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Abstract

Wrist actigraphy is a well established and very
useful procedure for long term activity monitoring.
Its lightweight and non-intrusive nature makes it not
only a valuable tool in the detection of abnormal
behavioral patterns, associated with certain sleep
disorders, but also an unexpected source of basic
information related with brain states, namely, wake-
fulness and sleep.

Here, the activity in the different states is
assumed to be intrinsically different. These differ-
ences are not simply related with magnitude and
movement counting, but due to real differences on
the statistical distributions describing the actigraphy
data across different states.

In this paper, the proposed methodology to char-
acterize the actigraphy data is based on Autoregres-
sive (AR) models. It is shown that the coefficients
estimated in each state are organized into almost
separable clusters on the feature space. This sug-
gests the ability of the method to discriminate these
states based only on the movements recorded on
actigraphy data.

Keywords Actigraphy, Autoregressive model, Pattern
recognition, Sleep/Wake estimation.

1 Introduction

Sleep disorders form a class of medical conditions,
pathological or not, affecting millions of people across
the world. They are characterized by changes in the nor-
mal pattern of sleep/wakefulness circadian cycle and even
sleep disruption, with severe consequences for the gen-
eral health condition of the subjects [1].
The detection, characterization and diagnosis of these
disorders is usually performed withpolysomnography
(PSG), an expensive, complex and very intrusive exam,

where several physiological variables are monitored, usu-
ally during a single night. This technology is not appro-
priated for long term monitorization because it is uncom-
fortable for the patient and strongly interferes with his
mobility and normal routines.
For long term monitoring exams, alternative methods to
polysomnography are preferred where other sources of
data may be used, such as behavioral ones, e.g,Sleep and
Dream diaries andActigraphy.
Actigraphy (ACT), in particular, has been used with suc-
cess in the last years in the diagnosis of several disorders
like Insomnia [2] andObstructive Sleep Apnea Syndrome
(OSAS) [3].
ACT data is obtained with non invasive and highly
portable accelerometer sensors, usually placed at the non
dominant wrist, that measure the motor activity of the
subjects during several days and nights. It is a valuable
tool to gather behavioral information about the patients or
sleep parameters such as sleep continuity and times, with
a minimum intrusion and interference on normal daily
routines [4].
It has been used with success in the estimation of the
shape and characterization of the circadian cycle [5, 6]
but its use in the estimation of the sleep and wakefulness
states is still an open discussion [7].

In this paper we propose a statistical description of the
movement based onAutoregressive models (AR) to show
that movements during wakefulness and sleep states are
intrinsically different.
Purposeless is the key concept of the paper.
While movements during sleep state are typically ran-
dom and without purpose, movements during wakeful-
ness state are coherent and correlated. This empirical ob-
servation suggests that movements recorded during dif-
ferent states, apparently similar from temporal and inten-
sity points of view, may present relevant differences from
spectral or statistical distribution points of view.
Here, the work from [8], where higher order statistics are
computed with AR models, is refined to improve the dis-
criminative power of the method for sleep staging pur-
poses.



The structure of this paper is as follows: After the In-
troduction in Section 1, where background information
and motivations are presented, the pre-processing applied
to the data sets is described in Section 2.1. The different
nature of the movements in the two states are explored
in Section 2.2 and Section 2.3 describes the AR models
coefficients estimation problem. In Section 3 the results
are presented and discussed and conclusions are drawn in
Section 4.

2 Methods

Actigraphy data was collected with a Somnowatch de-
vice, from Somnomedics, placed at the non-dominant
wrist of the subjects with a sampling rate of1Hz. The
core of these devices is a 3D accelerometer that measure
the acceleration along 3 orthogonal axis with a config-
urable output format. Here, the output of the actigraph
is the acceleration magnitude. A typical time course of
approximately one circadian cycle is displayed in Figure
1.

The actigraphy data used in this study was jointly

Figure 1: Actigraphy data recorded during a 24h period.

acquired with PSG data for validation purposes. The
hypnogram, obtained from the PSG data by trained tech-
nicians, is used as ground truth to identify the sleep and
wakefulness states in each epoch.

2.1 Pre-processing

Two pre-processing operations are performed on the
data: i)Magnitude normalization and ii)activity segmen-
tation.

The proposed method is not intensity dependent, mag-
nitude normalization is needed to minimize the inter-
patient and intra-patients variability effects. The normal-
ization step is simply a mean subtraction and variance
normalization procedure according to

x(n) =
y(n)− µY

σY

(1)

whereµY andσY are the mean and standard deviation
of the data, respectively.

The second operation, movement segmentation, is per-
formed since the large segments of immobility are use-
less for activity characterization and sleep staging. They
constitute a source of noise and confound factors in the
training process of the staging classifier.

A simple threshold based detector was implemented to
detect movement and extract the corresponding actigra-
phy data. Figure 2 displays an example of pre-processed
data. Figure 2.a) shows the normalized actigraphy signal
and the movement indicator and Figure 2.b) the corre-
sponding hypnogram segment.
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Figure 2: a) Actigraphy data and detected movements
(top) b) and Hypnogram (bottom).

Data acquired from ten patients was used for analy-
sis. After normalization and movement detection the seg-
ments corresponding tosleep, s, and wakefulness, w,
states were concatenated into two large arrays respec-
tively. In the case of the sleep array, information regard-
ing sleep stage (Rem/nRem) was also included.

2.2 Autocorrelation measures

As explained in Section 1 the work developed was
based on the assumption that movements during sleep
and wake states have different statistical properties. This
claim can be easily confirmed by two simple measures;
the auto-correlation and power spectral density of the two
(s/w) arrays.
Figure 3 shows the plot of the autocorrelation coefficients
for the two arrays, obtained for a maximum delay of300
seconds. It is clear that wakefulness movements are more
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Figure 3: Auto-correlation coefficient for sleep and wake-
fulness.

correlated than sleep movements.
Figure 4 shows the Power Spectral Density (PSD), esti-
mate via Yule-Walker’s method [9]. It can be seen that
the bandwidth for wakefulness movements is higher than
for sleep movements, thus confirming the initial guess.
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Figure 4: Power Spectral Density of the movements dur-
ing the wakefulness (red) and sleep (blue) states.

2.3 Autoregressive Model

The coefficients ofAutoregressive models (AR) consti-
tute the set of features used for sleep/wakefulness detec-
tion, a method already proposed before by the authors in
[8] to roughly discriminate sleep and wakefulness states
from actigraphy data.

The estimation of the AR coefficients described in the
previous work is performed on a block basis, introducing
a heavy filtering effect. Here, the AR coefficients estima-
tion is performed on a per sample basis, thus increasing
time resolution and a ground truth (hypnogram) is avail-
able to quantify the performance of the method.

The overall idea is to estimate the coefficients of ap-
order AR model based on the current sample, on thep−1
previous samples and on the previous estimated set of co-
efficients, obtained in the previous sample. By doing this,
the estimation of the coefficients are strongly guided by
the previously estimated coefficients, incrementally up-
dated with the information provided by the new sample.

Let us considery(n), thenth actigraph sample, gener-
ated according to the followingp-order AR model

y(n) =

p
∑

k=1

ak(n)x(n− k) + ǫ(n)

= x
T
p (n)a(n) + ǫ(n) (2)

wherexp(n) = {x(n − 1), x(n − 2), ..., x(n − p)}T

is a column vector containing thep previous samples,
a(n) = {a1(n), a2(n), ..., ap(n)}

T is the column vec-
tor of coefficients to be estimated at sample timen and
ǫ(n) is the residue.

The vector of coefficients is obtained by minimizing
the energy of the residue

ǫ2(n) =
[

y(n)− x
T
p (n)a(n)

]2
(3)

which is an ill-posed problem [10], thus a regularization
term is needed.
Let us consider the following energy function with regu-
larization

E(n) =
[

y(n)− x
T
p (n)a(n)

]2
+

α‖a(n)− a(n− 1)‖22 (4)

where the quadratic term,‖a(n)− a(n− 1)‖22, is a prior
that forces similarity between consecutive model param-

eters. The constantα tunes the strength of that similarity
and was selected to be150 on a trial and error basis.

The stationary point of (4) with respect toa(n) is com-
puted as

∇a(n)E = xp(n)
(

x
T
p (n)a(n)− y(n)

)

+

α [a(n)− a(n− 1)] = 0 (5)

leading to

â(n) =
(

xp(n)x
T
p (n) + αIp

)

−1
(xp(n)y(n) + αa(n− 1)) (6)

whereIp is thep× p identity matrix.

The optimal order of the model,p = 50, was obtained
using Akaike information criterion [11], allowing a good
fit of the model to the data and an acceptable computation
time.

By stacking theN vectors â(n), obtained for each
sample, from (6), and for each state,wakefulness and
sleep, twoN × p matrices are obtained,Aτ , τ = {w, s}.
Each lineaτ

l (n), 0 ≤ n ≤ N , corresponds to the vector
of p coefficients computed for thenth sample and each
columnaτ

c (i), 0 ≤ i ≤ p, corresponds to theith coeffi-
cient computed for theN samples.

For the sake of computational efficiency, a data dimen-
sionality reduction is performed. For that, the3 most dis-
criminative components of̂a(n) were selected perform-
ing an adapted forward search [12] according to the fol-
lowing procedure.
Let us consider the following metric function to mea-
sure the distance between specific sets of homologous
columns,aw

c (i1, . . . , ir) andas
c(i1, . . . , ir), from matri-

cesAw andAs respectively,

d(i1, i2, . . . , ir) =

∣

∣

∣

∣µaw
c
(i1,...,ir) − µas

c
(i1,...,ir)

∣

∣

∣

∣

∥

∥Σaw
c
(i1,...,ir)

∥

∥

F
+
∥

∥Σas
c
(i1,...,ir)

∥

∥

F

(7)

whereµ andΣ are the mean and the covariance matrix of
the selected columns and‖x‖F is the frobenius norm.
In the first step of this feature selection procedure, the
most discriminative coefficient is obtained by finding the
two most distant homologous columns,

i1 = argmax
i

d(i) (8)

and in the next steps, thekth most discriminative coeffi-
cient is obtained by,

ik = argmax
i

d(i1, i2, . . . , ik−1, i) (9)

wherei ∈ {1, . . . , p}\{i1, i2, . . . , ik−1}.

3 Results

The algorithm was first tested independently for each
patient, two data sets were removed due to the lack of
movement during sleep and noisy actigraphy data. The
remaining8 data sets were finally used to obtain the ma-
trices of coefficientsAτ . The three most significant coef-
ficients, columns (50, 22, 23), are plotted in Fig.5 where
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Figure 5: The three most significant coefficients of the
AR model yield almost separate clouds for Sleep (blue)
and Wakefulness (red).

the clouds of both states are clearly distinguishable. The
separability and clustering nature of these clouds allows
to use simple discriminative classifiers to discriminate the
state and revels intrinsic differences on the movement
characteristics between classes, which confirms the re-
sults obtained in [8].

The modification of the algorithm to process the data
on a per sample basis removes the lag and filtering effect
on the previous method, allowing to detect subtle state
changes.

The described method is robust but contains some user
adjustable parameters, such as the movement detector
threshold and model order, which strongly influences the
results.

Although a special effort has been placed in the acqui-
sition process and data selection, classifications errors in
the hypnogram may persist. This is mainly related with
human errors and inter operator variability

Although a typical Polysomnography exam generates a
large amount of data, only a small fraction, corresponding
to movement periods, was used. Nevertheless, the eight
data sets used in this study contained enough movement
data to produce relevant results.

The obtained results are remarkable in the sense that
using a simple device such as an actigraph, it is pos-
sible to do a rough estimation of the sleep/wake state
of the patient. While these results alone are not suffi-
cient for a standalone platform, they can be incorporated
in existing frameworks to help improve the accuracy of
sleep/wakefulness classifiers.

4 Conclusions

In this work the intrinsic properties of the move-
ments during sleep and wakefulness are explored to-
wards the development of a simple, portable and accurate
sleep/wake estimator, based on actigraphy data and other
physiological information.

AR coefficient based features and aForward Search
feature selection approach are used to discriminate wake-
fulness and sleep stages from actigraphy data.

With this method, it is shown that the movements dur-
ing sleep and wakefulness states present different tempo-
ral correlation which is the basis for their discrimination.

Future work will combine the present work and fea-
tures extracted from cardio-respiratory signals .
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