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Abstract. This paper presents an algorithm for reconstructing a three
dimensional image from a set of noisy two dimensional images, corrupted
with Rayleigh distributed multiplicative noise, which is the observational
model for Ultrasound imaging. The proposed method performs a variable
splitting to introduce an auxiliary variable to serve as the argument of the
3D total variation term. Applying the Augmented Lagrangian framework
and using an iterative alternating minimization method leads to simpler
problems involving TV minimization with a least squares term. The re-
sulting Gauss Seidel scheme is an instance of the Alternating Direction
Method of Multipliers (ADMM) method, for which convergence is guar-
anteed. Experimental results show that the proposed method is faster
and achieves a lower mean square error than existing methods.

Keywords: 3D reconstruction, multiplicative noise, ultrasound, convex
optimization, total variation.

1 Introduction

Ultrasound (US) has emerged as a popular medical imaging modality in a num-
ber of medical imaging applications because of its lower cost, wide reach, flexibil-
ity, lack of radiation, and intra-operability [8], [15], [5]. Three dimensional (3D)
US imaging is being increasingly used for characterizing diseases such as carotid
atherosclerosis, requiring a 3D volume to be reconstructed from a series of 2D
slices. The slices can be acquired mechanically in a predetermined manner, or
freehand wherein the user can manually position and orient the probe.

Due to the impracticality of slicing over the entire volume, voxel values of
the 3D object are available for only a small set of the 3D positions. Hence,
the reconstruction algorithm needs to estimate the volume from a set of partial
observations. US images are corrupted by multiplicative noise called speckle, for
which the Rayleigh distribution has been assumed [13].

Existing interpolation algorithms such as the Pixel Nearest Neighbor (PNN)
[11], Voxel Nearest Neighbor (VNN) [11], Pixel-Based Interpolation with Dis-
tance Weighting (PBM-DW) [9], etc do not use any regularization or apriori
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information about the volume to be reconstructed. A comprehensive review of
interpolation methods for US reconstruction can be found in [15]. In [14], a de-
speckling method was proposed formulating the estimation problem as a convex
optimization problem with total variation (TV) regularization, under the as-
sumption that the solution is piece-wise smooth and the speckle noise is Rayleigh
distributed. A reconstruction method called 3D Rayleigh Log Total Variation
(3D RLTV) was proposed in [13], and consists of a pixel-based maximum like-
lihood interpolation step, followed by applying the despeckling algorithm from
[14]. This formulation was also used in [3], for the context of Synthetic Aperture
Radar (SAR) image denoising. The Nakagami distribution was assumed as the
statistical model in the denoising method presented in [17]. In [6], a denoising
method was presented assuming that the multiplicative noise (in natural images)
was one-sided exponentially distributed, and with an �1 data fidelity term.

In this work, we propose a fast method to solve the denoising and reconstruc-
tion problems with multiplicative noise assuming Rayleigh statistics. We extend
the convex denoising formulation from [14] and [3] to the more general problem
of reconstruction from partial observations, and solve it using the Augmented
Lagrangian (AL)/Alternating Direction Method of Multipliers (ADMM) frame-
work [7] which leads to an alternating minimization in which at every iteration a
sequence of simpler problems has to be solved. This approach was experimentally
found to achieve a good balance between computation time and accuracy.

We will formulate the problem of reconstructing the 3D volume in Section 2.
In Section 3 we apply the AL/ADMM framework to our optimization problem
to obtain the proposed method. In Section 4, we present some results on 3D
despeckling and reconstruction, with synthetic and real US images.

2 Problem Formulation

Representing the 3D volumes in vector format, say, in lexicographic ordering,
the observation model with multiplicative speckle noise is

y = (Ax).η, (1)

where x ∈ R
n is the volume to be estimated, n is the number of voxels, y ∈ R

m

is the vector representation of the set of observed 2D slices, m is the number of
observed voxels,A ∈ {0, 1}m×n is the linear observation operator, and η ∈ R

m is
the speckle field that is multiplied element-wise with the observed volume. The
linear operator A maps a voxel in the 3D space to a pixel in the set of observed
slices, and discards the voxels in x which don’t correspond to a pixel in y. Hence,
for m < n, the matrix A is essentially the n×n identity matrix with n−m rows
(corresponding to non-observed voxels) removed. The position and orientation
of each slice must be known to construct A. For a denoising problem, i.e., when
all voxel values are observed, it is equal to the identity matrix A = I.
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For the Radio Frequency envelope images, it is assumed that the observed
image follows Rayleigh statistics [12], with the likelihood

p(y|x) =
m∏

i=1

yi
(Ax)i

exp

(
− y2i
2(Ax)i

)
, (2)

where (Ax)i is the ith element of the sampled vector Ax, and yi is the ith

element of the noisy observed vector y. This leads to the log-likelihood function,

E(y,x) = − log (p(y|x)) =
m∑

i=1

(
y2i

2(Ax)i
+ log(Ax)i

)
. (3)

To formulate the problem of estimating the volume x, given y with the statistical
model (2), we apply the logarithmic transformation, f = log(Ax), and then
define the estimation problem as the problem of minimizing the sum of the data
fidelity term (3) and a 3D TV regularizer term,

min
x,f

∑

i

(
y2i
2
e−fi + fi

)
+ αTV (f), subject to Ax = ef , (4)

where as before, fi represents a voxel from the vector representation of f , indexed
by the coordinates (ix, iy, iz), α > 0 is the regularization parameter, and the
regularizer function is the 3D TV function which is given by

TV (f) =
∑

i

(
(fix,iy,iz − fix−1,iy,iz )

2 + (fix,iy,iz − fix,iy−1,iz)
2 + . . .

+ (fix,iy,iz − fix−1,iy,iz−1)
2
) 1

2 (5)

This formulation is the generalized form of the TV regularized despeckling prob-
lem from [14], and can be verified to be convex. For denoising, the problem is,

min
f

∑

i

(
y2i
2
e−fi + fi

)
+ αTV (f). (6)

3 Proposed Method

We find the solution of problem (4) by using an approach based on the
AL/ADMM framework [7]. In [3], an ADMM based method was presented for
solving the denoising problem (6) but without logarithmic compression, for the
case of multiple look SAR imaging. We perform a variable splitting in (4) and
introduce an auxiliary variable u to serve as the argument of the TV term, with
the constraint x = u. This leads to the constrained optimization problem,

min
x,f ,u

∑

i

(
y2i
2
e−fi + fi

)
+ αTV (u), subject to Ax = eu, x = u. (7)
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Using the AL, this problem can be shown to be equivalent to,

min
x,f ,u,df ,du

∑

i

(
y2i
2
e−fi + fi

)
+αTV(u)+μf‖Ax−ef −dk

f‖22+μu‖x−u−dk
u‖22.
(8)

where μf , μu > 0 are the AL penalty parameters, and df ,du are the so-called
Bregman update vectors [16,10]. The AL algorithm iterates between minimizing
the objective function in (8) with respect to x, f and u, leading to a Gauss-Seidel
process (for more details, see [1]) which at iteration k is summarized as,

fk+1 = argmin
f

∑

i

(
y2i
2
e−fi + fi

)
+ μf‖Axk − ef

k − dk
f‖22, (9)

uk+1 = argmin
u

αTV(u) + μu‖xk − u− dk
u‖22, (10)

xk+1 = argmin
x

μf‖Ax− ef
k+1 − dk

f‖22 + μu‖x− uk+1 − dk
u‖22, (11)

dk+1
f = dk

f − (Axk+1 − ef
k+1

), (12)

dk+1
u = dk

u − (xk+1 − uk+1). (13)

Problem (10) involves the sum of a quadratic term and a TV term and can be
solved using a solver for denoising with additive and Gaussian noise, such as a
3D implementation of Chambolle’s algorithm [4]. The objective function in (9)
is separable for each voxel fi, and can be decomposed into m problems,

fk+1
i = argmin

fi

y2i
2
e−fi + fi +

μf

2
(fi − uk+1

i − (df )
k
i )

2, (14)

which can be solved accurately and efficiently using a few iterations of Newton’s
method [3]. Problem (11) is a least squares minimization,

xk+1
i = argmin

xi

μf‖Ax− ef
k+1 − dk

f‖22 + μu‖x− uk+1 − dk
u‖22 (15)

=
(
μfA

TA+ μuI
)−1

(
μf (e

fk+1

+ dk
f ) + μu(u

k+1 + dk
u)
)

(16)

and can be solved efficiently because the structure of A implies that (μfA
TA+

μuI)
−1 is a diagonal matrix. Even though (10) and (9) are not solved exactly,

the convergence conditions for ADMM [7] only require that their error sequences
decrease monotonically and μu and μf be positive.

For despeckling, when m = n and A = I, the procedure is computationally
faster because there is one constraint less, and therefore there is no least squares
minimization and one less Bregman update in each iteration [2].

4 Experimental Results

We need to evaluate the performance of the proposed method based on two
criteria - computational speed and accuracy of reconstruction. To be able to
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evaluate the accuracy, we need to have access to a reference noiseless image, or
the ground truth. Since in practice, we may not have a ground truth for real
data we need to construct a synthetic example to test our proposed method.

We compare our approach against the interpolation based methods - PNN,
PBM-DW, and VNN [11],[15], and 3D RLTV [13]. Except for the last, all these
methods are non-iterative and do not account for the statistical model.

All experiments were performed on MATLAB on an Ubuntu Linux based
laptop, with the Intel i5 processor and 8 GB of RAM. The proposed method
was run until the relative difference ‖x̂k+1 − x̂k‖2/‖x̂k‖2 fell below 0.01. It was
experimentally found that the values for the parameters α = 100, μu = 50, μf =
50 worked well in terms of reconstruction error for both synthetic and real US
experiments. 3D RLTV was run with the parameters suggested in [13].

4.1 Synthetic Volume

The synthetic experiment uses a volume of size 60 × 60 × 60 and consists of a
cylindrical tube with ones in the volume of the cylinder and zeros elsewhere,
which is then corrupted with Rayleigh distributed multiplicative noise. With
linear mechanical scanning over the z-axis, 30 parallel slices such as one shown
in Fig 1(a) are acquired parallel to the xy-plane. Figures 1(b) and 1(c) show the
gaps corresponding to missing slices, viewed in the yz- and zx- cross sections,
respectively. The corresponding slices of the volume reconstructed using the
proposed method are shown in figures 1(d), 1(e), and 1(f). In Fig 3(a) it can be
seen that the objective function from (4) plateaus out after some time.

(a) (b) (c) (d) (e) (f)

Fig. 1. Synthetic example (linear mechanical acquisition along z-axis): Cross section
of observed volume in (a) xy-, (b) yz- and, (c) zx- planes; CS of reconstructed volume
in (e) xy-, (f) yz- and, (g) zx- planes

With freehand acquisition, 30 slices of size 60 × 60 oriented randomly were
acquired, resulting in an observed volume with cross-sectional views as shown in
figures 2(a), 2(b) and 2(c). The corresponding slices of the volume reconstructed
using the proposed method are shown in figures 2(d), 2(e), and 2(f), and Fig 3(b)
shows the evolution of the objective function over time.

The Mean Square Error (MSE) between the original synthetic volume x and
the estimated volume x̂ is computed as, MSE = 1

n‖x − x̂‖22, where n is the
number of voxels. Table 1 compares the proposed method against existing ones
in terms of the MSE and computation time, for both linear mechanical and
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(a) (b) (c) (d) (e) (f)

Fig. 2. Synthetic example (freehand): CS of observed volume in (a) xy-, (b) yz- and,
(c) zx- planes; CS of reconstructed volume in (e) xy-, (f) yz- and, (g) zx- planes
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Fig. 3. Evolution of the objective function for the reconstruction of the synthetic vol-
ume, for (a) linear mechanical scanning, (b) freehand acquisition

freehand acquisitions. It can be seen from this table that the proposed method
achieves a value of MSE close to the best possible, and only PNN (which is non-
iterative) is computationally faster but with a higher MSE. Hence, the proposed
method achieves a good balance between computation time and accuracy.

Table 1. Comparison of various reconstruction methods for synthetic data

Synthetic tube Carotid US
Linear mechanical scanning Freehand scanning

Algorithm MSE Time (sec.) MSE Time (sec.) Time (sec.)

Proposed method 0.039 5.366 0.296 3.806 93.351
PNN 0.103 1.342 0.330 2.012 32.308
PBM-DW 0.101 6.380 0.319 7.348 152.459
VNN 0.166 300.333 0.382 481.216 —
RLTV-3D 0.029 7.410 0.314 7.582 548.671

4.2 Real Ultrasound Data

We then reconstructed a volume from a set of 2D US images of the carotid
artery, acquired transversally over a region of length 8 cm. There were 60 slices
of size 255×282, each roughly corresponding to an area of 3.9×4 sq.cm. The B-
mode images were first stacked together into a volume and then pre-processed to
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extract the RF image [12]. Fig 4 shows the cross sectional views of the observed
stack of images and the reconstructed volume. The objective function is shown
in fig 5(a), and fig 5(b) shows a 3D rendering of the reconstructed volume. The
computation times are presented in the last column of table 1. It can be seen
that the proposed method is slower than only the non-iterative PNN. Based on
the synthetic experiments, we can see that our method achieves a lower MSE
than PNN, the only method that is computationally faster.

(a) (b) (c) (d) (e) (f)

Fig. 4. Carotid artery: Cross section of observed slices in (a) xy-, (b) yz-, and (c) zx-
planes; CS of reconstructed volume in (e) xy-, (f) yz-, and (g) zx- planes
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Fig. 5. Carotid artery: (a) objective function, (b) reconstructed volume

5 Conclusions

We have proposed a fast ADMM-based algorithm for 3D reconstruction with
multiplicative speckle noise, assuming Rayleigh statistics. Experiments on syn-
thetic and real US data showed that the proposed method offers a good balance
between reconstruction accuracy and computation time. In this work we as-
sumed that the acquired US images of the carotid artery were approximately
parallel and evenly spaced. A spatial locator may not always be available. Cur-
rent and future work includes estimating the slice position by estimating the
velocity based on the speckle field after decomposing the reconstructed volume.
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