

Characterization of E-Cadherin Distribution from Fluorescence Images

J. Miguel Sanches^{1,2}, Joana Figueiredo³, Isabel Rodrigues^{1,3}, Raquel Seruca³

¹Institute for Systems and Robotics, ²Department of Bioengineering-Instituto Superior Técnico / Technical University of Lisbon, Portugal

³Instituto Superior de Engenharia de Lisboa (ISEL)

⁴IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Portugal

Cell Adhesion

Physical linkage between cells is the basis of structural mechanical properties of the tissues, e.g, epithelial tissues

Aberrant adhesion

Cells become **non-adherent** and gain an increase ability to invade the surrounding tissue, e.g., cancer

E-Cadherin

- E-cadherin is a central protein in cell-cell adhesion.
- Mutations on E-Cadherin gene (CDH1) lead to a dysfunctional molecule.
- These mutations are involved in epithelial cancer progression.

E-Cadherin Distribution

The distribution of E-Cadherin molecule in normal cells is mainly observed at the membrane, where it plays its role in cell-cell adhesion.

Normal stomach tissue

Fluorescence Imaging

E-Cadherin distribution can be observer in epithelial cell line labeled with E-Cadherin tagged anti-body

E-Cadherin Mutations Cell distribution

Key features

E-Cadherin distribution characterization

- Pre-processing and semi-automatic cell selection
- 2. Image radial profiles computation
- 3. Compensation for geometric distortions
- 4. Features extraction and distribution characterization

Cell centroid estimation and semi-automatic selection

Image of intensity profiles

Geometric compensation

- Each profile (column) is modeled as a finite dimension 1D continuous function estimated by imposing similarity among columns
- The locations, x, of the original observations are adjusted in this continuous space according an energy function

$$f_{\theta}(\rho, \mathbf{x}_{\theta}, \mathbf{c}_{\theta}) = \sum_{k} c_{k,\theta}(\mathbf{x}_{\theta}) \phi_{k}(\rho)$$

$$\mathbf{c}_{\theta}^{t} = \underset{\mathbf{c}}{\operatorname{argmin}} \left\| f_{\theta}(\rho, \mathbf{x}_{\theta}^{t-1}, \mathbf{c}_{\theta}) - \mathbf{y}_{\theta} \right\|^{2} + \alpha \left\| D\mathbf{c}_{\theta} \right\| + \beta \left\| \mathbf{c}_{\theta} - \mathbf{c}_{\theta'} \right\|^{2}$$

$$\mathbf{x}_{\theta}^{t} = \underset{\mathbf{x}}{\operatorname{argmin}} \left\| f_{\theta}(\rho, \mathbf{x}_{\theta}, \mathbf{c}_{\theta}^{t}) - \mathbf{y}_{\theta} \right\|^{2} + \gamma \left\| D\mathbf{x}_{\theta} \right\|^{2}$$

Distribution characterization

- Image profiles 2D based characterization
- Prototype profile estimation1D based characterization

Conclusions

- Distribution of E-Cadherin protein across the cell from fluorescence images of microscopy
- Characterization metrics for discrimination for CDH1 gene mutations
- Radial E-Cadherin prototype distribution
 - Geometry invariant

Thank you

J. Miguel Sanches

(jmrs@ist.utl.pt)