
  

 

Abstract— Automatic Karyotyping is the process of 

classifying chromosomes from an unordered karyogram into 

their respective classes to create an ordered karyogram. 

Automatic karyotyping algorithms typically perform 

geometrical correction of deformed chromosomes for feature 

extraction; these features are used by classifier algorithms for 

classifying the chromosomes.  Karyograms of bone marrow 

cells are known to have poor image quality. An example of such 

karyograms is the Lisbon-K1 (LK1) dataset that is used in our 

work. Thus, to correct the geometrical deformation of 

chromosomes from LK1, a robust method to obtain the medial 

axis of the chromosome was necessary. To address this 

problem, we developed an algorithm that uses the seed points to 

make a primary prediction. Subsequently, the algorithm 

computes the distance of boundary from the predicted point, 

and the gradients at algorithm-specified points on the boundary 

to compute two auxiliary predictions. Primary prediction is 

then corrected using auxiliary predictions, and a final 

prediction is obtained to be included in the seed region. A 

medial axis is obtained this way, which is further used for 

geometrical correction of the chromosomes. This algorithm was 

found capable of correcting geometrical deformations in even 

highly distorted chromosomes with forked ends. 

I. INTRODUCTION 

Automatic Karyotyping is the process of ordering and 
classifying the chromosomes into their respective classes; 22 
pairs of autosomes and a pair of allosomes. Ordered 
karyograms are created using karyotyping, which are used to 
study chromosomal morphology. These studies are useful for 
detection of diseases, particularly cancer, such as leukemia. 
By identifying the aberration in chromosome features, such 
as, position of centromere, length of chromosome, area of 
the chromosome and band pattern etc., clinicians are able to 
judge whether the samples contain signatures of a disease.  
Automatic karyotyping algorithms extract features of 
chromosomes, and use those features to classify the 
chromosomes. However, karyotyping of chromosomes from 
bone marrow cells poses a challenging task due to poor 
details in images; a feature typical of unordered karyograms 
of bone marrow cells. The data set that we are working on, is 
a set of ordered karyograms of bone marrow cells, and is 
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called Lisbon-K1 (LK1) [1]. Thus, extraction of features from 
LK1 chromosomes is a challenging problem.  

Several features of chromosomes are used for the 
classification of chromosomes. Some of the most prominent 
features being band profile, position of centromere and 
dimension of the chromosomes. However, chromosomes 
from LK1 are inadequately condensed and elongated for 
reliable identification of the centromere position. Thus, an 
accurate band profile of chromosome becomes even more 
important [2]-[5]. Band profile computation, in turn requires 
an accurate geometric correction of chromosomal 
deformations. In previous studies, several algorithms for 
geometric correction of chromosomes have been presented. 
Use of MAT [1], [6]-[7] and infinite thinning [8] has been 
previously used to obtain a medial axis to correct the shape 
of the chromosome. Different methods of geometric 
correction using vessel-tracking algorithm [4], and by 
segmenting the chromosome into polygons have also been 
proposed [3]. Most of these algorithms obtain an initial 
guess and extrapolate it to obtain the medial axis, which is 
then used for geometric correction. The extrapolation 
techniques overlook the variations in the boundary and rely 
solely on the seeds, thus introducing inaccuracies in medial 
axis towards the ends of the chromosome, which in turn 
affects the geometrical correction. 

The motivation of our work was to reduce these 
inaccuracies and to extract more accurate features for the 
classification of chromosomes. We previously developed an 
algorithm that obtains the initial seed region by pruning the 
skeleton of the chromosomes [9]. The seed region was then 
extrapolated. To account for the variations in the boundary, 
the algorithm kept track of the distances of extrapolated 
point, from the boundary of chromosomes. While this 
algorithm worked well, it had two shortcomings: 1) In the 
cases where chromosomes had “forked” towards the end, the 
medial axis wasn’t obtained in such a way that it could 
capture the forked portions, 2) While the medial axis, and 
band profile were computed with high accuracy, the 
algorithm couldn’t correct the deformation in chromosome 
shapes with as much fidelity as is necessary. With our new 
algorithm, we have addressed these issues. In addition to the 
primary prediction and distances from the boundary, the 
algorithm considers the gradients along the boundary to 
extrapolate the seed region. This leads to improvements in 
band profiles, and geometrical correction of the 
chromosome. Method 

To accomplish geometric correction, the algorithm has 
three main sections: 1) Seed Region Extraction, 2) Medial 
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Axis Estimation, 3) Axis Smoothing and Geometric 
Correction. These are described in order: 

1) Seed Region Extraction 

The algorithm begins with the extraction of chromosome. 
The karyogram is first binarized and segmented. Connected 
components in the segmented karyogram represent 
chromosome, and are extracted by calculating the 
dimensions of a bounding box that encloses each 
chromosome. Chromosome extraction is followed by 
skeleton computation, which is used in further stages to 
obtain the seed region. 

To generate a pruned skeleton, an algorithm developed 
by X. Bai et al. [10] was chosen, which can generate a 
skeleton with desired number of branches. The algorithm is 
fast, and robust to noise in the boundary of the input shape. 
To help in the further discussion of the algorithm, few 
definitions are noted below. Fig. 1 shows annotated 
intermediate steps of geometrical correction of 
chromosomes. 

Let us define a 2-dimensional space ℝ2
 containing a 

connected subset D, which has a boundary ∂D that 
comprises analytic closed curves, Fig. 1 (c)-(d). The skeleton 
S(D) of a set D is the locus of the center of  Disk(s) that 
touches ∂D and is independent of other disks in D [11], 
where Disk(s) is a maximal disk centered at s; s ∈ S(D). T(s) 
is a set resulting from operation { ∂D ∩ Disk(s) }. Degree of 
s, deg(s) is defined as cardinality of T(s). Then, the 
bifurcation points of S(D) are defined as b  := {s ∈ S ( D ) : 
deg(s) ≥ 3}. An end point is defined as e := { S(D) ∩ ∂D }. 
The algorithm described in [10] returns a skeleton with 4 
branches, 4 end points and 2 bifurcation points. Then, Seed 
Region, SR(D), is defined as SR(D) := {s ∈ S(D) : s is 
between b} and is obtained from the skeleton of the 
chromosome, Fig. 1(d). 

2) Medial Axis Estimation 

After the seed region has been obtained, it is extrapolated 
into the medial axis. To accomplish this, the boundary is 
smoothened by first fitting a piecewise cubic spline to ∂D 
and using regression to find the smooth boundary, ∂D

2
, Fig. 

1(e). ∂D
2
, is then differentiated with respect to x, at all x ∈ 

∂D
2
, to estimate the boundary derivative ∂D

2
’. Medial axis 

M(D) ≡ [Mx My] is then defined as an axis of symmetry 
obtained by extrapolating the seed region, so that M(D) 
traverses D and Mx is nonstrictly increasing with respect to 
x. Note that for a given vector V, Vx and Vy refer to its 
components in the x and y directions respectively. Further, f’ 
is assumed to be the derivative of f with respect to x. 
Extrapolation from SR(D) to M(D) is performed using the 
rules described below.  

To grow M(D) is to append a new element eM such that : 
if C is the curve describing the spatial distribution of M(D), 
then C’(eM) is the tangent to C at eM and norm(C) at eM is the 
normal to C’(eM) at eM. Let d := {d ∈ C : d ∈ C ∩ norm(C) at 
eM } be the set of points that describe the intersection of the 
normal to C and C. Then, eM  is a valid point to append as 
long as it satisfies all or one of the conditions described 
below (cannot be generalized to all D): 

Condition 1: || eM – μd || ≤ ψ, where ψ is the error limit; 
here “|| . ||” operator symbolizes Euclidean norm and μd is the 
midpoint of line connecting the points in d. 

      Condition 2: C’(eM) ≈ mean (∂D
2
’(d)) ; where ∂D

2
’(d) is 

the gradient of the smoothened boundary ∂D
2
’ at the points 

in d. This condition ensures that the gradient of C at eM  

varies with the variations in the boundary ∂D
2
’ at the 

intersection points d. This follows from the idea that we need 
M(D) to be as spatially dynamic as the boundary ∂D

2
. 
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Figure 1.  (a) Ordered Karyogram, (b) Binarized and segmented karyogram, bounding box is shown for one of the chromosomes, (c) Extracted 

chromosome, (d) Chromosome with skeleton, seed region is marked, (e)-(h) Annotated chromosome processing stages, (i) Geometrically corrected 

chromosome, obtained from (h), correspondence between chromosomes from (g) and (i) can be observed. 
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     Condition 3: || eM – e(1 or 2) || ≤ γ , where e1 and e2 are the 
end points of M(D) before inclusion of eM, and γ is a 
threshold parameter that ensures that eM  lies in the vicinity 
of the end points of M(D). The algorithm estimates eM as a 
weighted sum of a primary prediction PI and two auxiliary 
predictions PII and PIII, which are obtained using a 3-step 
process described below.  

Step 1 : To begin the algorithm, assign M(D) = {s ∈ 
SR(D)}. A training set S is formed by sampling Np (Np = 6) 
points at the extremities of M(D). The primary prediction, PI 
is obtained by the technique described in our previous paper 
[9]. Since Mx is assumed to be nonstrictly increasing with 
respect to x, let PIx = x, where x is the x-coordinate of the 
next eM to be appended to the SR(D). A hypothesis hθ is then 
defined as, hθ (x) = θ0 + θ1 x, where hθ(x) is the function 
used to predict y-coordinates of PIy for input PIx. Hypothesis, 
hθ (x), is calculated by fitting a weighted linear polynomial 
to S as described in [9]. Once hθ (x) is available, PIy  is given 
by PIy = h θ (P I x) . This method of prediction ensures that 
Condition 1 is satisfied for all cases with low value of ψ. 
Next, for estimating the auxiliary predictions PII and PIII, 
points of intersection of the orthogonal to C at PI (called 
norm(C) at PI) and ∂D

2 
are required. The points of 

intersection are d. 

To calculate PII, the x-coordinate of PIIx (x-coordinate of 
PII) is set to be PIIx  =x, and the y-coordinate PIIy is assigned 
the mean of the y-coordinates of points in d (d ≡ [dx dy]). 
Then, 

                                PII = [ x  μdy ]          (1) 

where μdy is the mean of dy. 

To calculate PIII, the derivatives of ∂D
2 
at the points d are 

considered. These are represented by ∂D
2
’(d). The x-

coordinate of PIII, PIIIx, is set to be PIIIx = x, and its y-
coordinate PIIIy is calculated. Further, prediction PIII is 
required to satisfy Condition 3. This means that a line 
joining the end point e(1 or 2) of M(D), to PIII has a gradient 

that is a function of the gradients of boundary at the points in 
d. This line, hξ(x), is obtained using equations (2)-(4)  

                              hξ(x) = ξ0 + ξ1 x              (2) 

                          ξ1 = mean (∂D
2
’(d))                  (3) 

                  ξ0 =  eiy – ξ1 eix ;  for i = 1 or 2                   (4) 

Here ξ1 is the slope of the line hξ(x), and ξ0 is its y-
intercept. PIIIy is assigned the value hξ(x) and hence, 

                              PIII = [ x  hξ(x) ]                             (5) 

We have all three predictions: PI, PII and PIII, Fig. 1(f) 

Step 2: The auxiliary predictions are validated by 
checking if || PI – PII || ≤ TOL (TOL is set to a default of 
1.5). This check ensures that the prediction doesn’t lie 
outside the expected region; it’s done to suppress 
unexpected deviations in M(D). Note that the algorithm 
checks only for PII to be in the vicinity of PI. If the inequality 
is true, then PII and PIII are valid and the algorithm 
continues. If the inequality is not true, then: eM = PI. Once PII 

and PII have been validated, eM is estimated as a weighted 
mean of the 3 predictions: 

     eM = (WI×PI + WII×PII + WIII×PIII) / (WI +WII +WIII)   (8) 

The weight vector W = [ WI WII WIII ] is assigned a 
default value of [1 1 1] and can be modified to suit specific 
cases where the boundary ∂D is too irregular to be used with 
default weights. Such a weighting allows more control over 
the seed region extrapolation and aids in processing 
chromosomes with large variations in boundaries.  

Step 3: The estimate eM is appended to M(D) at the e1 or 
e2 end for extrapolation in the upper or lower portion of D. 
The algorithm iterates through Steps 1 to 3 till M(D) extends 
through the length of the chromosome D. 

3) Axis Smoothing and Geometric Correction 
This step of the algorithm produces geometrically 

corrected or “straightened” chromosome D
2
. To begin, 

Splines with knots at intervals of 3,4 and 8 points are fitted 

 
Figure 2.  (a) Band Profile of chromosomes from the same class, straightened chromosome is shown along with the original deformed chromosome 

(b) Two cases of chromosomes with small seed region that were accurately corrected. 
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through M(D) successively to eliminate noise and provide a 
smoothened medial axis M(D)S. Then, M(D)S is 
differentiated at every point with respect to x, so M’(D)S is 
the vector describing the slope at each point (x, y) of D. 
Orthogonal lines N(M) are calculated at each point on M(D) 

S by, 

           Ni(M) = -(1/Mi
’
(D)s) + (Miy-Mi

’
(D)×Mix) 

Where Ni(M) is the orthogonal line corresponding to the 
i
th

 point on M(D)S, Fig. 1(g). Let INi be the points of 
intersection of Ni(M) with the original unsmooth 
chromosome boundary ∂D0, Fig. 1(g). Using this original 
boundary ensures that the parts of the chromosome which 
were eroded due to boundary smoothening are not lost 
during the geometrical correction. This further leads to more 
accurate feature extraction. For geometric correction a new 
destination image D

2
 is created such that its width is twice 

the width of original chromosome D
1
, Fig. 1(g). The 

following discussion describes a chromosome as an image or 
matrix where d1ij is the intensity value at the pixel belonging 
to i

th 
row and j

th
 column. Then, D

2
 is populated as described 

below. 

The profile ρi of the image between the two points of the 
INi corresponding to i

th
 point on M(D)S is obtained by 

connecting a straight path Ai of l points connecting the two 
points in INi. Here, l is the number of pixels in D that are 
traversed by Ai. The values in ρi are calculated by Nearest 
Neighbor Interpolation (NNI) method.  Continuing this way, 
we obtain D

2
, Fig. 1(i). 

II. RESULTS 

This algorithm was tested on karyograms from LK1 
dataset. Fig. 3 shows few of the highly distorted and forked 
chromosomes that were geometrically corrected using our 
algorithm. Further, to test our algorithm’s accuracy in 
revealing similarity between spatial distribution of intensity 
on chromosomes from the same class, band profiles of a pair 
of chromosomes from the same class was computed and has 
been shown Fig. 2 (a). Additionally, we tested our algorithm 
for chromosomes from a high quality dataset from Ruggeri et 

al., [4] the results of geometrical correction have been 
shown, Fig. 3 (c). Algorithm was found capable of 
extrapolating small seeds into medial axis spanning the 
entire chromosome, Fig. 2(b). Additionally, forked regions 
of the chromosome were also recovered in the straightened 
chromosome, Fig. 3(a). The inclusion of a third parameter 
for extrapolation of seeds improved the geometrical 
correction. Thus, we were able to successfully correct the 
chromosomes that suffered from forking towards the ends, 
and correct the geometrical deformation that will help in 
more accurate feature extraction. 
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Figure 3. Chromosomes that were geometrically corrected are shown. Note the forked chromosome have been corrected with the regions of forking 

preserved in the output. The chromosomes with black background are from Ruggeri et al. [12] data set. 
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