL/ADMM to (32)
leads to the Gauss–Seidel scheme:

ukþ1 ¼ arg min
u

λ
2
TVðuÞþ

μ
2
‖fk&u&dk‖22; ð33Þ

fkþ1 ¼ arg min
f

∑
i

y2i
2
e& f i þ f i

! "
þ
μ
2
‖f&ukþ1&dk‖22;

dkþ1 ¼ dkþukþ1&fkþ1; ð34Þ

where μ40 is the penalty parameter and d is the Bregman update
vector. As in the case of reconstruction, (33) is an ℓ2þTV denoising
problem and solved using Chambolle's method, and (34) is solved
using Newton's method.

4. Experimental results

We evaluate the performance of the proposed method based on
accuracy of reconstruction and computational speed. To be able to
evaluate the accuracy, we need to have access to a ground truth
reference noiseless image. Since in practice, we do not have
ground truth for real US images, we use synthetic examples in
which known images are corrupted with the Rayleigh multi-
plicative noise, to test our proposed method.

For the case of 2D reconstruction from partial observations, we
compare our method pixel nearest neighbor (PNN) interpolation
followed by RLTV, LPAMA/MV and DPAD [35]. This is because
interpolation methods do not take into account the statistical
model. For the 3D case, we compare the proposed method with
PNN, which has been found to be the fastest interpolation method
[31,14], followed by denoising using 3D RLTV.

In the synthetic examples, the original noiseless image is
multiplied with randomly generated Rayleigh distributed noise,

Fig. 1. Varying the parameter values μ1 and μ2 for inpainting with the Shepp–Logan phantom, with 50% of the pixels randomly discarded : (a) median absolute error (MAE);
(b) computational time.

Table 1
2D Inpainting. All images of size 256%256, with 50% of pixels randomly discarded.

Image Method Iters. Time (s) MAE SSIM

Shepp Logan phantom Proposed 16 1.77 0.122 0.995
PNNþRLTV 200 6.41 0.158 0.991
PNNþMV 53 0.28 0.137 0.993
PNNþDPAD 1000 22.45 0.123 0.995

Lena Proposed 31 4.47 0.17 0.995
PNNþRLTV 156 4.84 0.383 0.977
PNNþMV 64 0.35 0.233 0.992
PNNþDPAD 48 1.27 0.254 0.99

Cameraman Proposed 30 4.31 0.078 0.999
PNNþRLTV 200 6.36 0.347 0.979
PNNþMV 70 0.433 0.252 0.99
PNNþDPAD 100 2.75 0.289 0.986

The bold values indicate the best scores for each figure of merit (processing Time,
MAE, SSIM and iterations) for each image.
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and the denoised image is compared with the original, in terms of
the reconstruction error. The error measure used was the Median
Absolute Error (MAE) [29] which is defined as

MAE¼
1
Nx

‖x& x̂‖1;

where x is the ground truth image, x̂ is the estimate, Nx is the
number of pixels, and the ℓ1-norm, ‖ " ‖1 is the sum of the absolute
values of the difference vector.

All experiments were performed on MATLAB on a 2.4 GHz Intel
Xeon based Ubuntu Linux server, with 64 GB of RAM. The
proposed method was run until the relative difference ‖x̂kþ1&
x̂k‖2=‖x̂

k‖2 fell below 10&3.
The values of regularization parameters used were hand-tuned

for each method for the synthetic examples to obtain the best
possible MAE. This is done because the different methods use

different formulations, for example, with and without logarithmic
transformation, and because we use denoising methods to des-
peckle interpolated images. For LPAMA/MV, the values of addi-
tional parameters used were the ones suggested in the authors'
implementation.

4.1. Choice of parameter values

Experimentally, we observed that for values of the penalty
parameter μf below 10, the algorithm encountered numerical
instability. For the Shepp–Logan phantom image with 50% of
pixels missing and λ¼ 1, we varied the values of μf and μu, and
obtained the plots of the MAE and computational times shown in
Fig. 1. Each graph corresponds to a value of μf. We can see from
Fig. 1(a) that the error is relatively stable for μf between 20 and
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Fig. 3. Evolution over time of ADMM error sequences for inpainting with the Shepp–Logan phantom, with 50% of the pixels randomly discarded : (a) Jf& log ðAxnÞJ and (b)
Ju&xn J .

Fig. 2. Inpainting with the Shepp–Logan phantom, with 50% of the pixels randomly discarded : (a) original; (b) observed image; estimates obtained using (c) PNNþRLTV,
(d) PNNþLPAMA/MV, (e) PNNþDPAD, and (f) proposed method.
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100, and μu between 40 and 100. The computational time does not
vary much for μu between 20 and 40, for values of μf above 60. As a
trade-off, we use μf , μu ¼ 50 in our experiments.

4.2. 2D reconstruction

We demonstrate the proposed algorithm on synthetic exam-
ples with the Shepp–Logan phantom, Lena, and cameraman
images, with 50% of the pixels randomly discarded. The results

of estimating the image and comparison with other methods are
presented in Table 1. We see that the proposed method produces a
lower MAE than interpolation followed by denoising.

The original Shepp–Logan phantom image is shown in Fig. 2(a).
The observed image after multiplication with the noise and
observation mask which randomly discards 50% of the pixels is
shown in Fig. 2(b). The estimate obtained using the proposed
method is shown in Fig. 2(f). We present the plots of the evolution
of the error sequences from the ADMM sequence in algorithm

Fig. 4. Inpainting with Lena, with 50% of the pixels randomly discarded: (a) original; (b) observed image; estimates obtained using (c) PNNþRLTV, (d) PNNþLPAMA/MV,
(e) PNNþDPAD, and (f) proposed method.

Fig. 5. Inpainting with cameraman, with 50% of the pixels randomly discarded : (a) original; (b) observed image; estimates obtained using (c) PNNþRLTV, (d) PNNþLPAMA/
MV, (e) PNNþDPAD, and (f) proposed method.
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ADMM-Reconstruction in Fig. 3. Denoting the original noiseless
image as xn, we see that the error sequences JfðtÞ & log ðAxnÞJ and
JuðtÞ &xn J decrease monotonically over time, which is in accor-
dance with the convergence conditions from [7].

For the Lena and cameraman images, the original, observed,
and estimated images are presented in Figs. 4 and 5.

4.2.1. Different levels of missing pixels and denoising
We now run the proposed method against different fractions of

missing pixels, discarded at random. Notice that the denoising
problem is the limit case, i.e., with the fraction of pixels missing
equal to zero. Table 2 presents the results for different values of
fraction of missing pixels, starting from the denoising case, for the
Lena image. We can see that for denoising and lower fractions of
missing pixels, PNN followed by denoising with LPAMA/MV
produces the lowest MAE, but for the higher fractions, it is the
proposed method which produces the lowest MAE.

The estimates obtained for denoising and reconstruction with
25% and 70% of the pixels missing are shown in Fig. 6. Each row
corresponds to one experiment. For example, the first row corre-
sponds to denoising and shows the noisy image and the estimates.
Note that for the second and third rows which correspond to
reconstruction problems with 25% and 70% of the pixels missing,
respectively, PNN was used before running the denoising methods.

4.2.2. Real ultrasound images
Fig. 7 shows the RF images of the carotid artery (transversal

and longitudinal), liver, and left ventricle. We use the random
sampling pattern on all four images, with the results shown in
Figs. 8–11. The radial sampling pattern is used on the images of the
liver and left ventricle, with the results shown in Figs. 12 and 13.

Table 2
Lena: 2D Inpainting, with varying fractions of pixels randomly discarded.

Fraction missing Method Iters. Time (s) MAE SSIM

0 (denoising) ADMM 19 2.31 0.22 0.993
RLTV 276 8.35 0.116 0.998
LPAMA/MV 112 0.579 0.077 0.999
DPAD 7 0.25 0.14 0.997

0.1 Proposed 35 4.29 0.245 0.991
PNNþRLTV 328 9.61 0.375 0.978
PNNþLPAMA/MV 46 0.248 0.153 0.996
PNNþDPAD 123 3.31 0.254 0.99

0.25 Proposed 26 2.75 0.238 0.991
PNNþRLTV 275 7.89 0.374 0.978
PNNþLPAMA/MV 45 0.233 0.161 0.996
PNNþDPAD 106 2.77 0.264 0.99

0.5 Proposed 31 4.47 0.17 0.995
PNNþRLTV 156 4.84 0.383 0.977
PNNþMV 64 0.35 0.233 0.992
PNNþDPAD 48 1.27 0.254 0.99

0.7 Proposed 47 4.3 0.194 0.994
PNNþRLTV 200 6.39 0.421 0.972
PNNþLPAMA/MV 93 0.585 0.357 0.98
PNNþDPAD 27 0.83 0.302 0.986

The bold values indicate the amount of noise.

Fig. 6. Denoising and inpainting with Lena, with different fractions of pixels randomly discarded. (a, f, k) noisy image with 0, 25%, and 70% of pixels missing, respectively;
(b, g, l) respective estimates using the proposed method; (c, h, m) respective estimates using RLTV; (d, i, n) respective estimates using LPAMA/MV; (e, j, o) respective
estimates using DPAD.
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Table 3 summarizes the results for inpainting with the random
sampling pattern, and Table 4 presents those for radial sampling.
It can be seen that LPAMA/MV is the fastest method computa-
tionally, while DPAD reached the maximum number of iterations.
Unlike in the case of the synthetic examples, we do not have the
possibility to calculate the MAE and to optimize the parameters.

4.3. 3D reconstruction

In the 3D case, as in the 2D one, we have access to the ground
truth for the synthetic examples, but not for the real US data. By
linear mechanical scanning, we mean that parallel and uniformly
spaced slices are acquired along one axis. In freehand scanning,

Fig. 7. US radio frequency (RF) images: (a) carotid artery (transversal), (b) carotid artery (longitudinal), (c) liver, (c) PNNþRLTV, and (d) left ventricle.

Fig. 8. Inpainting with real US images: carotid artery (transversal). (a) Observed image, estimates obtained using (b) proposed method, (c) PNNþRLTV, (d) PNNþLPAMA/MV,
and (e) PNNþDPAD.

Fig. 9. Inpainting with real US images: carotid artery (longitudinal). (a) observed image, estimates obtained using (b) proposed method, (c) PNNþRLTV, (d) PNNþLPAMA/
MV, and (e) PNNþDPAD.

Fig. 10. Inpainting with real US images: liver. (a) Observed image, estimates obtained using (b) proposed method, (c) PNNþRLTV, (d) PNNþLPAMA/MV, and (e) PNNþDPAD.

M. Afonso, J.M. Sanches / Neurocomputing 150 (2015) 200–213208



randomly positioned and oriented slices are acquired. Since
LPAMA/MV and DPAD are 2D denoising methods, our comparison
is against 3D RLTV after PNN interpolation. It was observed in [36]
that PNN was the quickest interpolation method.

We use two synthetic volumes, a cylindrical tube with ones
in the volume of the cylinder and zeros elsewhere and the 3D

Fig. 11. Inpainting with real US images: left ventricle. (a) Observed image, estimates obtained using (b) proposed method, (c) PNNþRLTV, (d) PNNþLPAMA/MV, and
(e) PNNþDPAD.

Fig. 12. Inpainting with real US images, radial sampling: liver. (a) observed image, estimates obtained using: (b) proposed method, (c) PNNþRLTV, (d) PNNþLPAMA/MV,
(e) PNNþDPAD.

Fig. 13. Inpainting with real US images, radial sampling: left ventricle. (a) Observed image, estimates obtained using (b) proposed method, (c) PNNþRLTV, (d) PNNþLPAMA/
MV, and (e) PNNþDPAD.

Table 3
Inpainting with 2D ultrasound images, with 50% of pixels randomly discarded.

Image Size Method Iters. Time (s)

Carotid transversal 201%201 Proposed 89 6.97
PNNþRLTV 241 4.46
PNNþMV 97 0.258
PNNþDPAD 100 1.95

Carotid longitudinal 480%464 Proposed 60 27.64
PNNþRLTV 65 6.81
PNNþMV 92 1.488
PNNþDPAD 100 10.66

Liver 205%229 Proposed 165 15.44
PNNþRLTV 1322 29.08
PNNþMV 473 2.198
PNNþDPAD 1000 22.36

Left ventricle 208%208 Proposed 66 8.7
PNNþRLTV 289 5.1
PNNþMV 360 1.263
PNNþDPAD 1000 16.82

Table 4
Inpainting with 2D ultrasound images, with radial sampling.

Image Size Method Iters. Time (s)

Liver 205%229 Proposed 178 16.74
PNNþRLTV 889 18.7
PNNþMV 533 2.73
PNNþDPAD 1000 22.64

Left ventricle 208%208 Proposed 71 9.39
PNNþRLTV 466 8.26
PNNþMV 166 0.576
PNNþDPAD 1000 15.92
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Shepp–Logan phantom, both of size 60%60%60. Linear mechan-
ical scanning is performed over the z-axis, by acquiring 30 equally
spaced slices parallel to the xy-plane. This is shown in Figs. 14 and
16. Notice the gaps between lines in the yz- and xz-cross sectional
views in the observed volumes, which correspond to unobserved
slices. With freehand acquisition, 30 slices of size 60%60 oriented
randomly were acquired. The resulting observed volumes and
reconstructed estimates are presented in Figs. 15 and 17.

Table 5 compares the proposed method against PNNþRLTV in
terms of the MAE and computation time, for both linear mechan-
ical and freehand acquisitions. It can be seen from this table that
the proposed method achieves a lower MAE in most of the
experiments.

To illustrate our method with a real example, we reconstructed
a volume from a set of 2D US images of the carotid artery, acquired
transversally over a region of length 8 cm, with equal spacing.
There were 60 slices of size 255%282, each roughly corresponding
to an area of 3.9%4 cm2. The acquired B-mode images were first

stacked together into the observed volume and then pre-
processed to extract the RF image [40]. Fig. 18 shows the observed
stack of images and the reconstructed volumes. Because of the
large dynamic range, the noisy RF and estimated images have been
contrast enhanced for display.

The computation times are presented in Table 5. Based on the
results of the synthetic experiments, we can conclude that the
proposed method achieves a performance comparable with that of
RLTV after interpolation.

5. Conclusions

We have proposed an ADMM-based algorithm for image
reconstruction with multiplicative speckle noise, assuming the
Rayleigh statistics. Experiments on synthetic and real US data
showed that the proposed method offers a good balance between

Fig. 14. Synthetic example – 3D cylindrical tube, with linear mechanical acquisition along the z-axis. 3D volumes of (a) original volume, (b) noisy and partial observations,
(c) reconstructed volume using the proposed method, and (d) reconstruction using PNNþRLTV.

Fig. 15. Synthetic example – 3D cylindrical, with freehand acquisition. 3D volumes of (a) original volume, (b) noisy and partial observations, (c) reconstructed volume using
the proposed method, and (d) reconstruction using PNNþRLTV.
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reconstruction accuracy and computation time. Only the pixel
nearest neighbor interpolation method is computationally faster
than our method, but does not take into account the statistical

model and leads to a higher reconstruction error. For freehand
scanning, the proposed method led to the lowest error in all
experiments. The proposed method could therefore be a candidate
for use as a recovery method for compressive sensing in US
imaging and other situations where the Rayleigh multiplicative
noise model is applicable.

Current and future work includes estimating the speckle field
through the use of a non-sparse regularizer on the speckle
component. Estimating the speckle in this way can lead to an
estimate of the velocity of probe motion. In the case of linear
mechanical scanning, this can help in estimating the slice position
in the absence of a spatial locater. Another possible direction of
research could be using the Kullback–Leibler (KL) divergence as a
measure of the fidelity of the observations, and possibly as a
criterion for tuning the parameter values of the solvers. The KL
divergence could also be used as a criterion for evaluating solvers
in experiments with real data for which we are unable to calculate
the reconstruction error.

Fig. 16. Synthetic example – 3D Shepp–Logan phantom, with linear mechanical acquisition along the z-axis. 3D volumes of (a) original volume, (b) noisy and partial
observations, (c) reconstructed volume using the proposed method, and (d) reconstruction using PNNþRLTV.

Fig. 17. Synthetic example – 3D Shepp–Logan phantom, with freehand acquisition. 3D volumes of (a) original volume, (b) noisy and partial observations, (c) reconstructed
volume using the proposed method, and (d) reconstruction using PNNþRLTV.

Table 5
Comparison of 3D reconstruction.

Experiment Size Acquisition Method CPU time (s) MAE

Cylinder 60%60%60 Linear Proposed 2.39 0.049
PNNþRLTV 5.65 0.028

Freehand Proposed 1.5 0.295
PNNþRLTV 5.69 0.309

Phantom 64%64%64 Linear Proposed 2.48 0.019
PNNþRLTV 1.36 0.093

Freehand Proposed 6.21 0.037
PNNþRLTV 5.47 0.039

Carotid artery 255%282%60 Linear Proposed 43.01 –

RLTV 3D 475.13 –

The bold values indicate 3D object.
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