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Abstract: Fluorescence images present low signal-to-noise ratio (SNR), are corrupted by a type of multiplicative
noise with Poisson distribution, and are affected by a time intensity decay due to photoblinking and
photobleaching (PBPB) effects. The noise and the PBPB effects together make long-term biological observation
very difficult. Here, a theoretical model based on the underlying quantum mechanic physics theory of the
observation process associated with this type of image is presented and the common empirical weighted sum of
two decaying exponentials is derived from the model. Improvement in the SNR obtained in denoising when the
proposed method is used is particularly important in the last images of the sequence where temporal
correlation is used to recover information that is sometimes faded and therefore useless from a visual inspection
point of view. The proposed PBPB model is included in a Bayesian denoising algorithm previously proposed by
the authors. Experiments with synthetic and real data are presented to validate the PBPB model and to illustrate

the effectiveness of the model in denoising and reconstruction results.
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INTRODUCTION

Fluorescence microscopy (FM) images are extensively used
in biological and medical research to study processes that
occur inside cells. However, intensity fading along the
acquisition time, noise due to the photon detection process,
and the blur effect due to insufficient resolution of instru-
ments prevent observation of the small, albeit important,
details within the specimen. Additionally, when the number
of fluorescent molecules is small, high intensity incident
radiation is employed to excite the fluorosphores and high
amplification gains are needed to make visible the small
amount of radiation emitted by them. As a consequence,
these images present a low signal-to-noise ratio (SNR), are
corrupted by a type of multiplicative noise with Poisson
distribution (Dey et al., 2006; Dupé et al., 2008) and are
affected by a time intensity decay due to photoblinking and
photobleaching (PBPB) effects. The noise and PBPB effects
together make long-term biological observations very
difficult.

These problems are particularly severe in modalities
that use high intensity illumination, such as confocal laser
scanning microscopy (CLSM) where the noise and intensity
fading along the experiment time are often more limiting
than the resolution (see Fig. 1).

This work was motivated by the need to produce high
quality images to study synthesis of RNA molecules inside
cell nuclei. These molecules are tagged with fluorescent
proteins and observed by CLSM. However, the key issue of
this article, the PBPB model, is valid for all image modali-
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ties where fluorescence intensity decay significantly de-
grades the observation conditions.

In the literature several models describe this fading
effect and among them the single and double exponential
laws are the most used. However, a simple and tractable
theoretical model based on the physics of the observation
process to support these empirical laws is not available.

Here, a theoretical model based on the underlying
quantum mechanic physics theory of the observation pro-
cess associated with this type of image is presented and the
common empirical weighted sum of two decaying exponen-
tials (DExp) is derived. The DExp describing the PBPB
effects is embedded in a Bayesian denoising algorithm for
Poisson data designed to attenuate the noise, increase the
SNR of the images, and estimate the underlying morphol-
ogy in the image.

Improvement in the SNR is particularly important in
the last images of the sequence. With this, it is possible to
reconstruct the submersed (hidden) underlying morphol-
ogy from images almost faded out by using information
from the previous images in the sequence and vice versa.
The reconstruction problem is dealt with as an inverse
global problem (Berger, 1985; Bertero & Boccacci, 1998)
where the fading intensity law plays a central role.

In the Photobleaching/Photoblinking Model section, a
theoretical model for the intensity decay in fluorescence
images along the experiment time caused by the PBPB
effects, based on physical principles, is proposed. The up-
dated denoising algorithm proposed in Rodrigues and
Sanches (2010b) for CLSM with the PBPB model is de-
scribed in the appendix. Synthetic data were generated to
test the performance of the proposed algorithm, through a
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Figure 1. Laser scanning fluorescence confocal microscopy (LSFCM) real image showing a cell nucleus of interest and a
control cell nucleus, exhibiting low signal-to-noise ratio and degradation due to nonadditive and non-Gaussian noise as

well as the intensity decay along time.

Monte Carlo experiment (see the Monte Carlo Experiments
section) and through validation with eight different state-of-
the-art algorithms. Real data sequences are then used to
illustrate the denoising PBPB compensation ability of the
proposed algorithm. Fourth section concludes the article.

PROBLEM FORMULATION

In this section a model for the PBPB effects in fluorescence
images is derived. This model is to be embedded in a
Bayesian algorithm to remove the Poisson noise corrupting
sequences of fluorescence images. The denoising algorithm
where the model is included is described in the appendix
and it is an updated version of the one described by Rod-
rigues and Sanches (2010b).

Photobleaching/Photoblinking Model

FM is a powerful biological imaging tool (Lichtman &
Conchello, 2005) used to observe in vivo dynamic processes
occurring inside the specimen, e.g., a cell or cell nucleus. In
this technique, tagging proteins, e.g., green fluorescent pro-
tein (GFP), fluoresce when radiated with a specific wave-
length, making it possible to track single or groups of
molecules involved in very specific biochemical processes to
be studied.

The radiation emitted by the fluorescent proteins is
very weak and its overall intensity decays along the experi-
ment time. This fading effect consists of a temporary,
photoblinking, or permanent, photobleaching, loss of the
fluorophore ability to fluoresce caused by quanta phenom-
ena associated with the electronic excitation and photochem-
ical reactions among the fluorescent and surrounding
molecules, induced by the incident radiation (laser beam in
LSCFM imaging), which prevents long-lasting experiments.
Thus, the corresponding decay rate depends mainly on the
amount of energy radiated over the specimen. Therefore, a
trade-off exists between the necessity for increasing the
incident radiation to improve the SNR of the image, and the
need for decreasing the radiation level to minimize fading
effects as well as the phototoxicity.
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Figure 2. Photoblinking and photobleaching electronic state tran-
sition diagram.

An accurate observation model for this intensity decay
is essential to obtain effective denoising results in this imag-
ing modality. Different types of photobleaching fitting mod-
els have been considered in the literature (Vicente et al.,
2007) and among them the most commonly used are the
single and multi decaying exponentials.

In this subsection a continuous second-order differen-
tial equation dynamic model describing the PBPB effects is
proposed. This differential model considers the known
quanta phenomena involved in the process that are de-
scribed in the literature and matches the one that is typi-
cally used, and obtained from experimental data (Gavrilyuk
et al., 2007; Vicente et al., 2007) where the global intensity
decrease along the experiment time is expressed as a weighted
sum of two negative exponentials with constant rates.

In this article, fluorescently tagged molecules are as-
sumed to be in one of three main states (see Fig. 2; Didier
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et al., 2005): (i) ON-state, where they are able to fluoresce
and be observed, (ii) OFF-state, where they are temporarily
not able to fluoresce and therefore are not visible, and (iii)
BLEACHED-state where they become permanently OFF.

The molecules stay at each OFF-state and ON-state,
called active states, according to a power law distribution
(Brokmann et al., 2003) and they can commute between
these two states; nevertheless, they are not able to recover
from the BLEACHED-state. In addition, the average inten-
sity of an image at a given time instant of the experiment is
assumed to be proportional to the number of fluorescent
molecules at the ON-state.

Here, a continuous time differential equation dynamic
model is proposed to describe the number of molecules at
the ON-state and OFF-state along the time. This article is a
complete and detailed description of the work that was
partially described by Rodrigues and Sanches (2010a).

Let n be the total number of active fluorescent mol-
ecules where n,, of them are at the ON-state and the
remaining n.g are at the OFF-state. The time intervals at
each state are governed by the Levy statistics (Brokmann
et al., 2003) following a power distribution (Schuster et al.,
2007), p(7,) = ¢, %, where s € {on,off}, ¢, and a, are
constants. The power-law distribution associated with these
time intervals is related to the statistical aging effect that
leads to a constant increasing of the time intervals between
state swaps along the time (Brokmann et al., 2003).

Additionally, it was experimentally confirmed that a,,,, >
a.e (Schuster et al., 2007), which means that the fluorescent
molecules spend more time at the OFF-state than at the
ON-state, or equivalently, the relative number of transitions
from the ON-state to the OFF-state is larger than the
relative number of reverse transitions. Therefore, since the
molecules spend more and more time at the OFF-state
(Schuster et al., 2007), the probability of transitions de-
creases with time and is always higher from the ON-state to
the OFF-state than the reverse.

This nonstationary reversible process of transitions be-
tween the ON-state and OFF-state leads to constant image
fading along the experiment time called photoblinking.
Photobleaching, on the other hand, is a nonreversible pro-
cess where the fluorescent molecules loose their ability to
fluoresce.

As noted in Didier et al. (2005) the transitions to the
permanent dark states occur only from the excited states.
Here, however, the model proposed in Zondervan et al.
(2004) is adopted, where photobleaching from the ON-state
is discarded. In this model, displayed in Figure 2, it is
assumed that no photobleaching occurs from the excited
singlet state, S; but only from the OFF-states, composed by
the triplet, T,, and anion, D,, states. Transitions to the
permanent dark states, represented by the red arrows in the
Jablonski diagram displayed in Figure 2, suggest the follow-
ing set of differential equations to describe the dynamics of
the PBPB effects:

Tl(t) = non(t) + noff(t)) (1)

dng, ()
dt = Boff(t)noff(t) - Bon(t)non(t)) (2)

dn(t)
= = g, ()

where n(t) is the total number of active molecules at instant
t and n,,(t) and n.(t) are the number of active molecules
at the ON-state and OFF-state respectively, at the same
instant. £ = I + 7 is the decay rate of the active molecules
associated with transitions to the permanent BLEACHED-
state, where I is proportional to the amount of incident
radiation and 7 is associated with other factors not related
to illumination. This means that even when no radiation
illuminates the specimen, I = 0, the number of active
molecules decreases. However, since the main factor for the
intensity decay is the incident radiation, it is expected that
I>r.

Equation (2) models the photoblinking effect where it
is assumed that the variation of the number of molecules at
the ON-state is proportional, with constant B.y, to the
number of molecules at the OFF-state and negatively pro-
portional, with constant B,,, to the number of molecules at
the ON-state.

The magnitudes of B,, and B.g are related with the
previously referred to statistical aging effect (Brokmann
et al., 2003) that leads to an increasing number of active
molecules at the OFF-state and an identical decreasing
number at the ON-state. Therefore, the transition rate from
the OFF-state to the ON-state is smaller than the inverse
transition, which means that B,, > B

Equation (3) models the photobleaching effect where it
is assumed that the total variation on the number of active
molecules is proportional, with constants 7 and I, to the
number of molecules at the OFF-state, because only transi-
tions from the OFF-state to the BLEACHED-state are admis-
sible at the model proposed in this chapter (see red arrows
in Fig. 2).

According to Didier et al. (2005), the main cause for
photobleaching is the “illumination history.” However in
Zondervan et al. (2004) other important factors for photo-
bleaching to occur are referenced, such as the humidity and
the temperature. The overall effect of these factors is mod-
eled in equation (3) by the constant 7 < I. From the set of
equations (1)—(3) the following second-order differential
equation describes the dynamics of the number of mol-
ecules at the ON-state, directly related to the intensity of the
image:

d*n,,(t) dng, (1)
——— t(a+¥)
dt

+Bon+non+(t):())

(4)

where @ = B, + Bog-
The Laplace transform of n,,(¢) for the initial condi-
tions 71,,(0) = n2, and dn,,(0)/dt = 7l is
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Figure 3. Standardized average intensity per image as a function of the experiment time, for two laser scanning
fluorescence confocal microscopy real data sequences, one without using fluorescence loss in photobleaching (FLIP) nor
any other technique (dark circles) and the other using the FLIP technique (dark stars). Red and orange curves stand for
the fits of the data with two-exponentials models. Blue and cyan curves stand for the fits of the data with
one-exponential models. The root mean square error is displayed in the plot legend. Data provided by the Instituto de

Medicina Molecular (UL) Lisbon.

N (s) = as+b )

T )G+ A

where a = n2,,b = (a + &)1, + 1, and

a+§ A(¢)
A, = F , 6
1,2 ) + ) (6)
with discriminant
A(S) = 52 - Z(Bon - Boff)f + 0[2. (7)
-

>0

The roots of equation (7), &1, = Bon — Bott £ 2N —BonBot
are always complex because B,,, Boir = 0. Therefore, the
discriminant equation (7) is always positive, A(¢) > 0,
which means that the poles A, , are always real. The inverse
Laplace transform of equation (5) is

1., (1) = ye M + (@ — y)e *,t =0, (8)
where
ar, — b
YA )

The intensity decay law described by equation (8) and
derived from equations (1)—(3) matches the experimental
model referred to in the literature where the PBPB global
effect is expressed in terms of the linear combination of two
decaying exponentials.

Figure 3 shows the evolution of the average intensity
per image, where time is in seconds, for two real data
sequences, one acquired without using any CLSM technique
and the other using the fluorescence loss in photobleaching
(FLIP) technique (see the Real Data section for a short
description of this technique). As can be observed in

this figure, the fits of the data using two-exponentials mod-
els (red and orange curves) yield better results than the
one-exponential models (blue and cyan curves). Also the
values of the root mean square error (RMSE) displayed in
the plot legends confirm this assertion.

EXPERIMENTAL RESULTS

In this section experimental results using synthetic and real
data are presented. The proposed PBPB model is embedded
in the denoising algorithm described in Rodrigues and
Sanches (2010b), and the results are compared with some of
the state-of-the-art algorithms described in the literature as
well as with a previous version (Rodrigues & Sanches,
2010b) where the PBPB model is not considered.

In the Model Validation section, the validation of the
proposed algorithm with several state-of-the-art ones is
performed. The results are displayed and discussed.

Synthetic Data

The synthetic data used in this article consist of a sequence
of 64 images, 64 X 64 pixels each, where two squares, one
inside the other, slide along the images diagonally, as sug-
gested in Figure 4. The intensity values of the original
sequence were set to attain SNR values between 4.5 and
12.2 dB in the noisy data. The sampling interval is assumed
tobe Is.

This moving synthetic morphology, with two intensity
layers, was faded out with a two exponentials decay, n(t) =
0.le ™! + 0.9¢ 24t = (0,...,63), with rates A, = 0.04 s~ !
and A, = 0.0025 s~ to simulate the global PBPB effect. This
sequence is used to illustrate the performance of the method
and how it copes with sharp intensity transitions along with
moving features inside the specimen and with low SNR.
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Figure 4. Images 2 and 63 from
64 of the synthetic sequence.
Original images (a, d), corrupted
(b, e), and denoised (c, f).
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Figure 5. a—c: Respectively signal-to-noise ratio, I-divergence, and mean square error results per image, of a Monte
Carlo experiment in 500 runs, for the denoising algorithms with no photoblinking and photobleaching compensation
(red), and with the two-exponentials compensation (pink). The black line stands for these quality quantifiers before

applying any of the algorithms.

Figure 4 displays the corresponding images at two
different times, one at the beginning and the other at the
end of the sequence, where the degradation is more visible.
This figure displays for each instant the original noncorrupt
image we want to estimate, the corresponding observed
corrupted images, and finally the estimated images.

The performance quantification of the algorithm is
accessed using the SNR the mean square error (MSE) and
the Csiszdr’s I-divergence (I-div) (Csiszder, 1991).

The model regularization parameters « and B [equa-
tion (A.14)], strictly positive, are tuned in a trial and error
basis.

Monte Carlo Experiments

In this subsection a Monte Carlo test is presented to access
the performance of the proposed algorithm, using the gen-
erated synthetic data described in the Synthetic Data sec-
tion. The Monte Carlo test was carried on the sequence, in

500 runs with 500 iterations each. A run consists of loading
the original sequence, corrupting it with Poisson noise,
completing 300 iterations of the denoising algorithm and
computing the results of the SNR, I-div, and MSE quality
quantifiers. Averages and standard deviations of these figures-
of-merit (FOMs) are computed over all runs.

The SNR, I-div, and MSE results of the Monte Carlo
experiment for the synthetic sequence are displayed in
Figure 5, where an improvement of ~20 dB is achieved
along the sequence. In this figure, the FOMs obtained with
the method proposed by Rodrigues and Sanches (2010b),
here called LTV-LTV, are also displayed for comparison
purposes. The inclusion of the PBPB model leads to an
improvement of ~3 dB in the initial images of the se-
quence. This improvement increases along the sequence
making it possible to attain larger gains in the last images
where the degradation is more severe, as shown in Fig-
ures 5a and 5b.
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Figure 6. Fit of the two-exponentials photoblinking and photo-
bleaching compensation curve, computed in one of the Monte
Carlo experiment runs.

The parameters of the photobleaching compensation
curve, in this experiment with synthetic data, were assumed
unknown and were estimated using equation (A.5). The
results of the fitting are displayed in Figure 6 and show
good agreement with the true values, corresponding to the
following model: 9(t) = ¢, e ** + (1 — ¢,)e *>". Coeffi-
cients with 95% conf. bounds: A, = 0.11(0.12, 0.11), A, =
0.0028(0.0018, 0.0038), ¢; = 0.041(0.04063, 0.04136). Good-
ness of fit: SSE = 596.1 X 107% R* = 0.9998, RMSE =
0.0031.

Model Validation

The synthetic sequence was processed with the proposed
algorithm and with the following eight state-of-the-art algo-
rithms described in the literature:

e naive Gauss proximal iteration using curvelets (Prox-it-
GaussCURV) (Dupé et al., 2009)

* naive Gauss proximal iteration using wavelets (Prox-it-
GaussWAV) (Dupé et al., 2009)

¢ Anscombe proximal iteration using wavelets (Prox-it-Ans-
WAV) (Dupé et al., 2009)

* Anscombe proximal iteration using curvelets (Prox-it-Ans-
CURV) (Dupé et al., 2009)

 nonlocal means (NLM) (Buades et al., 2005)

* bilateral filtering (Tomasi & Manduchi, 1998)

e constant, wedgelet, and platelet fitting-based model (PLAT)
(Willett, 2006)

e Haar-TI hereditary (Haar-TI) (Willett & Nowak, 20044,
2004b).

In order to make the validation as fair as possible, whenever
feasible, the parameters of the comparison models were
adjusted from image to image, to account for decreasing of
the intensity along the sequence to obtain the best possible
results. The parameters of the PBPB model were assumed
unknown and were estimated as explained in the Denoising
Results section. The Csiszder I-div and the SNR, used here
as quality metrics, were computed for each image and the
plots are displayed in Figures 7 and 8. The superior perfor-
mance of the proposed algorithm when dealing with se-
quences exhibiting a low SNR, corrupted with Poisson noise
and presenting a fading effect of the intensity along the time
is noticeable in these plots.
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Figure 7. Signal-to-noise ratio for all the comparison algorithms
and the proposed one.
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Figure 8. Csiszar I-divergence for all the algorithms using the
synthetic data.

The NLM model also performs very well. Against all
odds, both versions of the Prox-it-Ans perform very poorly,
perhaps due to the fact that the involved tuning parameters,
estimated according to the generalized cross validation cri-
terion (Dupé et al., 2009), are not the best ones to cope with
the lack of blur in the sequence.

The relative error (RE) between consecutive iterations,
used as stopping criterion for the proposed convex algo-
rithm, is computed as
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Table 1. CPU Time to Denoise the 64 Images of the Synthetic
Sequence.*

CPU Image 2 Image 58

Time SNR SNR
Algorithm (s) (dB) MSE (dB) MSE
Proposed 172 25.6  0.003 19.0 0.01
Haar-T1 2.2 20.1 2.2 15.6 0.2
BLF 18.3 19.8 24 13.2 0.4
NLM 1479 225 1.3 16.5 0.2
Prox-it-Gauss CURV  14,417.6 0 0 0 0
PLAT 1,319.2  21.5 1.6 16.1 0.2
Prox-it-Ans CURV 1,853.4 0 0 0 0
Prox-it-Gauss WAV 971.2 183 3.3 14.4 0.3
Prox-it-Ans WAV 14,417.6 0 0 0 0

*The dimensionality of the algorithms is displayed.
BLE Bilateral filtering; SNR, signal-to-noise ratio; MSE, mean square error;
NLM, nonlocal means; PLAT, platelet fitting-based model.

g J® 2t
12

All the algorithms were executed under the same conditions
and the processing times as well as the SNR and MSE for
images 2 and 58 are listed in Table 1. The proposed algo-
rithm, with prior parameters optimized in a trial and error
basis, outperforms all of the others and is the second fastest
one.

=05X104 (10)

Real Data

The data used in this work are LSCFM images of Hela
(Jackson et al., 1998) in vivo cell nucleus. The real data
sequence, denoted by 2-G100, consists of 100 images, 130 X
140 pixels each (scale 0.03 wm) and sampled at a rate of
23.1s.

The present work was motivated by this need to study
transport and diffusion processes that occur inside the cell
nucleus. In human cells, messenger ribonucleoproteins
(mRNP), after being released from the transcription sites
and distributed throughout the nucleoplasm, must reach
the nuclear pore complexes in order to be translocated to
the cytoplasm. To study the nature of this transport, quan-
titative photobleaching methods can be used to determine
the mRNP’s mobility inside the nucleus of living cells.

In the acquisition process of image sequences used in
this article, RNP complexes were made fluorescent by tran-
sient expression of GFP fused to two distinct mRNA-
binding proteins: PABPN1 and TAP (Molenaar et al., 2004;
Vargas et al., 2005) and the FLIP technique (Underwood,
2007; Rino et al., 2009) was used. This technique makes use
of high intensity laser light as a perturbing agent of the
distribution of fluorescent molecules in the cell nucleus. In
a FLIP experiment, during a certain time interval, a small
target region within the nucleus, expressing fluorescently
tagged proteins, is illuminated with repetitive pulses of a
high intensity focused laser beam, in order to force the
occurrence of the photobleaching effect in that region.

Table 2. Real Image of Sequences.”

Two Exponentials
Real Data A X 1074 (s71) % Ay X 1074 (s71) %
BDM-FLIP 31.04 83 3.604 17
2-G100 29.10 62 1.600 38

*Estimated parameters for the photoblinking and photobleaching models
with two exponentials.

An area away from the target is then monitored for a
decrease in the level of fluorescence. Any fraction of the cell
nucleus connected to the area being bleached will gradually
fade owing to the movement of bleached molecules out of
the bleached region.

The resulting information from the experiment can
then be used to determine the kinetic properties of the
fluorescently labeled molecules. The drawback of applying
this technique is the fast degradation of the images along
the experiment time, worsened by the global photobleach-
ing effect.

The data set, denoted by BDM-FLIP, is the result of a
FLIP experiment where a target spot of 1.065 wm radius (30
pixels diameter) in the cell nucleus was repeatedly bleached
by 279 ms pulses, at intervals of 3.64 s and imaging between
pulses using low intensity light. This sequence consists of
350 images, 300 X 380 pixels each (scale: 0.07 pwm).

No preprocessing, such as background subtraction, was
performed on these real data images but a simple alignment
procedure to correct for cell nucleus displacement during
the acquisition process was performed. A mask of the re-
gion of interest (the cell nucleus) was obtained from the
aligned sequence by a segmentation procedure, with the
purpose of running the denoising algorithm only inside
the cell nucleus, saving memory and CPU time.

In order to estimate the nucleus morphology F, the
aligned images were then processed using the proposed
denoising with photobleaching compensation methodology.

The average per image of each sequence was computed
and is displayed in Figure 10.

Denoising Results

The set of real CLSFM images, identified as 2-G100, was
denoised with the proposed algorithm. The results are shown
in Figure 9.

Three images, 1, 20, and 45 of sequence 2-G100, corre-
sponding to the time instants 0, 460 and 1,035 s of the
acquisition process, are displayed in the first row Figure 9a.
The appearance of these images is very noisy and the
intensity fading along the time is perfectly noticeable. In
fact, in the last images of the sequences it is very hard to see
the cell nucleus.

The rates of decay due to photobleaching were esti-
mated and so were the cell nucleus morphology, E={f s
and the reconstructed images X = {%;;,} using both ver-
sions of the PBPB model. The results for the rates of decay
are in Table 2.
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a)

Image 1

Image 45

Figure 9. Real sequence: 2-G100. Proposed algorithm with DExp PBPB model. (a) Noisy images 1, 20, 45 from the real

data set and (b) respective reconstructed images.

In Figure 9b, images of the reconstructed sequence for
the same time instants as in Figure 9a can be seen. A
considerable reduction of the noise while the morphologi-
cal details are still preserved is noticeable.

Improvement in the quality of the details of the cell
nucleus structure even when almost no information is avail-
able (compare first and third rows) is also substantial.

The average of the images of the noisy and recon-
structed sequences, using the proposed algorithm, were
computed and the results are presented in Figure 10. As can
be observed, the average of the reconstructed images is well
preserved.

In order to test the behavior of the proposed two-
exponentials algorithm in more complex situations where
diffusion and transport phenomena are present, the se-
quence BDM-FLIP, which is the result of applying the FLIP
technique to the Hela cell nucleus, is used.

Three images from this sequence (¢ = 29.6, 362.6, and
843.6 s) and respective image reconstructions are displayed
in Figure 11. The intensity decrease is quite fast, making the
acquisition very difficult for long exposures.

Estimated values of the rates of decay of the intensity
obtained with the two-exponentials PBPB model are dis-
played in Table 2. Improvement in the details of the nucleus
structure is noticeable both in the reconstruction and in the
morphology. The values of the rates of decay attained for
this sequence are obviously larger than the ones obtained
for sequence 2-G100, due to the use of the FLIP technique
that reinforces the decrease of the intensity.

The CPU time the proposed algorithm takes to process
each sequence in a Centrino Duo 2.00 GHz, 1.99 GB RAM
processor, along with the corresponding number of itera-
tions are displayed in Table 1. The applied stopping crite-
rion is based on the RE per iteration [see the Model
Validation section, equation (A.1)] set to RE =<5 X 107>,

40

[
(4]

Intensity
[
(=]

Mo
n
i

0 20 40 60 80 100

Figure 10. Real sequence: 2-G100. Average intensity per image of
the real sequence. Dark and light green lines correspond to the
reconstructed and to the noisy sequences, respectively.

CONCLUSIONS

Sequences of fluorescence images, especially sequences of
CLSM images where high intensity laser radiation illumi-
nate the specimen, are corrupted by a type of multiplicative
noise, usually assumed to be described by the Poisson dis-
tribution, and the global intensity of the images decreases
along the time due to permanent fluorophore loss of its
ability to fluoresce. This fading effect, called photoblinking/
photobleaching, is caused by chemical reactions induced by
the incident radiation and by other surrounding molecules.
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Image 1 Image 50

Image 115

Figure 11. Real sequence BDM-FLIP. Proposed algorithm with DExp PBPB model. (a) Noisy images 5, 50, 115 from the

real data set and (b) respective reconstructed images.

PBPB leads to a decrease in the SNR of the images, which
prevents long-term observation experiments and makes
biological information recovery a difficult task.

In this article, a novel differential equation model is
proposed to describe the PBPB effect. The common empir-
ical weighted sum of two decaying exponential usually
referred in the literature is derived from the theoretical
model, based on the underlying quantum mechanic physics
theory of the observation process associated with these
types of images.

The model is included in a denoising algorithm devel-
oped in a Bayesian framework that performs denoising
simultaneously in space and time dimensions. The formula-
tion involving a 2D time anisotropic filtering procedure,
where an energy function is designed to be convex, and its
minimizer is computed by using Newton’s algorithm and an
iterative reweighted least-squares-based method, which al-
lows convergence toward the global minimum in a few
seconds. In the proposed formulation the PBPB effects are
explicitly taken into account by using a two-exponentials
model derived from the proposed model.

Tests using synthetic and CLSM real data reveal the
ability of this methodology to reduce the multiplicative
noise corrupting the sequence. Furthermore, several previ-
ous version of the presented model with and without PBPB
compensation and using different a priori potential func-
tions are also briefly described. Results of their use through
Monte Carlo experiments are compared with the ones ob-
tained with the proposed model. The proposed model out-
performs its previous versions in every situation, mainly
due to its edge preserving properties and to the explicit
embodying of the PBPB compensation in the model. Valida-
tion of the proposed model with several state-of-the-art
models confirms the good performance of the proposed
methodology.
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APPENDIX: DENOISING ALGORITHM

In this appendix the PBPB model is explicitly taken into
account and included in the denoising algorithm described
by Rodrigues and Sanches (2010b).

A sequence of CLSM images of a specimen is the result
of a photon detection counting process of the fluorescent
molecule’s emitted radiation. One of the main physical
limitations of this process stems from the random nature of
the photon emission and detection, especially under low
illumination conditions, giving rise to a very severe nonsta-
tionary noise problem acting upon spatial and temporal
varying cell features. Thus, due to the nature of the detec-
tion process, the noise corrupting these images is neither
Gaussian nor additive, well described by a Poisson process.
In addition, the overall image intensity decays along the
experiment time due to the PBPB effects.

An image sequence, e.g., CLSM, consists of L images,
N X M pixels each, acquired along the experiment time.
These data can be represented as a 3D tensor, Y = {y;; },
where (i,j,t) € B X T are the coordinates of each point
in the sequence, in pixel units, T = {0,1,...,L — 1},E =
(IX])NQwithI={0,1,....,N—1},J={0,1,...,M — 1}
and Q is the region of interest in the image. Each of
these image sequences can be thought of as an intensity
field lying on a 3D lattice where each node is a site of the
lattice. Let X be a tensor with the same dimensions of Y
representing the original unknown morphology. By assum-
ing statistical independence of the pixels, the observation
model is

P(Y|X) = [T p(yil %), (A1)

X

where p(y;]x;) = (x}/y;!)e ™ is a Poisson distribution.
The MAP estimation of X can be formulated according
the following optimization problem:

X = argmin E(X,Y), (A.2)
X

where the energy function, E(X,Y) = —log p(Y, X), can be
written as a sum of two terms:

E(X,Y) = Ey(X,Y) + Ex(X). (A.3)
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The first term, Ey(X,Y) = —logp(Y|X), pushes the solu-
tion toward the observations and the second term,
Ex(X) = —logp(X), regularizes the solution according
to some previous knowledge or belief about the speci-
men structure, X (Moon & Stirling, 2000; Sanches &
Marques, 2003).

Observation Model

Due to the quantum nature of light, the CLSM image
degradation is mostly caused by the so-called shot noise,
making the Poisson distribution suitable to describe the
image intensity at each pixel which, according to Kempen
et al. (1997), is proportional to the number of detected
photons during the acquisition process. This type of multi-
plicative noise is referred in the literature as photon-
limited (Willett, 2006) since the quality of the image is
mainly determined by the number of detected photons,
unless other sources of noise, such as electronic noise,
are considered. Nevertheless, in modern CLSM equip-
ment these additional sources of noise can in general be
neglected when compared to the damaging effect of the
Poisson noise.

Each observation, y; ; ,, assumed corrupted with Pois-
son noise, exhibits a time intensity decrease due to the
PBPB effects that is modeled by a weighted sum of two
decaying exponentials with constant rates, A; and A,, as
derived in the Photobleaching/Photoblinking Model sec-
tion and is denoted by 7 (t, ©).

Each point of the noiseless sequence, X, in equation
(A.3) can then be written as

Xije = fije (5, 0), (A4)
where F = {f;;,}, with (i,j,t) € E X T, stands for the
spatiotemporal variations underlying morphology of the
specimen. The parameters ® = [¢,1,,A;,A,] are esti-
mated by fitting the standardized average intensities of the
images, Y(t), of the noisy data sequence, to the intensity
decay model.

Y(1) = n(t,0) = de™ ™" + e (A.5)
Thus, instead of estimating X from Y, as in our previous
method (Rodrigues & Sanches, 20100), the morphology
tensor, F, is estimated by solving the following energy opti-
mization problem:

F= arg min E(FY,0), (A.6)
F

where E(EY,0) = Ey(EY,®) + Ex(F).
Therefore, the new Data Fidelity Term that takes into
account explicitly the PBPB model is

N—1,M—1,L—1

E/(FY,0) = —log[ I1

(i, j, 1) EEXT

Pyl i ® | (A7)

where

(fope)e

Vit

P()’i,j,y|ﬁ,j,p®) = e fii (A.8)

is the Poisson distribution. 1(t), defined in equation (A.5),
models the PBPB effects. Therefore,

EY(F>Ya®) = 2 [ﬁ,j,tﬁt _yi,j,t(logfi,j,t + lOg ﬁt)]

i, ]t

(A.9)

Regularization Term

As proposed in Besag (1986), F is modeled as a Markov
random field and therefore p(F) is the following Gibbs
distribution function (Geman & Geman, 1984):

-2 VuF)

p(F) = 7 e «<c (A.10)

where Z is the normalizing constant, V,(.) are clique poten-
tials (Geman & Geman, 1984) and Ex(F) = 2. V.(F) is
called the Gibbs energy. The log potential functions TV log
and L; log, used here in the space and temporal domains,
are respectively:

fii, fi
VC,S(i,j,t):\/logZ( 2 )+ log? [ ),
fi—l,j,t fi,j—l,t
( ﬁ,j’t )
log .
ﬁ,j,t*l
Optimization

The overall energy function to be minimized is

V, (i, 1) = (A.11)

E(EY,0) = 2 [ﬁ,j,tﬁt _yi,j,t(log(fi,j,t) + log7,)]

i,j,t

fii fis
+a2\/log2( 2! + log? 2!
it fimrjie fii-ve
( —fi)j)t )
log
fi,j,t—l

where « and B are strictly positive image dependent or
constant tuning parameters to reduce or increase the strength
of the regularization in the spatial and temporal dimen-
sions, respectively.

The nonconvex energy function equation (A.12) can
become convex if the following change variable is used:

+B >

i, t

, (A.12)

Z = log(F), (A.13)
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which leads to the following energy function:

E(EY,0) = 2 [eieq), _)/i,j,t(zi,j,t + log 7,)]
i,j, t
+a E\/(zi,j,t - Zifl,j,z)z + (Zi,j,t - Zi,jﬂ,t)z
i, t
+:82|Zi,j,t_zi,j,t71|' (A.14)
i, t

The morphology estimation, 13, is the minimizer of equa-
tion (A.14), Z, by reverting equation (A.13):

F=¢Z (A.15)
The minimization of equation (A.14), accomplished by
finding its stationary point with respect to each z;,, is
performed by using the Newton’s algorithm and an IRWLS-
based procedure (Rodriguez & Wohlberg, 2009) to circum-
vent nonlinearity and to promote convergence, which gives

20 =z _ (2% 5

— Y+ H®YDKED)  (A.16)

where (k) is the iteration number and (/) denotes the
component-wise division. The elements of D®¥) = {d(k) }
are

k k
dl(])t = e1 7]]; nt + d)l(])t) (A17)
and the elements of H® = {h(k.) } are

= (P % Z<’<>) (A.18)

1]t

The 3D mask ®;; , is

0 0 0
0 —Bvi ;. 0
0 0 0
0 —aw; 0
D, =2| Taw;;, bijs aw; iy |, (A.19)
0 oWy 0
0 0 0
0 _IBUi,j,H—l 0
0 0 0
where
d)i,j,t = a[zwi,j,t T Wi T Wi,j+1,t]
+ B[Ui,j,z + Ui,j,t+1]>
1
wiz;;,) =
\/(z;’jjt—z,lﬂ)z-i-(z”t 11”)24—8
v(zi,,) = ! (A.20)
bht I ,]t\+8

& = 10"° is a small number to avoid division by zero. Since
the true solution to this problem, Z*, is not known in each
iteration (k), the values for Z*~V are used instead (see
Rodrigues & Sanches, 20100 for more details).



