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Abstract—Carotid and coronary vascular incidents are 
mostly caused by vulnerable plaques. Detection and character-
ization of vulnerable plaques are important for early disease 
diagnosis and treatment. For this purpose, the echomorphol-
ogy and composition have been studied. Several distributions 
have been used to describe ultrasonic data depending on tis-
sues, acquisition conditions, and equipment. Among them, the 
Rayleigh distribution is a one-parameter model used to de-
scribe the raw envelope RF ultrasound signal for its simplicity, 
whereas the Nakagami distribution (a generalization of the 
Rayleigh distribution) is the two-parameter model which is 
commonly accepted. However, it fails to describe B-mode im-
ages or Cartesian interpolated or subsampled RF images be-
cause linear filtering changes the statistics of the signal.

In this work, a gamma mixture model (GMM) is proposed 
to describe the subsampled/interpolated RF images and it 
is shown that the parameters and coefficients of the mixture 
are useful descriptors of speckle pattern for different types of 
plaque tissues. This new model outperforms recently proposed 
probabilistic and textural methods with respect to plaque de-
scription and characterization of echogenic contents.

Classification results provide an overall accuracy of 86.56% 
for four classes and 95.16% for three classes. These results 
evidence the classifier usefulness for plaque characterization. 
Additionally, the classifier provides probability maps accord-
ing to each tissue type, which can be displayed for inspecting 
local tissue composition, or used for automatic filtering and 
segmentation.

I. INTRODUCTION

VULNERABLE plaque consists of a collection of blood 
cells and cholesterol in the wall artery which is prone 

to causing cardiovascular problems such as heart attack 
and brain stroke [1], [2]. Generally, these lesions feature 
a thin fibrous cap over a soft lipid pool. The presence of 
these structures in the arterial wall causes a high mechani-
cal stress in the arterial wall and, eventually, leads to rup-

ture of the vulnerable plaque and clots. Stenosis is another 
problem derived from the presence of plaques.

Among the imaging techniques commonly used for 
detecting atherosclerotic plaques in the coronary arter-
ies, invasive coronary angiography has been considered as 
the standard. However, most patients with acute coro-
nary syndromes have minimal or mild coronary lumen ob-
struction detected by angiography and this modality has 
proved to have a limited ability to accurately measure the 
degree of stenosis and to characterize plaque morphology 
[2]. Given these limitations, the importance of detecting 
stenosis areas and the presence of different kinds of plaque 
becomes evident. Instead of angiography, intravascular ul-
trasonography (IVUS) has been demonstrated to provide 
clear visualization of arterial wall inner morphology and a 
convenient alternative method for assessing the severity of 
morphology lesions [2].

The technical procedure of acquiring IVUS data uses 
a catheter similar to the standard catheters employed in 
coronary angioplasty. The catheter is inserted inside the 
artery and moved until it reaches the artery segment to 
be studied. A rotating piezoelectric transducer transmits 
acoustic pulses and collects the A-lines that correspond 
to the reflected echoes along the depth, ρ, for each di-
rection θ. The result is a polar representation of a 360° 
cross-sectional view. This image is interpolated and geo-
metrically arranged to build the Cartesian image. In Fig. 
1, an example of an IVUS image in polar and Cartesian 
coordinates is depicted.

The acoustic response of different kinds of plaque is 
qualitatively known: lipidic plaque presents low echolu-
cent response; fibrous plaque presents intermediate level 
echogenicity; and calcified plaque is hyperechogenic and 
usually presents an acoustic shadow because of the series 
of echoes created by multiple reflections within a small 
but highly reflective tissue [2]–[5].

Although this qualitative characterization of the 
plaques offers an intuitive interpretation of IVUS imag-
es, an important effort has been made to understand the 
echomorphology and pathological evolution [6]. Quantita-
tive characterization of plaques allows developing or refin-
ing methods for plaque detection, risk predictions, and 
potentially suggesting different therapies.

To obtain a quantitative characterization of the ultra-
sonic response of plaques, the physics of ultrasound imag-
ing should be taken into account. Basically, the process 
of image formation in medical ultrasound begins with a 
pulse packet emission which travels along the beam vector 
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axis and changes shape according to characteristics of the 
media.

The traveling pulse is scattered by objects placed at 
different scattering depths, causing delays in the pulse. 
The backscattered (received) signal is corrupted by a 
characteristic granular pattern noise called speckle, which 
depends on the number of scatterers per resolution cell as 
well as their size [7], [8]. This type of multiplicative noise, 
in the sense that its variance depends on the underly-
ing signal, is observed in other modalities using coherent 
radiation such as lasers [9] and synthetic-aperture radar 
(SAR) [10].

Speckle mainly depends on the microstructure of the 
tissues, and thus its statistics can be used as tissue histo-
logical descriptors [11]. These statistics strongly depend 
on the effective scatterer density; that is, on the effective 
number and intensity distribution of the scatterers in each 
resolution cell, their size, their shape, and their spatial 
organization, as well as the acquisition instrumentation 
and the tissue attenuation [12]–[14]. The resulting speckle 
noise can be grouped in the following main classes:

Fully developed: an infinite effective number of scat-
terers per resolution cell and no deterministic compo-
nent, modeled by the Rayleigh distribution in the case 
of one-parameter distribution [15]–[18].
Possibly fully resolved: an infinite effective number of 
scatterers per resolution cell and possible existence of 
a deterministic component, modeled by Rice distribu-
tion [19]–[21].
Possibly partially developed: an arbitrary effective 
number of scatterers per resolution cell and no deter-
ministic component, modeled by K distribution [12], 
[22], [23].
Possibly partially resolved: an arbitrary effective 
number of scatterers per resolution cell and possible 
existence of a deterministic component, modeled by 
homodyned K-distribution [24], [25].

Fully developed speckle is the most common model for 
speckle formation. It considers a tissue or region composed 
of a large number of scatterers acting as echo diffusers. 
These scatterers arise from inhomogeneity and structures 

approximately equal to or smaller in size than the wave-
length of the ultrasound, such as tissue parenchyma, where 
there are changes in acoustic impedance on a microscopic 
level within the tissue. Under this condition, pixel intensi-
ties in envelope data were usually modeled by Rayleigh 
probability density functions (PDFs) [7], [18], [26].

Note that the most general case of speckle is the pos-
sibly partially resolved case, which is modeled by a ho-
modyned K-distribution. The K-distribution is a special 
case of the homodyned K-distribution with no determinis-
tic component. The Rice distribution is the limiting case 
corresponding to an infinite effective density. The Ray-
leigh distribution is a special case of the Rice distribution 
with no deterministic component.

Other distributions have been proposed for the charac-
terization of speckle. Probably the most noticeable distri-
bution is the Nakagami distribution proposed in [27]. This 
distribution has two parameters and can be considered 
as a generalization of the Rayleigh distribution. In [13], 
a model based on Nakagami distributions is proposed for 
the characterization of backscattered echo. This model is 
motivated by the fact that the Nakagami distribution gen-
eralizes the Rayleigh distribution and also appears to be 
similar to Rician distribution, which is also a generaliza-
tion of the Rayleigh distribution (see [13]). This is the 
reason that the Nakagami distribution is the commonly 
accepted distribution for speckle, and it is also considered 
as the two-parameter approximation of the true distribu-
tion for all the cases (without log-compression or applica-
tion of filters) [13], [14], [28], [29].

The distribution of speckle depends not only on the 
tissues but on the acquisition process and the post-pro-
cessing. The transducer center frequency also affects the 
distributions. Note that as the central frequency increases, 
the size of the range cell shrinks and, thus, the number of 
scatterers in the range cell decreases and one must expect 
non-Rayleigh statistics. This can be seen as an additional 
reason for the better fitting of other two-parameter dis-
tributions such as the gamma distribution. Additionally 
post-processing techniques such as log-compression and 
filtering also affect the probability distributions of speckle.

Plaque echomorphology is the contribution result of dif-
ferent tissue types (components). The lipidic plaque usu-
ally presents a fibrotic cap, which has different acoustic 
response and thus different distributions [2]. Additionally, 
accumulation of blood cells (macrophages) within plaques 
may change their probabilistic models. Hence, a mixture 
model becomes an opportune strategy for statistically de-
scribing the echomorphology of the plaque.

The Rayleigh mixture model (RMM) was first proposed 
in [8], [30] for plaque characterization and classification. 
In that work, an RMM was obtained by the expectation-
maximization method [31], [32]. Three kinds of plaque 
were considered in that study: fibrotic, lipidic, and calci-
fied. The RMM parameters were estimated for each kind 
of plaque and were used, in combination with other tex-
tural features, to provide a descriptor of plaque compo-
sition. On the other hand, a Nakagami mixture model 

Fig. 1. Intravascular ultrasonography image in (a) polar coordinates and 
(b) Cartesian coordinates with the presence of lipidic (LIP) and calcified 
(CAL) plaques that were histologically identified. 
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(NMM) was proposed in [28] for segmentation of arteries. 
This approach uses the Nakagami distribution as a gener-
alization of Rayleigh distribution as a good candidate to 
characterize the speckle.

The Rayleigh distribution has been an accepted as-
sumption for fully developed speckle [13], [26], [33], [34]. 
Its generalization by means of the Nakagami distribution 
has been used as an approximate general model for the 
echo envelope [13]. However, in the presence of downsam-
pling with interpolation, the reported tests indicate that 
Rayleigh or Nakagami models do not fit the data as well 
as the gamma distribution.

In [33], many distributions were fitted to generic B-
mode images having undergone log-compression and filter-
ing. Results showed that speckle is better described by the 
gamma distribution, though no theoretical justifications 
were provided for this better fitting. Additionally, in [34], 
some distributions were also empirically tested for the en-
velope signal without further processing, showing a better 
fit for the gamma distribution.

In [7], the gamma distribution’s performance was com-
pared with other distributions when interpolated fully de-
veloped speckle was considered. Experimental tests have 
shown the superiority of the gamma distribution over the 
Rayleigh and Nakagami for describing ultrasound (US) 
data—85% of the fully developed speckle areas passed the 
χ2 test when a gamma distribution was fitted, compared 
with 70% and less than 10% passed in the Nakagami and 
Rayleigh cases, respectively.

The interpolation operation performed in the A-lines of 
the raw RF signal to resample the data and equalize the 
resolution in both dimensions, angle and depth, seems to 
be the key element to explain why the gamma distribution 
describes the data better than the Rayleigh or Nakagami 
distributions. The interpolation process can be formulated 
as linear filter that linearly combines different pixels that 
are Rayleigh distributed. As shown in [7], a linear com-
bination of Rayleigh random variables can be accurately 
fitted by gamma distributions.

Note that the interpolation process consists of a weight-
ed sum of values that, in the case of Rayleigh distributed 
data, results in a different random variable. Hence, not 
only interpolation processes but every linear filter applied 
to Rayleigh distributed data are a weighted sum of Ray-
leigh random variables, which is better described by a 
gamma random variable than a Rayleigh.

In [35], the authors presented a bimodal gamma distri-
bution with five parameters to model the statistics of the 
pixels in the gray-level (B-mode) images. The parameters 
of the distribution were evaluated for regions contain-
ing plaque using curve-fitting techniques. In that work, 
just two gamma distributions were used because of the 
limitations of curve-fitting techniques applied. The model 
showed good fitting properties for hard (calcified) plaque 
and soft plaque (lipids, cellular components, and loose 
connective tissue).

In [36], some mixtures of gamma distributions are also 
suggested, this time for wireless channels, where they 

show a better fitting results than Rayleigh or Nakagami 
distributions.

A common stage of the acquisition process of US im-
ages is to downsample the acquired signal to provide an 
isotropic image resolution. This resampling stage usually 
involves an interpolation stage in which linear filtering is 
applied. In these conditions, the results obtained in [7] 
and [34] still hold and the Gamma distribution better de-
scribes US RF envelope downsampled data than the Ray-
leigh or Nakagami distributions.

The objective of this work is threefold: 1) propose a 
gamma mixture model (GMM) to describe the interpo-
lated/resampled RF envelope US data; 2) based on the 
parameters and coefficients of this mixture, design and 
train a classifier to discriminate calcified, lipidic, fibrotic, 
and lumen regions within atherosclerotic plaques; and 3) 
provide probability maps which can be of help for physi-
cians or for automatic postprocessing techniques such as 
filtering or segmenting methods.

GMM and a method based on RMM [30] are compared 
in terms of goodness of fit and classification accuracy. 
Comparison results showed that the GMM outperforms 
the RMM in terms of goodness of fit as well as accuracy. 
Besides the approaches by probabilistic speckle character-
ization, some methods have been proposed based on tex-
tural analysis. These methods usually consider autoregres-
sive models, spectral features, or wavelet coefficients [30], 
[37]–[39]. The proposed classifier is also compared with a 
recently published method based on textural features [38]. 
Results showed that the proposed method outperforms 
both the textural-based and the RMM classifier in 5% and 
22.7% of accuracy, respectively.

The rest of the paper is structured as follows: In Section 
II, we describe the data set, the acquisition protocols, and 
histological validation for plaques. In Section III, we test 
the capability of the most commonly used distributions 
for describing the probabilistic behavior of speckle (i.e., 
Rayleigh, Nakagami, gamma). In Section IV, the GMM 
is proposed. Section V is devoted to the GMM classifier, 
where the mixture of GMMs is proposed and derived. The 
experiments are presented in Section VI; first, the optimal 
number of components for each tissue class is analyzed; 
second, the proposed classification method is compared 
with those of [30] and [38]; third, the statistical signifi-
cance of the classification results is tested by means of 
the Friedman test and Bonferroni–Dunn test; and fourth, 
probability maps are presented. Finally, we conclude in 
Section VII.

II. MATERIALS

Having a gold standard to test the performance of clas-
sifiers is of great importance; however, the only way to 
assess the nature of plaques and their location is by histo-
logical validation. In this work, the classification is tested 
with the gold standard obtained using the methodology 
recently presented in [38]. The IVUS data set consists of 
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9 post-mortem coronary arteries obtained from 9 differ-
ent patients. All the patients died by sudden death of 
uncertain origin or accidental death, so there was no in-
dication of cardiac problems. Note that the fact that the 
subjects did not have any symptoms of coronary disease 
does not necessarily mean that coronary atheromatosis 
is not present in the arteries [40]. The relatives of the 
deceased gave written informed consent to use their arter-
ies. The samples of the coronary arteries were obtained in 
the University Hospital Germans Trias i Pujol (Badalona, 
Spain) with the approval of its ethical committee. The 
analysis of the post-mortem arteries was performed at the 
hemodynamic department of the same hospital, under the 
supervision of Dr. J. Mauri and Dr. O. Rodriguez-Leor.

From these arteries, 50 different images with the pres-
ence of plaques of different nature were selected. Then, the 
arteries are sectioned to characterize plaques by histologi-
cal analysis. The histological analysis was performed in 
the General Hospital of Granollers (Granollers, Spain) by 
the pathologist Dr. A. Serrano-Vida.

The acquisition of the images was performed in the 
following way: The artery is separated from the heart, 
fixed in a mid-soft plane, and filled (using a catheter) with 
physiological saline solution at constant pressure [around 
16 kPa (120 mmHg)], simulating blood pressure. Refer-
ences of distal, proximal, and left and right positions are 
marked. The probe is introduced through the catheter and 
RF data are acquired in correspondence with plaques.

Real-time RF data acquisition was performed with the 
Galaxy II IVUS imaging system (BostonScientific Corp., 
Natick, MA) using a catheter Atlantis SR Pro 40MHz 
(Boston Scientific Corp.). To collect and store the RF 
data, the imaging system has been connected to a work-
station equipped with a 12-bit Acquiris acquisition card 
(Agilent Technologies Inc., Santa Clara, CA) with a sam-
pling rate of 200 MHz.

The RF data for each frame is arranged in a matrix of 
N × M samples, where M = 1024 is the number of samples 
per A-line, and N = 256 is the number of positions as-
sumed by the rotational ultrasound probe.

The histological validation of plaques comprises the fol-
lowing steps: vessels are cut in correspondence with previ-
ously marked positions and plaque composition is deter-
mined by histological analysis. A correspondence between 

detected plaques by histology and respective IVUS image 
is established by means of reference positions set by an 
expert interventionist (Dr. O. Rodriguez-Leor) in coopera-
tion with the pathologist (Dr. A. Serrano-Vida).

With the purpose of preserving a reliable correspon-
dence between histological tissue and regions of the IVUS 
image, the medical team manually performs the plaque 
labeling task, discarding pairs of images in which a cor-
respondence cannot be obtained.

Finally, the data set comprises 50 different images ob-
tained from 9 different arteries (patients). All of them 
present a segmentation of the lumen (50 lumen regions, 
one per image); a set of 69 plaques was identified in the 
images and histologically characterized as the follow-
ing types: 30 calcified, 14 lipidic, and 25 fibrotic. Table 
I shows the distribution of plaques among the patients 
(arteries) in the data set.

To provide comparable features between patients, we 
applied the following acquisition protocol: the IVUS im-
ages have been directly reconstructed from the raw RF 
signals rather than using the ones produced by the IVUS 
equipment. The image reconstruction algorithm used in 
this work is the one described in [38] and it is shown in 
Fig. 2. The process comprises the following stages:

 1)  Time-gain compensation, with TGC(r) = 1 − e−βr 
where β = log 10αf/20, α is the attenuation coefficient 
for biological soft tissues (α ≈ 0.8 dB/MHz·cm for 
f = 40 MHz [38]), f is the central frequency of the 
transducer in megahertz and r is the radial distance 
from the catheter in centimeters.

 2)  Butterworth band-pass filter with cut-off frequencies 
fL = 20 MHz and fu = 60 MHz.

 3)  Envelope recovery with Hilbert transform.
 4)  Downsampling of the image to obtain isotropic reso-

lution with linear filtering.
 5)  Log-compression.
 6)  Digital development process (DDP): a nonlinear ad-

justment of the gain and edge-emphasis process to 
enhance the tissue visualization.

After this reconstruction process, the IVUS displayed 
image can be easily obtained by interpolating polar co-
ordinates into Cartesian coordinates, resulting in a non-

TABLE I. DATA SET OF 50 DIFFERENT IMAGES ACQUIRED FROM 9 DIFFERENT PATIENTS. 

Patient 
(artery)

Number of 
images Lipidic Fibrotic Calcified Lumen

1 8 5 0 5 8
2 6 2 0 6 6
3 8 0 7 3 8
4 2 2 1 2 2
5 5 0 3 5 5
6 2 2 0 0 2
7 3 2 2 1 3
8 10 1 6 8 10
9 6 0 6 0 6
Total: 50 14 25 30 50
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compressed, 256 × 256 pixel image [cf. Fig. 1(a), where 
the polar coordinate image is shown and Fig. 1(b), where 
the interpolation into Cartesian coordinates is depicted].

The traditional displayed IVUS image is obtained from 
the polar representation (ρ, θ) by interpolating in a rect-
angular (Cartesian) grid, (i, j). However, in this work, the 
image used for feature extraction and classification is the 
non-compressed polar image obtained after the downsam-
pling step (cf. Fig. 2). This stage of the reconstruction 
process involves linear filtering (to downsample without 
aliasing) and, thus, Rayleigh or Nakagami models do not 
fit the data as well.

III. PROBABILISTIC MODEL FOR ENVELOPE DATA

In this section, the performance of Rayleigh, Nakagami, 
and gamma distributions are tested as candidates for de-
scribing the probabilistic behavior of speckle in the pre-
processing stage of the envelope image formation process.

The performance test of both distributions is carried 
out after the downsampling stage (see Fig. 2), where the 
Nakagami distribution is commonly accepted. All envelope 
images of the data set (50 in total) were tested with two 
different measures: the Kullback–Leibler divergence and 
the uniform norm of the cumulative distribution function 
(CDF). The former is a non-symmetric measure of the dif-
ference between two probability distributions, defined as

 !D p f p i p i
f in X

i

N

n
n

X
KL( , ) = ( )

( )
( ),

=1
2∑ log  (1)

where pn is the empirical PDF estimate and fX is the theo-
retical distribution: Rayleigh, gamma, or Nakagami.

Note that the binary logarithm was chosen in this defi-
nition. We decided to use this base because the calculation 
of Kullback–Leibler divergence in other works such as [30] 
was provided in that base.

Instead of using the formulation of (1) we used the fol-
lowing symmetrized form:

 D D p f D f pn X X nKL KL KL=
1
2( ( , ) ( , ))! !+ . (2)

The measure DKL provides a symmetric way to measure 
the similarity between the PDFs. Because both the 
!D p fn XKL( , ) and !D f pX nKL( , ) are nonnegative, this measure 
is more restrictive than that of (1).

The empirical PDF was estimated by means of the his-
togram of the neighborhood of the pixel under study. The 
chosen neighborhood size is 11 × 11; the number of bins 
of the histogram is n = 30 equally spaced and smoothed 
with a Gaussian kernel (see [41] for more details). The 
smoothing process reduces the dependence of the PDF 
approximation on the number of bins used. Parameters of 
Rayleigh and gamma PDFs correspond to the maximum 
likelihood estimates of the data in the neighborhood of 
the pixel studied; parameters of the Nakagami distribu-
tion were calculated as in [42].

The uniform norm of the cumulative distribution func-
tion, also called Kolmogorov–Smirnov (KS) statistic, is 
defined as:

 D F i F iXKS = ( ) ( ) ,sup ˆ −  (3)

where F̂n is the empirical CDF of data and FX is the CDF 
of the theoretical distributions.

This last metric was chosen because it does not depend 
on the number of bins used for the empirical PDF esti-
mate and can be calculated with a small number of sam-
ples. Additionally, the Glivenko–Cantelli theorem states 
that, if the samples are drawn from distribution FX, then 
DKS almost surely converges to 0 [43].

As an example, in Fig. 3(a), a downsampled envelope 
image is depicted (it is log-compressed only to ease the 
visualization); Figs. 3(b)–3(d) show the Kullback–Leibler 
divergence, DKL, computed for the Rayleigh, Nakagami, 
and gamma distributions, respectively. Figs. 3(e)–3(g) 
show the DKS measure for Rayleigh, Nakagami, and gam-
ma distributions respectively. This example shows a bet-
ter performance of gamma distribution for both measures. 
The darker the image is, the better is the performance for 
both measures.

To provide a quantitative result of the performance of 
the gamma distribution in contrast to the Rayleigh and 
Nakagami distributions, a Welch t-test was performed for 
both measures, DKL and DKS, in the following way: for 
each of the images of the data set, both measures were 
calculated in each neighborhood (with size 11 × 11). For 
each image, the average value was calculated and, thus, 
the Welch t-test is performed with 50 samples. This test 
was chosen because no equal variance should be assumed. 
This test is performed considering pairs of distributions 
(gamma versus Rayleigh, gamma versus Nakagami, and 
Rayleigh versus Nakagami). The null hypothesis considers 
that both population means are the same. The boxplot of 
both measures is depicted in Figs. 3(h) and 3(i).

Fig. 2. Image reconstruction process. A time-gain compensation (TGC) 
operation is applied to the RF intravascular ultrasonography data ac-
quired. The envelope is recovered by a Hilbert transform. A downsam-
pling stage is applied to obtain isotropic resolution; all the analysis of 
this work is applied after this stage, in which the gamma assumption is 
applied. Log-compression and digital development process (DDP) stages 
are usually applied for visualization. 
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P-values of the Welch t-test for the case of Kullback–
Leibler divergence and uniform norm of the CDF are 
shown in Table II. Note that all values are negligible and 
the null hypothesis must be rejected in all cases. Conse-
quently, these three distributions fit in a different way, 
and the gamma distribution is the one with best fitting 
for both measures. Note that the Nakagami distribution 
was introduced as an approximate model for the echo en-
velope.

This result is a strong confirmation that gamma distri-
bution better describes the probabilistic nature of speckle 
when internal preprocessing such as linear filtering (to 
avoid aliasing in the downsampling stage) are taking 
place, and confirms the result obtained in [7], where the 
better performance of the gamma was justified as the re-
sult of the linear filtering of fully formed speckle.

The gamma distribution also showed a better fit in [34], 
where the experiments were carried out directly from the 
envelope data after RF band-pass filtering. However, in 
our case, we are extending this result to the case of filter-
ing after the envelope detection to rearrange and downs-
ample the data.

IV. GAMMA MIXTURE MODEL

In this section, the gamma mixture model is proposed 
and the method for the computation of its parameters and 
coefficients is described. The goal of using GMMs is that 

the echomorphology may result from the contribution of 
different echogenic components of the plaque that follow 
different distributions. Under the assumption of gamma-
distributed speckle, the GMM arises in a natural way.

Let X = {xi}, 1 ≤ i ≤ N be a set of samples (pixel in-
tensities) of a given region of the ultrasound image. These 
samples can be considered as independent and identically 
distributed (IID) random variables (RVs). This assump-
tion is taken because the downsampling stage reduces 
the possible correlation between neighboring pixels. The 
GMM considers that these variables result from the con-
tributions of J distributions: 1

 p x f xi
j

J

j X i j( ) = ( ),
=1

| |Θ ∑π Θ  (4)

where Θ is a vector of the parameters of the GMM (π1, … , 
 πJ, Θ1, …, ΘJ) and ΘJ are the parameters of the PDF 
(in our case the parameters of a Gamma distribution are 
represented as αj and βj). The gamma PDF is defined as

 f x x e xX
x( | , ) =

( )
, 0 , > 0,

1
α β

β α
α β

α

α
β

−
− ≥

Γ
/  and  (5)

where Γ(x) is the Euler gamma function defined as Γ(x) = 

0
1∞ − −∫ t e tx td , for x > 0. The condition j

J
j=1∑ π  = 1 must 

hold to guarantee that p(xi | Φ) is a well-defined probabil-
ity distribution.

The joint distribution of IID samples is given by

 p p x
i

N

i( | ) = ( | ).
=1

XΘ Θ∏  (6)

The expectation-maximization method is applied here 
to maximize the log-likelihood function when some hidden 

Fig. 3. (a) Log-compressed representation of the envelope. Kullback–Leibler divergence for (b) Rayleigh, (c) Nakagami, and (d) gamma distributions. 
Uniform norm of the cumulative distribution function for (e) Rayleigh, (f) Nakagami, and (g) gamma distributions. Boxplots for both measures 
DKL and DKS are represented in (h) and (i), respectively. Welch t-test results show that populations are statistically different and thus the gamma 
distribution fits better than Rayleigh or Nakagami distributions.

TABLE II. P-VALUES FOR THE WELCH T-TEST  
FOR THE CASES OF DKL AND DKS. 

Rayleigh Nakagami Gamma

Rayleigh — 7.54 · 10−35 7.9 · 10−38

Nakagami 7.6 · 10−11 — 3.67 · 10−46

Gamma 3.47 · 10−17 1.69 · 10−16 —

Values below the diagonal: Kullback–Liebler divergence; values above 
the diagonal: Kolmogorov–Smirnov statistic.

1 The notation used, from here forth, refers to random variables using 
capital letters and samples of random variables using lower case letters. 
The expectation operator is denoted E{·}.
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discrete RVs, Z = {Zi}, are introduced to the model. These 
RVs take values in {1, …, J }; their meaning is that the 
sample xi belongs to the distribution class j when Zi = j.

Now, let Θ(n) be an estimate of the parameters of the 
mixture in the nth iteration; the expectation step is per-
formed by calculating the expected value of the log-likeli-
hood L( | , )ΘX Z :

 Q L( | , ) = { ( | , )}.( )
| ,( )ΘΘ ΘΘ

n E nX X ZZ X  (7)

In the maximization step, the new estimate Θ(n+1) is 
obtained by maximizing the expectation of the likelihood 
function Q( | , )( )ΘΘ n X . These steps are iterated until a stop 
criterion such as || Θ(n+1) − Θ(n) || < TOL for some pre-
established threshold (TOL) is reached.

The application of the EM algorithm for general distri-
butions is not new; see, for example, [32] and [44]. In the 
case of a GMM, it was first derived by Webb in [45]; other 
similar derivations were obtained in [28] and [42]. For the 
sake of completeness and to introduce the notation used 
to derive the classifier, the EM algorithm is explained in 
[28] and [45], which results in the following equality for 
the weights:

 π̂ γj
i

N

i j
i

N

i i
n

N N p Z j x=
1

=
1

( = | , ).
=1

,
=1

( )∑ ∑ Θ  (8)

where γi,j = p(Zi = j | xi, Θ(n)) to make notation simpler, 
and it can be derived by the Bayes theorem as

 γ i j i i
n i j

n
i

n

i
np Z j x

p x p Z j
p x,

( )
( ) ( )

( )= ( = | , ) =
( | ) ( = | )

( | )
,Θ

Θ
Θ

Θ
 (9)

where p(Zi = j | Θ(n)) = π j
n( ).

The estimates of the gamma distribution parameters 
result in the following equalities (see [42] and [45]):

 log ˆ ˆ log
log

( ) ( ) = ,
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γ
j j

i j ii
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 ˆ
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i j ii
N

i ji
N

x
=

1 ,=1

,=1

∑
∑

 (11)

where ψ(x) is the Digamma function, defined as ψ(x) = 
Γc(x)/ Γ(x).

Note that this is the case of uniform prior weights pro-
posed in [45], which is a special case of the Dirichlet prior 
weights proposed in [42].

The method is applied in the following way:

 1)  A first estimate of the hidden variables is obtained 
by means of any clustering method (k-means for ex-
ample). For each cluster j = {1, …, J }, the parame-
ters of the distribution Θ j

(0) can be calculated by 
means of the moments method or maximum likeli-
hood methods. Weights, ˆ ,π j

(0)  can be calculated ei-

ther as 1/J or as the number of elements of each 
cluster divided by the total number of elements. Set 
n = 0.

 2)  Expectation step. γi,j is calculated from (9).
 3)  Maximization step. The estimate for α̂ j  is calculated 

from (10) and β̂ j is calculated from (11). π̂ j  is calcu-
lated from (8).

 4)  n = n + 1.
 5)  Go to step 2 until || Θ(n) − Θ(n−1) || < TOL is satis-

fied.

As an example, in Fig. 4, the GMM is used to fit dif-
ferent tissue types and compared with the output of the 
NMM proposed in [42] and the RMM proposed in [8]. 
Specifically, three mixture components were used in the 
fitting process for GMM, NMM, and RMM. At first sight, 
the performance of the gamma mixture is better. Quanti-
tative results calculated with D KL and DKS for the whole 
data set are provided in Table III. In this case, numeri-
cal results show that plaques, which can be composed of 
different echolucent sources or echogenic structures such 
as fibrous caps, are properly fitted with a gamma mix-
ture model and, potentially, the parameters of the mixture 
model could be a good descriptor of the tissue class under 
the operations of downsampling and interpolation. Never-
theless, an extended study of the behavior of the GMM, 
NMM, and RMM is presented in Section VI.

V. GMM CLASSIFIER

In this section, a classifier based on GMMs priors is de-
rived. This classifier is inspired by the work of [10], where 
a Bayesian GMM approach is proposed. There are some 
important differences between that method and the one 
presented here. The first is that the method in [10] ad-
opted a Bayesian approach for deriving the model. This 
methodology considers the parameters of the GMMs as 
random variables, and thus needs the definition of some 
prior distributions to characterize them. These distribu-
tions require their parameters to be manually initialized, 
which clearly affects, and may bias, the mixture model.

Instead of considering prior distributions which can be 
inaccurate and may bias the results of the model, we ap-
ply an expectation-maximization approach without prior 
on the parameters. The initial values of the GMM pa-
rameters are obtained from the training set according to 
each tissue class. The final labeling of the GMMs is then 
obtained according to the closest initial GMMs (with re-
spect to the DKS) for each tissue class and the probability 
of belonging to each tissue class is obtained by the Bayes 
theorem.

A. Formulation

We state the problem as a mixture model of GMMs 
in the following way: Let X = {xi}, 1 ≤ i ≤ N be a set of 
samples (pixel intensities) of a given region of the ultra-
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sound image. These samples are IID RVs. The GMM con-
siders that these variables result from the contributions of 
J tissue classes and each PDF comprises Rj components 
for each j ∈ {1, 2, …, J}. This mixture model takes into 
account the presence of different echolucent responses of 
plaques:

 p x f xi
j

J

j
r

Rj

j r X i j r( | ) = ( | )
=1 =1

, ,Θ ∑ ∑ν π Θ , (12)

where Θ is a vector consisting of all the GMM param-
eters, i.e., νj, πj,r, and Θj,r = (αj,r, βj,r).

In (12), two conditions must be imposed to the compo-
nent weights to assure that (12) is well defined as a true 
PDF:

 
j

J

j
r

R

j r

j

j J
=1 =1

,= 1 = 1, = {1, , }.∑ ∑ …ν π and for each    

  (13)

Now, the joint distribution, under the assumption of IID 
RVs is the product over all the samples, as in (6).

To apply the expectation-maximization method, two 
hidden discrete RVs vectors are introduced, Z = {Zi} and 
W = {Wi,j}. The former, Z, takes values onto the set of 
all possible tissue classes, i.e., {1, …, J } and Zi = j means 
that sample xi belongs to the tissue class j. The latter, 
Wi,j, takes values over {1, …, Rj} and the meaning of Wi,j 
= r is that sample xi belongs to the r component of the 
tissue class j.

Both RVs are defined in such a way that there is an 
implicit relationship which makes sense from the point of 
view of conditional probability. For instance, p(Zi = j | Θ) 

is the probability of belonging to tissue class j when the 
parameters of the mixtures are known and, in the mixture 
model of (12), can be identified as νj; p(Wi,j = r | Zi = j,Θ) 
is identified as πj,r. The hierarchical relationship between 
Zi and Wi,j is shown in Fig. 5, where tissue classes are 
denoted as Cj and each component of each tissue class is 
Bj r, . Note that this relationship allows consideration of the 
sample xi as a contribution of each component within each 
tissue class, which is a desired property to reflect the 
mixed composition of plaques. A detailed explanation on 
the EM method is presented in Appendix A.

Supposing the previous estimate for the parameters of 
the mixture model [Θ(v)] is known, the log-likelihood func-
tion with both hidden variables is the following (see Ap-
pendix A):
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In the expectation step, the expectation is calculated over 
Z and W for known data x and a previous estimate Θ(n):
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∑∑∑γ ((log log )f xX i j r j r j j r( | , ) ( ) ,, , ,α β ν π+
 (15)

where γi,j,r = p(Zi =j, Wi,j = r | xi,Θ(n)), which can be eas-
ily calculated by means of the Bayes theorem:

Fig. 4. Gamma, Nakagami, and Rayleigh mixture model fittings for (a) calcified, (b) lipidic, (c) fibrotic, and (d) lumen tissue. In all methods, the 
tolerance was fixed to || Θ(n+1) − Θ(n) || < 10−4 with a maximum number of iterations of 1000 and three components in each mixture. 

TABLE III. FITTING OF DIFFERENT TYPES OF TISSUE USING GAMMA MIXTURE MODEL (GMM),  
NAKAGAMI MIXTURE MODEL (NMM), AND RAYLEIGH MIXTURE MODEL (RMM). 

Tissue

DKL DKS

GMM NMM RMM GMM NMM RMM

Calcified 4.37 · 10−5 1.06 · 10−4 2.65 · 10−4 0.0080 0.0180 0.0359
Lipidic 3.29 · 10−3 5.03 · 10−3 5.78 · 10−3 0.0054 0.0114 0.0161
Fibrotic 3.97 · 10−3 4.57 · 10−3 4.91 · 10−3 0.0038 0.0078 0.0117
Lumen 1.13 · 10−2 2.41 · 10−2 4.85 · 10−2 0.0167 0.0341 0.0894

 Bold values show the best fitting for each tissue class.
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The updated weights can be calculated by the following 
equations:
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The updated parameters of the gamma mixtures can be 
calculated with the following equations:
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B. Training and Classifying

The training process is performed by estimating the 
prior parameters, Θ j r,

(0) for the training set by fitting the 
GMMs explained in Section IV for each tissue class. Then, 
the mixtures of GMMs are fitted to the test set, y = {yi} 
by the method explained in Section V-A in the following 
way:

 1)  Set Θ j r,
(0), the prior parameters obtained by fitting the 

GMMs for the training set and for each tissue class. 
Initial weights are calculated as π̂ j r,

(0) = 1/Rj and ν̂ j
(0) 

= 1/J. Set n = 0.
 2)  Expectation step. γi,j,r is calculated from (16).

 3)  Maximization step. β̂ j r,  and α̂i j,  are calculated from 
(19) and (18). ν̂ j and π̂ j r,  are calculated from (17).

 4)  n = n + 1.
 5)  Go to step 2 until || Θ(n) − Θ(n−1) || < TOL is satis-

fied.

The GMM fitting can have more than one solution 
[46]. Actually, the parameters of the GMMs can be inter-
changed without affecting the fit with the data. To cir-
cumvent this problem, using DKS, we compare the final 
distributions with the initial ones for each tissue class. 
Finally, the labels are assigned by considering the lower 
DKS between the final distributions and the initial ones.

The posterior probability of belonging to each tissue 
class is then obtained by simply calculating the probabil-
ity of Zi = j in the test set:

 p j
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Finally, the selected class is that one with the highest 
posterior probability.

VI. EXPERIMENTAL RESULTS

In this section, two experiments are described. The first 
is related to the selection of the number of elements of the 
GMM which better fits to each tissue class. This experi-
ment is also performed with RMM and NMM to see which 
of the gamma, Nakagami, or Rayleigh distributions better 
fits the ultrasound data under the operations of downsam-
pling with interpolation.

The second experiment has the goal of classifying 
plaques into four tissue classes: calcified, lipidic, fibrotic, 
and lumen.

At the end of these tests, some examples of probabil-
ity maps for each tissue class are shown. We believe that 
these maps provide useful information for manual analysis 
of plaque composition and we foresee its usage as a pre-
processing step for automatic segmentation.

A. Optimal Number of Components for Each Class

Here, the GMM, NMM, and RMM have been applied 
to every presegmented plaque using an increasing number 
of components. We have used DKL and DKS to investigate 
the performance of GMM, NMM, and RMM with respect 
to the number of components for each class. The results 
are shown in Table IV.

Note that results of both measures evidence a better fit 
for the GMM for every tissue class. In all cases (GMM, 
RMM, and NMM) the performance is better as the num-
ber of components increases, but the GMM approach still 
remains as a better approach in nearly all of the cases.

These results can be used to select the number of com-
ponents of the mixture models. Note that as the number 
of components increases, the measure decreases with a 
slower rate. In Fig. 6, the rate of decrease of both mea-
sures for GMM, RMM, and NMM are shown for each 
tissue class. This rate is calculated as frate(n) = D(n − 1) 
− D(n), where D(n) is DKL or DKS measures and n is the 
number of components of the mixture model. This crite-

Fig. 5. Conditional probability scheme. Each sample xi may belong to 
tissue class Cj  with probability p(Zi = j | Θ), and to the component Bj r,  
with probability p(Wi,j = r|Zi = j,Θ)p(Zi = j,Θ).
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rion takes into account the lowest number of components 
per tissue class for which the goodness of fit does not 
significantly improve when another component is added 
to the mixture model. Note that the global maximum is 
obtained for n = 3. From that value, the differences are 
lower than that observed for 3 components.

Other selection criteria could be applied. We also ap-
plied the Bayesian information criterion (BIC) [47] to de-
termine the preferred number of components for each tis-
sue class. This criterion provides the preferred model for a 
finite set of models, which is the case. It is based on calcu-
lating the log-likelihood and penalizing distributions with 
a higher number of free parameters to avoid over-fitting.

The number of free parameters used for the RMM is 2 
× the number of components − 1, because each Rayleigh 
has one parameter and the number of free weights is the 
number of components − 1 because the sum of weights 
must be 1. In the case of GMM and NMM, it is 3 × the 
number of components − 1, for the same reason (both 
gamma and Nakagami have 2 parameters).

The BIC criterion is obtained by means of the following 
formula:

 BIC = 2 ( ) ( )− +log log ,L k n  (21)

where L is likelihood function for the estimated model, k is 
the number of free parameters of the model, and n is the 
number of samples.

The obtained preferences for each tissue class are shown 
in Table V as well as the number of free parameters and 
the DKL. These results show the goodness of fit of the mix-
ture models, penalizing loss of degree of freedom by hav-
ing more parameters in the fitted model. In all cases, the 
DKL is lower than that obtained by NMM and RMM. The 
gamma distribution provides the least number of com-
ponents for describing all tissue classes. It also provides 
the least number of free parameters with the exception of 
calcified and fibrotic tissues. In the case of calcified tissue, 
one can choose a GMM of 3 components (8 free param-
eters) which provides a DKL = 4.37 · 10−5 (see Table IV). 
This value is still lower than the one obtained for the 
RMM and almost equal to NMM and allows us to simplify 
the mixture model to prevent over-fitting in the training 
step. If we decrease the number of components (and free 
parameters) of NMM and RMM, the DKL considerably 
increases (see Table IV) and the results are worse than the 
ones obtained for the GMM.

For the case of fibrotic tissue, the RMM requires fewer 
free parameters to be calculated. However, the lower num-

TABLE IV. GAMMA MIXTURE MODEL (GMM), NAKAGAMI MIXTURE MODEL (NMM), AND RAYLEIGH 
MIXTURE MODEL (RMM) FITTING FOR DIFFERENT KINDS OF TISSUE. 

Tissue

DKL DKS

GMM NMM RMM GMM NMM RMM

2 components
 Calcified 6.22 · 10−5 2.26 · 10−4 9.23 · 10−4 0.0126 0.0331 0.1087
 Lipidic 6.32 · 10−3 1.26 · 10−2 3.36 · 10−2 0.0198 0.0410 0.1059
 Fibrotic 4.26 · 10−3 7.58 · 10−3 1.21 · 10−2 0.0085 0.0257 0.0445
 Lumen 1.73 · 10−2 5.71 · 10−2 3.94 · 10−1 0.0277 0.0768 0.4110
3 components
 Calcified 4.37 · 10−5 1.06 · 10−4 2.65 · 10−4 0.0080 0.0180 0.0359
 Lipidic 3.29 · 10−3 5.03 · 10−3 5.78 · 10−3 0.0054 0.0114 0.0161
 Fibrotic 3.97 · 10−3 4.57 · 10−3 4.91 · 10−3 0.0038 0.0078 0.0117
 Lumen 1.13 · 10−2 2.41 · 10−2 4.85 · 10−2 0.0167 0.0341 0.0894
4 components
 Calcified 4.24 · 10−5 4.46 · 10−5 9.89 · 10−5 0.0079 0.0072 0.0141
 Lipidic 3.29 · 10−3 3.98 · 10−3 4.26 · 10−3 0.0055 0.0076 0.0083
 Fibrotic 3.96 · 10−3 4.23 · 10−3 4.07 · 10−3 0.0032 0.0062 0.0036
 Lumen 6.44 · 10−3 2.39 · 10−2 1.18 · 10−2 0.0043 0.0339 0.0126
5 components
 Calcified 3.08 · 10−5 4.36 · 10−5 9.89 · 10−5 0.0042 0.0071 0.0141
 Lipidic 3.09 · 10−3 3.79 · 10−3 3.88 · 10−3 0.0044 0.0070 0.0060
 Fibrotic 3.95 · 10−3 4.23 · 10−3 4.03 · 10−3 0.0029 0.0062 0.0033
 Lumen 6.44 · 10−3 9.76 · 10−3 1.12 · 10−2 0.0044 0.0117 0.0110
6 components
 Calcified 3.07 · 10−5 4.25 · 10−5 4.77 · 10−5 0.0041 0.0068 0.0036
 Lipidic 2.94 · 10−3 3.39 · 10−3 3.68 · 10−3 0.0029 0.0057 0.0065
 Fibrotic 3.95 · 10−3 4.13 · 10−3 4.01 · 10−3 0.0031 0.0054 0.0031
 Lumen 6.18 · 10−3 9.39 · 10−3 8.90 · 10−3 0.0031 0.0110 0.0118
7 components
 Calcified 3.08 · 10−5 4.30 · 10−5 4.77 · 10−5 0.0041 0.0069 0.0036
 Lipidic 2.93 · 10−3 3.40 · 10−3 3.66 · 10−3 0.0026 0.0059 0.0066
 Fibrotic 3.94 · 10−3 4.07 · 10−3 4.00 · 10−3 0.0024 0.0047 0.0029
 Lumen 6.18 · 10−3 6.83 · 10−3 8.90 · 10−3 0.0031 0.0052 0.0118

Bold values show the best fitting for each tissue class.
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ber of components of the GMM avoids the effect of over-
fitting during the classification step, as we show in a clas-
sification experiment presented in a later section (Table 
VI).

The lower preferred number of components in the 
GMM and NMM models compared with the RMM show 
better fitting to the data. However, considering the pic-
tures shown in Fig. 6, the incremental gain of the fitting 
measures is negligible for so many components and the 
BIC criterion can be relaxed to 3 components. Neverthe-
less, in the next section we classify with an increasing 
number of components and the best cases of each mixture 
model are considered for comparisons.

B. Plaque Classification According to Tissue Type

In this experiment, the classifier explained in Section 
VI is applied for the whole data set with the leave-one-
patient-out (LOPO) cross-validation technique. This 
method performs the classification by excluding all the 
images that come from the same patient of the plaque 
which is being classified. This is a technique for assess-
ing the statistical independence of classification and, thus, 
avoids the problem of correlation between images from the 
same patient in the validation stage.

The classification is performed by partitioning the data 
into two complementary subsets. One of the sets contains 
all the images from the same patient and it is used for val-
idation (validation set), whereas its complementary subset 
(the other patients) is considered as the analysis set and is 
used for the training step (training set).

The training set is used to obtain the initial values 
of the GMM parameters according to each tissue class. 
Then, the expectation-maximization method is applied to 
the image under study which belongs to the validation 
set and the GMMs fit to the whole image. The resulting 
GMMs are used to obtain the probability of belonging to 
each tissue class, which is obtained by the Bayes theorem.

Table VI shows the classification performance for an 
increasing number of components and free parameters for 
each mixture model in terms of global accuracy, A = (TP 
+ TN)/(TP + TN + FP + FN), where FN and FP stand 
for false negatives and false positives, respectively; TN 
and TP stand for true negatives and true positives. Note 
that the highest value of accuracy is reached for three 
components for both the GMM and the NMM. This con-
firms the relation between the classification and the fitting 
measures and shows that the GMMs and NMMs are good 

Fig. 6. Difference rate of DKL and DKS for gamma mixture model (GMM), 
Rayleigh mixture model (RMM), and Nakagami mixture model (NMM) 
for (a) calcified, (b) lipidic, (c) fibrotic, and (d) lumen tissue. 

TABLE V. PREFERRED NUMBER OF COMPONENTS AND FREE 
PARAMETERS FOR EACH TISSUE CLASS CALCULATED  
BY USING THE BAYESIAN INFORMATION CRITERION. 

Tissue GMM NMM RMM

Calcified
 Components 5 5 6
 Free parameters 14 14 11
 DKL 3.08 · 10−5 4.36 · 10−5 4.77 · 10−5

Lipidic
 Components 3 6 6
 Free parameters 8 17 11
 DKL 3.29 · 10−3 3.39 · 10−3 3.68 · 10−3

Fibrotic
 Components 3 4 4
 Free parameters 8 11 7
 DKL 3.97 · 10−3 4.23 · 10−3 4.07 · 10−3

Lumen
 Components 4 6 7
 Free parameters 11 17 13
 DKL 6.44 · 10−3 9.39 · 10−3 8.9 · 10−3

Bold values show the best fitting for each tissue class.

TABLE VI. CLASSIFICATION PERFORMANCE FOR AN INCREASING NUMBER OF COMPONENTS AND FREE 
PARAMETERS PER TISSUE OF GAMMA MIXTURE MODEL (GMM), NAKAGAMI MIXTURE  

MODEL (NMM), AND RAYLEIGH MIXTURE MODEL (RMM). 

Components (Free parameters)

GMM 2 (5) 3 (8) 4 (11) 5 (14) 6 (17) 7 (20)
Performance 73.95% 86.56% 82.35% 81.51% 73.11% 75.63%
NMM 2 (5) 3 (8) 4 (11) 5 (14) 6 (17) 7 (20)
Performance 77.31% 83.19% 79.83% 78.15% 78.99% 76.13%
RMM 2 (3) 3 (5) 4 (7) 5 (9) 6 (11) 7 (13)
Performance 31.93% 63.86% 68.07% 71.42% 71.27% 70.79%

Bold values show the best classification performance.
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descriptors of the behavior of the probabilistic nature of 
speckle in each tissue class for classification purposes. It 
also confirms the selection of number of components and 
free parameters performed in the previous section.

To provide a comparison between the proposed method 
(GMM classifier) and other methodologies, three more 
methods are considered for plaque classification. The first 
one is a Rayleigh mixture classifier which can be easily 
derived following the formulation of Section V-A, we will 
refer to this method as the RMM classifier. This classi-
fier does not exactly follow the same philosophy as was 
proposed in [30] because we are interested not only in the 
classification but also in providing probability maps for 
further post-processing, and this can be of help for physi-
cians in plaque detection or diagnosis. The RMM classifier 
presented in [30] does not adapt the RMMs to each tissue 
class in the image under study and, thus, the reliability of 
the fitting is reduced. The second is the NMM classifier, 
obtained in the same way as the RMM classifier. A com-
parison between the GMM classifier versus the RMM and 
the NMM classifiers will confirm once more that GMM 
not only describes the speckle patterns better but also 
provides more discriminative power as a classifier.

The third method considered for comparison is the 
one of [38], in which a set of 35 textural features directly 
extracted from the envelope data are used. The multi-
class classification is tackled by a combination of binary 
classifiers into the error-correcting output codes (ECOC) 
framework [48]. Each binary classification is obtained by 
means of adaptive boosting [49] where the weak classifiers 
are decisions stumps [30]. We refer to this classifier as the 
textural classifier.

Results of the classification are shown in Table VII. 
This table was calculated by considering the whole data 
set for classification. Specificity was calculated as K = 
TN/(TN + FP); sensitivity as S = TP/(TP + FN); and 
precision as P = TP/(TP + FP). Note that in all classi-
fiers, the performance of detecting lipidic plaque is poorer 

than the others. To better see the differences between the 
methods, the confusion matrices are shown in Table VIII.

The good performance for calcified classification be-
comes clear for all the classifiers because all of them cor-
rectly classify 29 out of 30 calcified plaques. Regarding lu-
men, the best are the textural and GMM classifiers, with 
a correct classification of 48 and 49 out of 50, respectively.

In the case of fibrotic plaques, the best classifications 
are obtained with the NMM and GMM classifiers, with a 
noticeable difference with respect to the textural classifier 
and RMM classifier. This result evidences the discrimi-
native power of the GMM and NMM classifiers between 
fibrotic and lipidic tissues and how the GMM and NMM 
properly describe the nature of the speckle in both cases.

A very interesting case appears with the RMM classifi-
er with the fibrotic tissue. Note that this classifier shows a 
clear bias to the lipidic tissue. The reason is that the PDF 
of the lumen shows a heavy tailed distribution which is 
very difficult to model with Rayleigh distributions. Thus, 
more Rayleigh components are needed for modeling the 
tail and that components of the lipidic and fibrotic tis-
sues contribute for that purpose. This results in 6 lumen 
plaques misclassified as fibrotic and 18 fibrotic plaques 
misclassified as lipidic.

Regarding lipidic plaques, poorer results are observed 
for all the classifiers. The best performances are obtained 
by the textural classifier. However, all classifiers present 
some difficulties in distinguishing between lipidic and fi-
brotic tissues. This is an expected result because plaques 
usually present a mixed nature.

The overall accuracy shows that the GMM classifier 
provides an increase of 5% with respect to the textural 
classifier and 3% with respect the NMM classifier.

TABLE VII. PERFORMANCE OF TISSUE CLASSIFICATION. 

RMM 
classifier

NMM 
classifier

Textural 
classifier

GMM 
classifier

A 71.42 83.19 81.51 86.56
SCal 96.67 96.67 96.67 96.67
SLip 50.00 35.71 57.14 42.86
SFib 20.00 72.00 48.00 76.00
SLum 88.00 94.00 96.00 98.00
KCal 93.33 94.59 98.55 96.10
KLip 81.25 93.07 87.25 95.10
KFib 88.89 94.19 93.41 93.33
KLum 95.35 92.86 96.08 96.43
PCal 87.88 87.88 96.67 90.63
PLip 28.00 41.67 38.10 54.55
PFib 33.33 78.26 66.67 76.00
PLum 95.65 92.16 96.00 96.08

RMM = Rayleigh mixture model; NMM = Nakagami mixture model; 
GMM = gamma mixture model; A = accuracy; S = sensitivity; K = 
specificity; P = precision.
Bold values show the best classification performance.

TABLE VIII. CONFUSION MATRICES. 

Actual

Predicted

Calcified Lipidic Fibrotic Lumen

RMM classifier
 Calcified 29 0 1 0
 Lipidic 2 7 3 2
 Fibrotic 2 18 5 0
 Lumen 0 0 6 44
NMM classifier
 Calcified 29 0 1 0
 Lipidic 2 5 4 3
 Fibrotic 2 4 18 1
 Lumen 0 3 0 47
Textural classifier
 Calcified 29 0 1 0
 Lipidic 1 8 4 1
 Fibrotic 0 12 12 1
 Lumen 0 1 1 48
GMM classifier
 Calcified 29 0 1 0
 Lipidic 1 6 5 2
 Fibrotic 2 4 19 0
 Lumen 0 1 0 49

RMM = Rayleigh mixture model; NMM = Nakagami mixture model; 
GMM = gamma mixture model.
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C. Statistical Significance

The statistical significance of these results is studied by 
means of the Friedman and Bonferroni–Dunn tests [50]. 
These tests were selected because no equal variance be-
tween results can be assumed and the Gaussian hypoth-
esis is not guaranteed.

The fractional ranking of each separate classification 
test for each plaque is shown in Table IX. Fractional rank-
ing consists of assigning distinct ordinal numbers to each 
classifier even if they are equal (where the assignment is 
arbitrarily done). Then, for those classifiers that are com-
pared equally, the rank average is assigned to each one. 
Note that the best rank is obtained for the GMM clas-
sifier, followed by the textural classifier, the NMM, and 
finally the RMM classifier. This result holds with the over-
all accuracy results of Table VII.

The Friedman test states that the null-hypothesis is 
that the differences on the measured classification perfor-
mance are due to randomness. To reject or not reject this 
hypothesis, the Friedman statistic value is calculated as

 χF
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where k = 4 is the number of classifiers and N = 119 is the 
number of samples. In our case the result is χF

2 = 64.26. 
However, a more thorough statistic is obtained by means 
of the Iman–Davenport correction of the Friedman statis-
tic:
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In this case, the value obtained is FF = 25.90. The sta-
tistic FF is distributed by a Fisher–Senecdor distribution 
with parameters (k − 1) = 3 and (k − 1)(N − 1) = 354, so 
the critical value of F3,∞ for a confidence of 95% is 2.68. 
The statistic value obtained is much higher than this criti-
cal value, so the null hypothesis can be rejected and we 
can conclude that differences of the classifications are not 
due to randomness.

To see whether the GMM classifier statistically im-
proves the results of the textural classifier, the Bonfer-
roni–Dunn test is applied. This test states that the per-
formance of two classifiers is significantly different if the 
corresponding average ranks are higher than the following 
critical difference:

 CD =
( 1)
6 ,q k k
Nα
+

 (24)

where critical values qα are based on the Studentized 
range statistic [50]. In our case, qα = 2.128 for a confi-
dence of 90% and qα = 2.394 for a confidence of 95%. 
Then, the critical difference is CD90 = 0.36 and CD95 = 
0.40 for a confidence of 90% and 95%, respectively. This 

distance is smaller than the differences between the GMM 
and the NMM, so we can conclude that the GMM is sig-
nificantly better than the others with a confidence of 95%. 
The NMM and the textural classifiers are not significantly 
different from each other and all of them are significantly 
better than the RMM classifier.

D. Probability Maps

Two examples of the probability of belonging to each 
tissue class are analyzed. Both examples are depicted in 
Fig. 7. These examples show the way the plaques are rep-
resented in polar images. Note that the lipidic and fibrotic 
cases are difficult identify because both represent similar 
speckle pattern. Calcified plaques present a shadow below 
them and their identification is easier.

The probabilities of belonging to each tissue class for 
the example of Fig. 7(a) are depicted in Fig. 8. Note that 
in Fig. 7(a), the probability of belonging to the calcified 
tissue is almost 1 in all the regions labeled as calcified. 
The upper region with high probability of belonging to 
calcified class is due to the artifacts of the catheter. These 
artifacts do not pose a problem because they can be easily 
detected or each image can be cropped according to the 
diameter of the catheter. Lumen tissue also has high prob-
abilities through the whole segmented area, and thus it is 
almost always correctly classified. The most problematic 
tissues are the fibrotic and lipidic tissues. In these cases, 
the distributions of tissues are quite overlapped and, for 
these two tissues, the probabilities are comparable. These 
effects are shown in Table X, where the classification was 
performed with three components and three tissue classes: 
calcified, lipidic/fibrotic, and lumen.

The same observation is reinforced by considering the 
probability maps computed from the example depicted in 
Fig. 7(b). These are shown in Fig. 9.

VII. CONCLUSIONS

This work proposes a plaque characterization method 
for IVUS images based on the probabilistic behavior of 
speckle in each tissue class in different tissue types. A 
gamma distribution is assumed for the probabilistic de-
scription of the speckle because it has shown better perfor-
mance than the Rayleigh and Nakagami distributions un-
der the operations of downsampling and interpolation of 
the echo envelope. Because each plaque type may present 
different echogenic content, a GMM is adopted for mod-
eling each class. It was shown that the proposed GMM 
outperforms the Rayleigh mixture approach of [30].

TABLE IX. MEAN RANK FOR THE ACCURACY OF THE CLASSIFIERS. 

Classifier RMM NMM Textural GMM

Mean rank 3.2 2.3 2.6 1.9

RMM = Rayleigh mixture model; NMM = Nakagami mixture model; 
GMM = gamma mixture model.
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A classifier is proposed to obtain the posterior prob-
ability according to each tissue class. This classifier makes 
use of the GMM obtained for each test data which has 
been previously initialized with the GMM obtained during 
training. Four tissue classes were considered in this study: 
calcified, lipidic, fibrotic, and lumen. A leave-one-patient-
out cross-validation technique was applied for validating 
the performance of the classifier, providing an overall ac-
curacy of 86.56%. Statistical comparison with other meth-
ods showed that the proposed classifier is significantly bet-
ter than the others. The overall gain of accuracy of the 
proposed method compared with the best of the others is 
about 5%.

The most problematic classes for classifying were li-
pidic and fibrotic tissues. This is due to the similarity 
between the two speckle patterns. A classification using 
three classes was also provided, considering fibrotic and 

lipidic as a joint class. In that case, an overall accuracy of 
95.15% was obtained. This result shows that the proposed 
classifier offers a useful way to help physicians to detect 
and diagnose plaques.

Apart from the classification results, this classification 
scheme offers the possibility of representing probability 
maps of belonging to each tissue class. These probability 
maps can be codified into color maps to offer useful infor-
mation for physicians. Additionally, probability maps can 
be useful for filtering and automatic segmentation pur-
poses [51].

It is important to note that this work performs the 
validation with histologically validated plaque. It would 
be desirable to complete the study with the analysis of 
plaque in live subjects. However, because of the difficulties 
of having a gold standard in this case, the study with live 
subjects will be carried out as a future work.

Additionally, although the validation scheme was per-
formed with a relatively low number of patients, which 
is always a limitation affecting the validation, the LOPO 
cross-validation technique gave rise to statistically signifi-
cant results. Therefore, a larger data set would be desir-
able in future studies to increase even more the statistical 
significance by avoiding cross-validation techniques.

Fig. 7. Examples of presegmented IVUS images. Log compression was 
applied for a better visualization. Example image (a) shows two calcified 
plaques and a small lipidic plaque. Example (b) presents a fibrotic and 
a calcified plaque. 

Fig. 8. Probability maps belonging to (a) calcified, (b) lipidic, (c) fi-
brotic, and (d) lumen tissue classes in the polar image of the example 
in Fig. 7(a). 

TABLE X. CLASSIFICATION PERFORMANCE FOR THREE COMPONENTS 
OF THE GMM INTO THREE CLASSES. 

Calcified
Lipidic/ 
Fibrotic Lumen

Precision 92.59 93.94 97.67
Sensitivity 96.15 91.18 97.67

Total accuracy: 95.1456.

Fig. 9. Probability maps belonging to (a) calcified, (b) lipidic, (c) fi-
brotic, and (d) lumen tissue classes in the polar image of the example 
in Fig. 7(b). 
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APPENDIX A 
EXPECTATION MAXIMIZATION FOR MIXTURES OF GMM

The joint distribution of IID samples X and the hidden 
RVs Z and W is given by
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Note that the following equation holds:
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Now, the log-likelihood function can be defined as
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The expectation of the log-likelihood function with re-
spect to the hidden RVs when data x and the previous 
estimate Θ(n) are known is
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where γi,j,r = p(Zi = j, Wi,j = r | xi, Θ(n)), which can be eas-
ily calculated by means of the Bayes theorem:
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The maximization process can be done in each of two 
terms separately. Then, the maximization step can be 
performed in the same way as was done in Section IV. 
Therefore, for the term with a dependence on the param-
eters νj and πj,r in (29), one can establish a Lagrange 

function with Lagrange multipliers λ, µj for j = {1, …, J }. 
The constraints are those expressed in (13). The Lagrange 
function is
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Taking the derivative with respect to νj, for a fixed j, 
the following relation is deduced:
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therefore, summing over j = {1, …, J }, one obtains λ = 
−N. Thus, the value of νj that maximizes Λ(ν, π, λ, µ) is
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The calculation of πj,r is performed in the same way; 
the result is
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Now, regarding the term of (29) which depends on the 
parameters of the distribution αj,r and βj,r, the process of 
deriving these parameters is analogous to the GMM model 
explained in Section IV. The process is based on solving 
the following equations:
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From the estimated value α̂ j r,  that maximizes the log-
likelihood, the estimate of β̂ j r,  can be calculated. See Ap-
pendix B for solving this equation.

APPENDIX B 
SOLVING ψ(X) − LOG (X) = K

In this appendix, we demonstrate that the function g(x) 
= ψ(x) − log (x) is a strictly increasing function when  
x > 0. For this purpose, we make use of the demonstra-
tion of the convexity of f (x) = log Γ(x) − x log x for x > 0 
(see [52]).
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The property of convexity of f (x) just guarantees that 
the first derivative of f (x) is monotonically non-decreas-
ing. Thus, a more detailed analysis should be done. To 
this end, we recall the well-known expansion of the second 
derivative of log Γ(x) (see [52]):
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with x ≠ 0, −1, −2, ….
Making use of (36), the second derivative of f (x) can 

be expressed as
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The second term can be introduced in the sum by 
means of expressing it as the following telescoping series

 
1

=
1 1

1.
=0

x x k x k
k

∞

∑ + − + +  (38)

This yields the following result:
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for x > 0.
This result demonstrates the convexity of f (x) and also 

that f c(x) = ψ(x) − log(x) − 1 is a strictly monotonic 
increasing function and so is the function g(x) = ψ(x) − 
log(x).

We are interested in calculating the value x̂ that follows 
(35) that, without loss of generality, can be stated as

 log( ) ( ) = ,x x K− ψ  (39)

where K is the second term of (35). Note that this con-
stant K is positive unless all elements xi are identical (a 
case that does not occur in practice) because of the Jen-
sen’s inequality [53]:
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for any xi > 0 and γi > 0.
An interval where the function x → log (x) − ψ(x) − K 

changes its sign can be derived simply by applying the fol-
lowing result (see [54]),
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Hence, the solution x̂ ∈ (1/(2K), 1/K) and any root-
finding method can be efficiently used.
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