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Abstract Chronic Liver Disease is a progressive disease, most of the time asymp-
tomatic, and potentially fatal. In this chapter, an automatic procedure to stage the
disease is proposed based on ultrasound liver images, clinical and laboratorial data.
A new hierarchical classification and feature selection approach, inspired in the cur-
rent diagnosis procedure used in the clinical practice, here calledClinical Based
Classifier, is described. The classification procedure follows the well established
strategy of liver diseasedifferential diagnosis. The decisions are taken with differ-
ent classifiers by using different features optimized to theparticular task for which
they were designed. It is shown that theClinical Based Classifiermethod outper-
forms the traditionalone against allmethod because it take into account the natural
evolution of the hepatic disease. Different specific features are used to detect and
classify different stages of the liver disease as it happensin the classical diagnosis
performed by the medical doctors.
The proposed method uses multi-modal features, extracted from ultrasound images,
laboratorial and clinical data, that are known to be more appropriated according the
disease stage we want to detect. Therefore, a battery of classifiers and features are
optimized and used in a hierarchical approach in order to increase the accuracy of
the classifier.

Ricardo Ribeiro
Institute for Systems and Robotics and Department of Bioengineering from Instituto Superior
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For the normal class we achieved 100% accuracy, for the chronic hepatitis 69.2%,
for compensated cirrhosis 81.48% and for decompensated cirrhosis 91.7%.
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1 Introduction

Chronic liver disease(CLD) is a significant cause of morbidity and mortality in
developed countries and commonly is caused by viral hepatitis and alcohol abuse
[1].

The initial stages of CLD are usually asymptomatic such assteatosisor hep-
atitis. Hepatitis is the inflammation of the liver, resulting in liver cell damage and
destruction[1]. It is caused by hepatitis viruses, which can have several types, or by
other factors, e.g. alcohol. Moreover the natural evolution of the disease may lead
to cirrhosisor evenhepatocellular carcinoma, which are more severe pathological
conditions, with high morbidity and mortality.Cirrhosis is a chronic disease that
is characterized anatomically by widespread nodules in theliver combined with fi-
brosis [2]. It is possible to distinguish two phases in cirrhosis, a stable form, called
compensated cirrhosis, and a more dangerous form that could lead to widespread
failure of the liver, calleddecompensated cirrhosis[3].

Liver biopsy has been the preferred tool in the evaluation and staging of the
CLD. However, its invasive nature and the development of other more accurate non-
invasive alternatives have lead to a decreasing on its usagefor assess the CLD.
Among these alternatives, CLD staging based on ultrasound (US) data has proven
to be a promising and safer alternative to biopsy.

In the review study presented in [1] it is shown that echogenicity, texture charac-
terization and surface morphology of the liver parenchyma are effective features to
diagnose the CLD. However, the evaluation of these featuresis normally affected by
the subjective assessment of the human operator. This factor may lead to significant
errors in the diagnosis and staging of CLD, since US liver images can show great
variability, as shown in Fig. 1. Therefore, new objective feature extraction and clas-
sification methodologies in aComputer Assisted Diagnosisframework are needed.

Several studies presented in the literature use objective features, extracted from
US images, and propose classification procedures to assess CLD [4]. Some of the
most common features are based on the first order statistics,co-occurrence matrix,
wavelet transform, attenuation and backscattering parameters and coefficients. A
brief description of some of these studies is given next.

In [5], an experimental study was performed aiming at to discriminate the liver
fibrosis from ultrasound images. They computed fractal features, entropy measures
and co-occurrence information from ultrasound images to characterize the liver
parenchyma form a textural point of view and the classification results showed an
overall accuracy (OA) of 85.2% by using a Fisher linear classifier. Other important
work described in [6] shows the ability of the Wavelet coefficients, also computed
from US images, to characterize the diffuse disease of the liver. Their goal was to
discriminate normal, steatotic and cirrhotic conditions.An OA of 90% is obtained
and comparison results by using other classes of features, such as co-occurrence
information, Fourier descriptors and fractal measures, show that the wavelet based
classifier outperforms the classifiers based on the other features, 87%, 82% and
69%, respectively.
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Normal Chronic Hepatitis Compensated Cirrhosis Decompensated Cirrhosis

Fig. 1 Ultrasound images variability in the different stages of Chronic Liver Disease

[7] categorized patient in normal (72), fatty liver (66) andchronic liver disease
(64), in order to evaluated the usefulness of standard deviation to measure the ho-
mogeneity of hepatic parenchyma from based on Ultrasound images. They observe
significant differences (p< 0.0001) between the chronic liver disease group and the
normal and fatty liver groups. They also concluded that higher average standard de-
viation values are related to wide distribution of intensity values within the ROI,
as reported for CLD group, which explains the characteristic appearance of hetero-
geneous echo texture in CLD groups, such as chronic hepatitis and liver cirrhosis.
Depict the good results obtained, the authors suggest careful in the use of this fea-
ture, since it is highly dependent on the ROI location.

Two main contributions for the CLD assessment are presentedin this work; i)
multi-modal features, extracted form US images, laboratorial and clinical data and
ii) a new classification procedure inspired in the clinical practice, here calledClini-
cal Based Classifier(CBC).

The discriminative power of the automatic classifier can be greatly increased if
the natural evolution and staging of the disease is taken into account.

The remainder of this chapter is organized as follows: Section 2 introduces the
pre-processing algorithm used, explaining the feature extraction and selection pro-
cedures, as well as the classifiers and the dataset used in this work. In Section 3
the results are presented showing the feature selection results and the classification
results for each of the used classifier. The discussion of theresults are presented in
Section 4 and conclusions are presented in Section5.
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2 Methods

The CBC aims at discriminate normal and three main pathologies in the CLD scope;
i) Chronic Hepatitis, ii) Compensated Cirrhosisand iii) Decompensated Cirrhosis.

The diagnosis of these pathologies is performed in the todayclinical practice
based on several sources of medical data such as US liver parenchyma images, lab-
oratorial exams and clinical indicators recommended in well established and ac-
cepted medical guidelines [3]. The diagnosis, however, is obtained by integrating
all information based mainly on subjective criteria of the medical doctor.

The CBC is a quantitative and highly automatic procedure that gives the medical
doctor objective and accurate information to help in the liver diagnosis process.

The CBC approach is composed by three main components; i) Features compu-
tation from multi-modal sources, ii) design and training ofa specific suitable classi-
fication strategy that takes into account the CLD specificities and iii) diagnosis and
validation of the method.

The main novelty of the method proposed in this chapter is a hierarchical clas-
sifier that mimics the structural approach ofdifferential diagnosisfollowed in the
clinical practice to identify the different stages of the CLD [8]. Instead of trying to
classify a given liver in one stage of the disease from a set ofpossible stages by using
a multi-classclassifier, e.g.k-Nearest Neighbor(kNN) or Support Vector Machine
(SVM), the hierarchical approach, represented in Fig.2, isused. In this strategy sev-
eral partial binary decisions are taken according the natural evolution of the disease.
In each step, a decision is taken by different binary classifiers trained, tunned and
optimized specifically for that task.

The first classification step (CS) discriminatesnormalversuspathologyliver. If
the liver is classified as pathologic in this first step, discrimination ofchronic hepati-
tis without cirrhosisandcirrhosis is attempted. In the last stepcompensated cirrho-
sisanddecompensated cirrhosisare discriminated. The decompensated cirrhosis is
assumed as the end-stage of every chronic liver disease before hepatocellular car-
cinoma.

The CBC (see Fig.2) design and optimization is performed at two levels: i) fea-
tures and ii) classifier type and parametrization selectionused specifically in each
CS. This means that at each CS of our hierarchical approach the classifier type and
features can be different.

The feature selection procedure is formulated as an optimization task with the
sensitivity maximization criterion [9,10]. The set of features at each CS is tunned for
the specificities of the corresponding CLD stage prior the classifier type selection.
This is done by thesequential forward floating selection(SFFS) [11] method with
the linear discriminant analysis (LDA) criterion. The leave-one-out cross-validation
technique is used for error estimation purposes.

The classifier selection at each CS is done with ROC analysis where the selected
classifier, kNN or SVM [12], is the one that jointly maximizesthetrue positive rate
(TPR) and thetrue negative rate(TNR).
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Fig. 2 Design of the CBC decomposition strategy for CLD classification.

The non-parametric kNN classifier is tested in this study. Itclassifies a test sam-
ple to a class according to the majority of the training neighbors in the feature space
by using the minimum Euclidean distance criterion [13,14].The algorithm for the
nearest neighbor ruleis summarized as follows [12]; Given an unknown feature
vectorx and a distance measure, then:

• Out of theN training vectors, identify thek nearest neighbors, regardless of class
label.

• Out of thesek samples, identify the number os vectors,ki , that belong to class
ωi , i=1, 2, ..., M.

• Assignx to the classωi with the maximum numberki of samples.

The other classifier tested in is the SVM classifier. Its aim isto find a deci-
sion plane that has a maximum distance (margin) from the nearest training pat-
tern[14,15]. Given the training data{(xi ,ωi)|ωi = 1 or −1, i = 1, ...,N} for a two-
class classification (wherexi is the input feature;ωi is the class label andN is the
number of training sample), the SVM maps the features to a higher-dimensional
space [14]. Then, SVM finds a hyperplane to separate the two classes with the deci-
sion boundary set by the support vectors[15].
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The general form of the decision functiong(x) for the SVM is [15]:

g(x) =
N

∑
i=1

αiyiz
T
i z+b (1)

where theαi and b are selected during the training process, constrainedby
∑αiyi = 0 and 0≤ αi ≤ c, where c is a user-defined penalty term, regulating the
general performance of the SVM. Under certain conditions, the computationally in-
tensive mapping process can be reduced with an appropriate kernel functionK such
that the decision function g(x) becomes,

g(x) =
N

∑
i=1

αiyiK(xi ,x)+b (2)

In this paper, the kernels adopted are the polynomial,

K(xi ,x) = (xT
i x+1)d (3)

and the Gaussian radial-basis function,

K(xi ,x) = e−r|xi−x|2
, (4)

whered is the degree of the polynomial kernel andr is the radius coefficient of
the Gaussian radial basis function kernel [15].

The performance of the CBC is assessed by comparing the corresponding clas-
sification results with the common multi-class decomposition strategy -one against
all. Theone against all(OAA) strategy consists on building one classification proce-
dure per class, trained to distinguish the samples in a single a class from the samples
in all remaining classes.

The features extracted from US data are some of the most important and discrim-
inative ones to the diagnosis. Therefore, in the next section a detailed description of
them and the way they are computed is described.

2.1 Ultrasound Image pre-processing and features extraction

The US images are corrupted by a type of multiplicative noise, calledspeckle, that is
usually considered undesirable to interpret the morphological information about the
anatomy of the organs under analysis. However, thespecklepattern contains useful
information about the tissues that can be used in the medicaldiagnosis [16].

Here, the method described in [16] is used. The B-mode US images, acquired by
the commonest US scanner available at most of medical facilities, is pre-processed
and decomposed into two fields: i)De-speckleand ii)Speckle.

The pre-processing stage is used to estimate the RF US image that is not usually
available in the US scanners but that is needed for the decomposition procedure. The
decomposition is performed in two steps; i) Denoising, where the estimated RF US
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image,yi, j , is filtered to obtain theDe-specklefield xi, j and ii) Speckleextraction,
ηi, j , obtained from the RF US noisy image,yi, j , and form theDe-specklefield,
xi, j , obtained in the previous step, under the adoption of theMultiplicative White
Rayleigh Model[16],

ηi, j =
yi, j

xi, j
. (5)

TheDenoisingalgorithm is formulated in a Bayesian framework were the pixels
of the noisy RF US estimated image are assumed to be Rayleigh distributed [16].
Here, theDe-specklefield is used to extract morphological features, such as liver
contour regularity and attenuation coefficient with dept, and theSpeckleone, con-
taining the noise pattern, is used to extract textural features from the parenchyma of
the liver. Figure 3 illustrates an example of the decomposition methodology.

(a) (b)

(c) (d)

Fig. 3 Decomposition procedure of US liver parenchyma. a) ObservedB-modeUS image. Esti-
mated b) envelope RF image, c)de-despeckleand d)speckleimage fields.

Next a small description of each class of features is provided.

Acoustic attenuation coefficient

Acoustic attenuation along depth has been extensively usedin the literature and
in clinical practice as an indicator of the CLD. However, thetrue correlation be-
tween this indicator and the hepatic disease is still controversial as referred in [17],
namely with respect tocirrhosis where some author report strong correlation be-
tween attenuation with depth while others do not find any significant relation. Other
studies suggested that fibrosis can also produce large attenuation values but it was
also reported fibrotic cases with normal attenuation.

In [18] the attenuation/backscatter is computed from the observed B-Mode US
image instead of the more common RF US image. This is for sake of simplicity
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and availability, since in most of the scanners the RF signalis not available. In their
method a ROI corresponding to the biopsy site is selected anda polygonal line,
describing the biopsy needle trajectory along the depth direction, is registered. The
average gray-level values for each point along a polygonal line is computed by aver-
aging 7 horizontal pixels and the attenuation coefficient isobtained by linear regres-
sion. They show that the attenuation clearly discriminatespure-fatty from normal
livers where the area under the curve (AUC) is equal to 1.00 [18]. Another interest-
ing result indicates that the presence of inflammation or fibrosis, even in cases of
severe stetosis, leads to a significant decreasing on the discriminative power of the
attenuation slope to distinguish healthy from steatotic livers.

Therefore, the attenuation coefficient, alone, does not hasdiscriminative power
for CLD diagnosis. However, together with other features ina more general classi-
fication framework, as the one presented here, it can providevaluable information
for the performance of the classifier.

The attenuation coefficient, indBMHz−1cm−1, can be obtained as follows [17],

α( f ) =
1

2l liver
10log10

(

|Sp( f )|

|Sp| f ( f )|

)

(6)

where f is the frequency inMHz, l liver is the thickness of the sample,|Sp( f )| is the
power spectrum without specimen, and|Sp| f ( f )| is the power spectrum with speci-
men. This generates an approximately linear attenuation curve inside the frequency
band whose slope, obtained linear regression, is function of frequency. The global
value is computed by integrating in frequency.

In this work the attenuation coefficientα is estimated by using the method pro-
posed in [18] that is basically the following linear regression problem

m̂= argmin
m

J (X) (7)

whereX is theN×M De-specklefield. The objective function is

J =
N

∑
l=0

(α l +b− f (l))2 (8)

where f (l) = 1
M ∑M

c=1xl ,c is the average value intensity of eachDe-speckleimage
line, in the assumption, that depth increases along each column

First-order statistics

First order statistics, computed from the histogram,h(i), of the estimated gray-scale
RF US image,Y, where pixel spatial correlation is not taken into account,are some
of the most important features for the echo texture analysisof the liver parenchyma
[7,13]. The first order characteristics used in this work arethe mean and standard
deviation
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µ =
1

NM

256

∑
i

h(i), (9)

σ =

√

√

√

√

(

1
NM−1

256

∑
i=1

(h(i)−µ)2

)

, (10)

Co-occurrence

The elements of theCo-ocurrencetensor,Co= {ci, j(∆l ,∆c)}, describe the gray
level spatial inter-relationship in the image [13]. More precisely, elementci, j(∆l ,∆c)
represents the joint probability of the pixel intensitiesi and j in relative spatial
position of(∆l ,∆c) [15] and can be computed as follows

ci, j(∆l ,∆c) =
N

∑
l=1

M

∑
c=1

{

1 i f (ηl ,c = i)∧ (ηl+∆ l ,c+∆c = j)
0 otherwise

(11)

In [15] it is reported an OA of 90% using features extracted from the Co-
occurrencetensor in the detection of thecirrhosiscondition. They show, in a high-
frequency (25MHz) US study described in [19], that the values of the features ob-
tained from theCo-occurrencetensor are able to discriminate cirrhotic, steatotic and
healthy livers. However, the classification accuracy decreased when discrimination
between different grades of steatosis and fibrosis are attenmpted.

The following statistical features, computed from theCo-occurrencetensor for
(∆l ,∆c) ∈ {(6,0)}, as suggested by [6], are used in this work:

• Contrast: measure the local variations in the co-occurrence matrix,

∑
i, j

|i − j|2c(i, j) (12)

• Correlation: measure the joint probability occurrence of the specified pixel pairs,

∑
i, j

(i −µi)( j −µ j)c(i, j)

σiσ j
(13)

• Energy: also known as the angular second moment [13],

∑
i, j

c(i, j)2 (14)

• Homogeneity: measures the closeness of the distribution of elements in the matrix
to the matrix diagonal,
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∑
i, j

c(i, j)
(1+ |i − j|)

(15)

The Wavelet Transform

The Wavelet Transformis used here to perform a multi-scale analysis of the
Specklefield, containing the noise pattern of the estimated RF US image, for liver
parenchyma textural characterization purposes. The decomposition is performed ac-
cording the Fig.4 where a sequence of low-pass, (G), and high-pass, (H), filtering
operations followed by down-sampling the results,↓ 2, generates a pyramidal rep-
resentation of the original image with decreasing resolution comprising a lower res-
olution low-pass component (approximation component), (LL), and three high-pass
components (detailed components) along the horizontal, (HL), vertical, (LH), and
diagonal directions, (HH), according Fig.5. An example of amulti-scale wavelet
transform analysis using theSpecklefield of an US liver image is provided in Fig.
6.

The high-pass components, (H) contain the detailed information of the image
at different resolution scales along three directions while the low-pass versions (L)
contain the approximation component.

H

G

2

2

H

G

G

H

2

2

2

2

HH

HL

LH

LL

rows columns

H

G

2

2

H

G

G

H

2

2

2

2

HH

HL

LH

LL

rows columns

Fig. 4 Discrete image wavelet decomposition scheme (from [20])

LL2

LH2

HL2

HH2

HL1

LH1 HH1

Fig. 5 Wavelet pyramidal decomposition of images.
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Fig. 6 Wavelet pyramidal decomposition example with theSpecklefield of an US liver image.

Tissue characterization based on wavelet multi-resolution analysis as been per-
formed in several works [6,15,19,21]. This approach is effective in the morphologi-
cal characterization of the image from the approximation fields and at the same time
in a textural characterization at several resolution scales from the detailed fields.
For instance, in [6], the application of non-separable wavelet transform features for
liver tissue characterization is investigated. The estimation of a texture quality is
performed with the four-levelquincunxdecomposition which makes it possible to
obtain feature vectors with maximal length of five elements [6] and an overall clas-
sification accuracy of 90% and a specificity of 92%. Sensitivity in the detection of
cirrhosis and steatosis is 92% and 97%, respectively. Similar results are also reported
in [15,19].

Autoregressive model

The autoregressive (AR) model approach has been used since long time with success
in several applications of engineering where identification and characterization of
systems and processes is needed [22]. In the canonical definition of a 1D p-order
AR model each sample is modeled as a linear combination of thepreviousp samples
with unknown coefficients,ak [23]

x(n) =
p

∑
i=1

aix(n− i)+ r(n) (16)
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where the residue signal,r(n), is assumed to be white and zero mean normal dis-
tributed. For image applications the following 2D formulation of the (p,q)-order
AR model is used [24]

x(n,m) =
p

∑
i=0

q

∑
j=0

ai j x(m− i,n− j)+ r(n,m) (17)

wherex(n,m) is then,mth pixel of the image anda0,0 = 0 .
There are many algorithms to compute AR parameters; Levinson Burg, least-

squares, gradient based, lattice filter and Kalman filter [25]. In this work, we will
use the most popular, the least-squares algorithm [25]

The order of the model,(p,q), controls the error associated with the AR signal
approximation [26]. Small orders ignore the main and long term statistical proper-
ties of the original signal while larger ones may lead to over-fitting effects [26,27].
Therefore, choosing the order of the model becomes a key problem and there are
several methods to do it [23–27]. Here the first order model was adopted because it
was confirmed by [28] that in this scope it leads to the minimumerror probability.

Liver surface contour

Beside the textural features used to discriminate the pathologies of the liver, as re-
ferred before, US images may also be used to compute morphological features cor-
related with some of these pathologies. The importance of the US image in the
assessment liver surface nodularity, portal vein mean flow velocity and the enlarge-
ment of the caudate lobe is stressed in [29]. Particularly, liver surface nodularity as
been documented as a reliable sign in the detection of liver cirrhosis [3,30,31].

An accuracy of more than 70% as been reported by [3] and in [30]the authors
showed that the observed liver contour irregularities directly correlated with the
gross apperance of the cirrhotic liver as seen at laparoscopy. Liver surface nodular-
ity in US can be well appreciated when ascites (presence of free fluid within the
abdominal cavity) is present or when a high-frequency transducer (7.5 - 12 MHz)
is used [32]. In [3], where a low-frequency transducer (3.5 -5 MHz), also refer that
liver surface is an important parameter associated with thehistopathological diag-
nosis of liver cirrhosis.

Despite the consensual correlation of the liver surface morphology with cirrhosis,
the effectiveness of the different diagnosis methods used in the clinical practice is
very limited because the analysis is most of the time subjective, non-reproducible
and operator-dependent [33].

Here, a semi-automatic objective method for the liver surface characterization is
proposed. The liver surface contour is segmented from theDe-specklecomponent
of the US image by using a snake technique proposed by [34], asshown in Fig. 7.

The irregularity of the contour is measured by means of the root mean square
of the different angles, produced by the points that characterize the contour and the
variation of the points of the contour in they axis. In this approach the contour first



14 Ricardo Ribeiro, Rui T. Marinho, Jasjit S. Suri, and J. MiguelSanches

Original US image De−speckled US image Detected Contour

Fig. 7 Method used to detect the liver surface contour. First row corresponds to a normal liver;
second row to a compensated cirrhotic liver and the last row to a decompensated cirrhotic liver.

point is assumed as the reference point. The first order statistics (mean and variance)
of the referred variables are also extracted.

Biochemical and Clinical features

Besides image based features, several other clinical data and biochemical tests are
useful for evaluating and managing patients with hepatic dysfunction.

These features are selected according to their purported clinical and pathophys-
iological role in CLD [8]. The clinical and pathophysiological characteristics of
CLD can be grouped in terms of hepatic insufficiency, portal hypertension, hyper-
dynamic circulation, liver inflammation, necrosis and fibrosis, as well as etiologic
factors [8,29,31]. Hepatic insufficiency is suggested by the Child-Pugh score, albu-
min, total bilirubin, encephalopathy and prothrombin time[8]. Portal Hypertension
is usually accessed by the presence of ascites, varices and gastro-intestinal bleed-
ing, among others. Creatinine and sodium are variables usedfor the study of hy-
perdynamic circulation [8]. Liver inflammation, necrosis,fibrosis and histology can
be evaluated, according to [8], based on aspartate transaminase (AST), gamma glu-
tamyl transpeptidase (gGT), lactate dehydrogenase (LDH) and alanine transaminase
(ALT). Also the etiologic factors are taking into account, namely the alcohol absti-
nence, alcoholic ethiology, hepatitis B and C and other cause for the CLD [29].
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The features extracted from the US images, the laboratorialand clinical infor-
mation that were considered for the feature selection procedure are listed in Table
1.

Source Feature
Liver
echogenicity
(de-speckled
field)

Acoustic attenuation coefficient(F1), measured by the slope coefficient of
the linear regression of intensities along the depth/lines [18]
First-order statistics, including the mean (F2) and standard deviation (F3)
of the pixel intensities;

Liver surface
contour
(de-speckled
field)

Root mean squareof the anglesproduced by the points that characterize
the contour (F4), where the first point was assumed as the reference point.
Root mean squareof the coordinatesof the contour points in the y axis
(F5)
Mean (F6) andvariance (F7) of theangles
Variance of the y axiscoordinatesat each point (F8).
Correlation coefficient of the y axis coordinates (F9).

Liver Texture
(speckle field)

Co-occurrence matrix, which enables to derive [35]: the contrast (F10) ,
correlation (F11) that measures the joint probability occurrence of specific
pixel pairs, energy (F12) of the image (obtained by summing of squared el-
ements of the image) and homogeneity (F13) which quantifies the closeness
of the distribution of matrix elements to its diagonal.
Wavelet energies, measured by the vertical (F14) and horizontal (F15) detail
energies of the first Haar wavelet decomposition.
Autoregressive (AR) coefficients of a first order 2D model,
{a0,0(F16),a1,0(F17),a0,1(F18)}.

Laboratorial
Information [29]

Total bilirubin (F19) , prothrombin time (F20) , albumin (F21) , creatinine
(F22), AST (F23), ALT (F24), gGT (F25) , glycemia (F26), sodium (F27), urea
(F28) and lactate dehydrogenase(F29).

Clinical
Information [29]

Cause of disease (F30), which include none (0), alcohol (1), hepatitis B (2),
hepatitis C (3), alcoholic hepatitis B (4) and C (5) and All (6), and the fol-
lowing binary indicators: tumor (F31), ascites (F32), encephalopathy (F33),
Gastro-Intestinal bleeding (F34) infection (F35), alcoholic habits (F36) and
Child-Pugh score (F37).

Table 1 Features extracted from the US images, Laboratorial and Clinical information

2.2 Data set

Patients with an established diagnosis of chronic liver disease, in the various stages
of the disease, were included for this study. A total of 115 USliver images from 115
patients, including 26 normal livers (Normal), 26 chronic hepatitis without cirrho-
sis (Chronic Hepatities), 27 compensated cirrhosis (Compensated Cirrhosis) and 36
decompensated cirrhosis (Decompensated Cirrhosis), were involved in the experi-
ments.

The patients were selected from the Gastroenterology Department of the Santa
Maria Hospital, in Lisbon, with known diagnosis based on liver biopsy results. Their
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clinical histories, laboratory tests and US images were obtained in the same day.
The study protocol was approved by the Ethics Committee of the referred Hospital,
it was explained to the the patients and informed consent wasobtained in each case,
according to the principles of the Declaration of Helsinki.

All patients underwent hepatic US exam, performed by an expertize using a
Philips c©CX50 scanner with a broadband curved array transducer with afrequency
range of 2.0 to 5.0MHz. All US images were stored in DICOM format. A ROI of
128× 128 pixels along the medial axis was extracted from each image and pre-
processed by using the algorithm described in Section2.1, as shown in Fig. 8.

Fig. 8 Generic design for the selection of a ROI from the Ultrasound images and posterior pre-
processing result

3 Results

In this section the results with data from real patients, obtained with the Matlab
toolbox for Pattern Recognition, PRTools 4.1 [36], are presented to validate the
proposed CBC method.

3.1 Feature Extraction and Selection

The features extracted from the different medical modalities computed in this work
are all used along the classification pathway of the CBC. However, at each step,
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only a fraction of the entire set is used, so a feature selection procedure is needed.
Consequently, an optimum sub-set of features from the wholeset is selected by
maximizing the accuracy result of the LDA classifier. This optimization procedure
is used for both classification strategies, OAA and CBC. Notice that at this stage we
are interested in choosing the best features and not the bestclassifiers, that the rea-
son only the LDA classifiers is used [9]. For comparison and performance analysis,
classification results at each CS without feature selectionis also computed and the
results are shown in Table 2.

Feat. Set Normal Chronic Hepatitis Comp. Cirrhosis Decomp. Cirrhosis

No FS
US 3.9 (67.8) 23.1 (75.7) 25.9 (75.7) 44.4 (67.8)
LabClin 92.3 (91.3) 11.5 (72.1) 40.7 (74.8) 75.0 (86.0)
All 88.5 (90.4) 30.8 (70.4) 37.0 (69.6) 72.2 (86.2)

FS
OAALabClin 100.0 ( 98.0) 62.0 (78.3) 48.0 (77.0) 81 (89.6)
OAA 100.0 (100.0) 68.0 (80.4) 56.0 (78.0) 86 (92.0)
CBC 100.0 (100.0) 65.4 (75.3) 80.5 (82.5) 90.7 (82.5)

Table 2 Sensitivity and overall performance, in parenthesis, percentage results for the one against
all strategy with the US-based feature set (US), with laboratorial and clinical feature set (LabClin)
and All features (All) without the feature selection procedure (No FS); and the results using the
feature selection (FS) procedure for the one against all strategy with laboratorial and clinical feature
set (OAALabClin), the with the complete feature set (OAA) and Clinical Based Classifier (CBC)

Table 2 shows the results obtained with only image, only clinical based features
and with the complete features set without and with FS procedure. It is observed
that by using only US-based features without feature selection, unacceptable re-
sults for clinical practice are obtained with sensitivities of 3.9%, 23.1%, 25.9% and
44.4% for theNormal, Chronic Hepatitis, Compensated CirrhosisandDecompen-
sated Cirrhosisclass, respectively. Classification only with clinical based features,
and again without feature selection, which is the usual approach in the daily clini-
cal practice (LabClin), leads also to unsatisfactory results, in particular, forChronic
Hepatitis and Compensated Cirrhosiswith sensitivities of 11.5% and 40.7%, re-
spectively. The combination of both sets of features leads to marginal improvement
for theChronic Hepaptitisclass but a decreasing for all other classes.

Feature selection seems to be a key operation to a good performance of the clas-
sification process as it can be observed from Table 2. In the second part of the Table
the classification results are presented with FS for three different classificaion strate-
gies; i) One-Against-All(OAA) only with laboratorial and clinical based features
(OAALabClin), ii) OAA and iii) CBC.

The classifier inspired ondifferential diagnosis(CBC) with both US and LabClin
features, selected with the proposed FS scheme, outperforms the other configura-
tions with exception of theChronic Hepatitiswhere the OAA strategy with FS is
the better (68.0(80.4)%), as observed in Table 2.

The specific features for each CS on the CBC and OAA are listed in Table 3.
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OAA CBC
US Lab Clinical US Lab Clinical

N - - 24, 30, 36, 37 - - 24, 30, 36, 37
CH 2, 16 19, 24, 25, 26, 28 33 16, 17 19, 24, 26, 28 37
CC 5,10,11,15,17 19,20,29 - 10,11,14,16,17 - -
DC 15 21 30, 32, 34 10, 11, 14, 16, 17 - -

Table 3 Set of features selected for the one against all strategy (OAA) and Clinical
Based Classifier (CBC).N=Normal; CHC=Chronic Hepatitis;CC=Compensated Cirrhosis; and
DC=Decompensated Cirrhosis.

The optimum features for theNormal detector in both strategies are the same,
belonging entirely to the LabClin set; clinical[F30,F37,F36] and laboratorial[F24],
which means that the traditional approach in clinical practice to detect illness based
on clinical and laboratorial indicators seems to be appropriated.

For theChronic Hepatitisthe OAA strategy selects 8 features, mainly from the
laboratorial,[F19,F24,F25,F26,F28] and clinical,[F33], sets. However, it also selects
features from the US images; liver texture[F16] and liver echogenicity[F2]. In the
case of the CBC strategy for theChronic Hepatitisdetector, different optimum fea-
tures are selected; 4 from the laboratorial set,[F19,F24,F26,F28], two from the US
set, texture[F17,F16], and one from the clinical set,[F37].

The optimum set of features in the case ofCompensated Cirrhosis, with the
OAA strategy, are based on US images; texture,[F15,F10,F17,F11], and surface con-
tour, [F5], and on laboratorial information,[F29,F20,F19]. For theDecompensated
Cirrhosis this same strategy makes use of 5 features preponderantly from clinical
data.

The discrimination ofCompensatedandDecompensated Cirrhosis, is obtained
in the CBC strategy, by using only 5 US-based textural features,[F16,F17,F14,F10,F11].

These are the optimum features used in each CS. Next the results of a simil-
iar procedure by using both strategies, OAA and CBC, for classifier selection are
presented.

3.2 Classifier selection

For each CS one out of two classifiers, kNN or SVM, is selected according the
classification accuracy optimality criterion for that step. Different parameterizations
of each classifier are tested and the optimum configuration and classifier is select for
each CS.

kNN classifier

Nine different neighborhood configurations, corresponding to k= 1..9, were tested
in each CS with both optimal sets of features obtained in the previous section.
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N detector CHC detector CC detector DC detector
TNR TPR (N) OA TNR TPR (CHC) OA TNR TPR (CC) OA TNR TPR (DC) OA

k=1 100 100 100 87.64 42.31 77.39 87.5 29.63 73.91 92.41 88.89 91.3
k=2 100 100 100 93.26 15.38 75.65 95.45 22.22 78.26 96.2 75 89.57
k=3 100 100 100 87.64 46.15 78.26 90.91 44.44 8094.94 86.11 92.17
k=4 100 100 100 91.01 38.46 79.13 95.45 33.33 80.87 96.2 83.33 92.17
k=5 100 100 100 88.76 46.15 79.1393.18 37.04 80 92.41 86.11 90.43
k=6 100 100 100 93.26 30.77 79.13 94.32 25.93 78.26 93.67 83.33 90.43
k=7 97.75 100 98.26 91.0 50 81.74 92.05 37.04 79.13 91.14 83.33 88.7
k=8 97.75 100 98.26 94.38 34.62 80.87 95.45 14.81 76.52 93.67 83.33 90.43
k=9 97.75 100 98.26 88.76 50 80 94.32 25.93 78.26 92.41 83.33 89.579

Table 4 TNR, TPR and OA percentage results of the kNN classifier for the evaluation set of the
OAA strategy for each class.N=Normal;CHC=Chronic Hepatitis;CC=Compensated Cirrhosis;
andDC=Decompensated Cirrhosis.

CS1 (Normal detector) CS2 (CHC detector) CS3 (Cirrhosis detector)
TPR (N) TNR OA TPR (CHC) TNR OA TPR (CC) TNR (DC) OA

k=1 100 100 100 42.30 87.30 74.16 0 100 77.78
k=2 100 100 100 73.08 68.25 69.66 22.22 100 74.60
k=3 100 100 100 61.54 82.54 76.40 70.37 94.44 84.13
k=4 100 100 100 69.23 71.43 70.78 81.48 88.89 84.13
k=5 100 100 100 57.69 80.95 74.16 80.78 91.67 85.71
k=6 100 100 100 69.23 74.60 73.03 77.78 91.67 84.13
k=7 100 97.75 98.26 65.38 77.78 74.16 74.07 94.44 84.13
k=8 100 97.75 98.26 73.08 74.60 74.16 74.07 94.44 84.13
k=9 100 97.75 98.26 53.85 77.78 70.79 74.07 94.44 82.54

Table 5 TPR, TNR and OA percentage results of the kNN classifier for the evaluation set
of the CBC strategy.N=Normal; CHC= Chronic Hepatitis;CC=Compensated Cirrhosis; and
DC=Decompensated Cirrhosis.

Table 4 illustrates the results obtained for the OAA strategy with the kNN classi-
fier. These results show a sensitivity to discriminate theNormalclass of 100% for all
configurations. The best sensitivities forChronic Hepatitis, Compensated Cirrhosis
andDecompensated Cirrhosisare 50.0%(k=7), 44.44% (k=2) and 86.11% (k=2,5),
respectively.

The equivalent results obtained by the CBC strategy are shown in Table 5. As
in the previous strategy, the performance of the normal detector is optimum, which
means, maxima TPR, TNR and OA, fork= 1,2,3,4,5,6.

In the case of the chronic hepatitis detector the best OA (74.16%) is for k=8,
corresponding to a TPR of 73.08% and FPR of 74.6% (cirrhosis detection). In the
last CS, the cirrhosis detector, the results reveal an OA of 85.71% for k=5. The
TPR is 80.78% (Compensated Cirrhosis) and the TNR is 91.67% (Decompensated
Cirrhosis).

SVM classifier with polynomial kernel

The same analysis performed previously for the kNN classifier will be now pre-
sented for the SVM one.



20 Ricardo Ribeiro, Rui T. Marinho, Jasjit S. Suri, and J. MiguelSanches

Several parameterizations of the polynomial kernel were tested. The parameter
are the cost,c= 1,10,100,500, and the degree,d = 1,2,3,4,5. Here, only the best
results obtained forc= 1 are presented.

degree N detector CHC detector CC detector DC detector
TNR TPR (N) OA TNR TPR (CHC) OA TNR TPR (CC) OA TNR TPR (DC) OA

1 96.63 100 97.39 89.89 23.08 74.78 81.82 59.26 76.52 91.14 72.22 85.22
2 98.88 100 99.13 87.64 73.08 84.35 85.23 59.26 79.1393.67 91.67 93.04
3 98.88 100 99.13 85.39 61.54 80 79.55 55.56 73.91 92.41 88.89 91.3
4 100 100 100 89.89 50 80.87 80.68 55.56 74.7894.94 91.67 93.91
5 98.88 100 99.13 88.76 46.15 79.13 80.68 51.85 73.91 89.87 91.67 90.43

Table 6 TNR, TPR and OA percentage results of the SVM classifier with polynomial kernel for
the evaluation set of the OAA strategy.N=Normal;CHC= Chronic Hepatitis;CC=Compensated
Cirrhosis; andDC=Decompensated Cirrhosis.

The results obtained with the polynomial kernel by using theOAA strategy are
listed in Table 6. An ideal classification result is obtainedin the normal detector for
d = 4. For chronic hepatitis and cirrhosis detectors the best result, for d = 2, are:
sensitivity 73.08% and 59.26% forChronic HepatitisandCompensated Cirrhosis,
respectively. The optimum configuration in theDecompensated Cirrhosiscase is for
d = 4, corresponding to a senitivity of 91.67%.

degree CS1 (Normal detector) CS2 (CHC detector) CS3 (Cirrhosis detector)
TPR (N) TNR OA TPR (CHC) TNR OA TPR (CC) TNR (DC) OA

1 96.63 100 97.39 69.23 84.13 79.76 77.78 91.67 85.71
2 98.87 100 99.13 65.38 79.37 75.28 70.37 86.11 79.36
3 98.87 100 99.13 69.23 82.54 78.65 66.67 80.56 74.60
4 100 100 100 61.54 84.13 77.53 62.96 83.33 74.60
5 98.87 100 99.13 65.38 82.54 77.53 66.67 83.33 76.19

Table 7 TPR, TNR and OA percentage results of the SVM classifier with polynomial kernel for
the evaluation of the CBC strategy.N=Normal;CHC= Chronic Hepatitis;CC=Compensated Cir-
rhosis; andDC=Decompensated Cirrhosis.

Table 7 shows the results obtained by using the proposed CBC approach. The
normal detector ford = 4 is ideal under all figures of merit (OA, TPR, TNR =
100%). For the remaining CS the optimal kernel degrees ared = 1. In the chronic
hepatitis detector the best OA is 79.76%, with a sensitivityof 69.23%. For theCom-
pensated Cirrhosisthe sensitivity is 77.78% while for theDecompensated Cirrhosis
is 91.67%.

SVM classifier with Gaussian radial-basis kernel

To optimize the SVM with Gaussian radial-basis kernel, for the different classifica-
tion tasks, the radius parameter (r) was ranged from 0.1 to 5 with steps of 0.5. The
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c parameter was also tested in different values,c= 1,10,100,500, for each radius
value. The best results are obtained forc= 10.

radius N detector CHC detector CC detector DC detector
TNR TPR (N) OA TNR TPR (CHC) OA TNR TPR (CC) OA TNR TPR (DC) OA

0.1 100 100 100 100 0 77.39 100 0 76.52 98.73 22.2 74.78
0.6 100 100 100 95.51 3.85 74.78 100 0 76.52 96.2 75 89.57
1.1 100 100 100 93.26 15.38 75.65 97.73 14.81 78.26 94.94 83.33 91.3
1.6 96.63 100 97.39 93.26 26.92 78.26 96.59 29.63 80.87 91.14 83.33 88.7
2.1 95.51 100 96.52 92.13 23.08 76.5296.59 44.44 84.35 91.14 83.33 88.7
2.6 96.63 100 97.39 92.13 11.54 73.91 95.45 29.63 8091.14 86.11 89.57
3.1 95.51 100 96.52 96.63 3.85 75.65 94.32 11.11 74.78 91.14 86.11 89.57
3.6 95.51 100 96.52 98.88 3.85 77.39 93.18 3.7 72.17 91.14 86.11 89.57
4.1 95.51 100 96.52 98.88 3.85 77.39 96.59 0 73.91 91.14 86.11 89.57
4.6 95.51 100 96.52 98.88 3.85 77.39 97.73 0 74.78 91.14 75 86.09

Table 8 TNR, TPR and OA percentage results of the SVM classifier with radial basis kernel for
the evaluation set of the OAA strategy.N=Normal;CHC= Chronic Hepatitis;CC=Compensated
Cirrhosis; andDC=Decompensated Cirrhosis.

The SVM classification results with Gaussian radial-basis kernels for the OAA
strategy are summarized in Table 8. For this strategy, this classifier exhibit the worst
results for all detectors when compared with the other tested classifiers . The sen-
sitivity is 100% forNormalclass, with the first three radius values, a sensitivity of
26.92% forChronic Hepatitisclass, withr = 1.6, 44.44% forCompensated Cirrho-
sis, with a r = 2.1, and 86.11% forDecompensated Cirrhosisclass, withr = 2.6.

radius CS1 (Normal detector) CS2 (CHC detector) CS3 (Cirrhosis detector)
TPR (N) TNR OA TPR (CHC) TNR OA TPR (CC) TNR (DC) OA

0.1 100 100 100 0 100 70.79 0 100 57.14
0.6 100 100 100 23.08 96.83 75.28 22.22 100 66.67
1.1 100 100 100 38.46 95.24 78.65 70.37 94.44 84.12
1.6 96.63 100 97.39 34.62 95.24 77.53 81.48 88.89 85.71
2.1 95.50 100 96.52 34.62 93.65 76.40 81.48 91.67 87.30
2.6 96.63 100 97.39 23.08 93.65 73.03 77.78 91.67 85.71
3.1 95.50 100 96.52 19.23 95.24 73.03 74.07 94.44 85.71
3.6 95.50 100 96.52 11.54 96.83 71.91 74.07 94.44 85.71
4.1 95.50 100 96.52 11.54 100 74.16 74.07 94.44 85.71
4.6 95.50 100 96.52 11.54 100 74.16 74.07 91.67 84.13

Table 9 TPR, TNR and OA percentage results of the SVM classifier with radial basis kernel for
the evaluation set of the CBC strategy.N=Normal;CHC= Chronic Hepatitis;CC=Compensated
Cirrhosis; andDC=Decompensated Cirrhosis.

With the CBC strategy the results are better than using the OAA one as shown
in Table 9.As in the previous case, the normal detector presents OA, TPR and TNR
of 100% withr = 0.1,0.6,1.1. The wort results is for theChronic Hepatitiswhere
the sensitivity is 38.46% and the OA is 78.65% (r = 1.1). For the last CS of the
CBC approach, the optimal radius isr = 2.1 resulting in an OA of 87.3%. The indi-
vidual performances showed a sensitivity of 81.48% and 91.67% for Compensated
CirrhosisandDecompensated Cirrhosis, respectively.
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4 Discussion

The proposed CBC algorithm for diagnosis and staging of the CLD has been ap-
plied to an experimental database of 115 patients, with wellestablished diagnosis,
according the guidelines accepted in the gastroenterologymedical community.

The multi-modal feature set proved to be an appropriate approach for this classi-
fication problem. An algorithm was designed and implementedto select the optimal
set of features for each CS. The performance of the FS algorithm was evaluated
and the results compared with the ones obtained without FS procedure. This proce-
dure, based on the SFFS with LDA criterion, leads to a clearlyimprovement of the
classification accuracy and sensitivity in all classes/detectors.

The results reveal an important issue: each modality feature set has, at each CS,
different discriminative power. In the first CS, laboratorial and clinical features are
more discriminative than the US based features. As already stated before, this fact
confirms the appropriateness of the traditional diagnosis method used in clinical
practice. For more severe stages of CLD, the FS procedure automatically attributes
more and more importance to the US image based features. US textural features,
obtained from the first order AR model coefficients and the wavelet coefficients
obtained form the first Haar wavelet decomposition, are particular relevant.

This fact corroborates the difficulty reported in the literature [3] in discriminating
advanced stages of the CLD only from laboratorial and clinical information. This is
particularly visible in the last CS, where only US based features are automatically
selected.

The US textural features selected here are in accordance with the results of sev-
eral other studies [6,15,21,27]. In these studies, wavelettransform [6,15,21] and
AR coefficients [27] based features, from US images, are presented as having high
discriminative power in the assessment of CLD stages.

Liver contour US based features were extract from a semi-automatic post-
processing algorithm. Apparently, this set of features is not very important because
they are only selected in one of the strategies, the OAA one. In the proposed CBC
they are not selected at all. This class of features was included in this study because
several works in the literature [3,30,31] refer its potential usefulness for CLD diag-
nosis. However, our results also reinforce the conclusionson [33], where it is stated
that the liver surface morphology analysis performed basedon US data is subjective
and non-reliable.

Another important conclusion is that US echogenicity is notsuitable for discrim-
ination in CLD. This confirms previous results in the literature [17,18] where it was
shown the low discriminative power of the features[F1,F2,F3].

The main novelty of this work is the proposal of a new classification and staging
strategy for CLD where the natural evolution of the disease is taken into account.
The well established protocol ofdifferential diagnosis, used in the medical com-
munity, also inspired the design of the CBC. This approach outperforms the OAA
strategy.

For theNormalclass the results showed a perfect accuracy in discriminating the
normal from the diseased patients, for all classifiers in both decompositions. It is
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possible to refer that we improved the reported results described in the literature
[6,13,15]. This is due to the proposed multi-modal feature and feature selection
approach, since the system only selected clinical and laboratorial data. The disease
clinical knowledge proved to be crucial for this CS.

Liver fibrosis is related, in part, withChronic Hepatitispatients without cirrhosis.
In the study preformed by [15] it is referred the difficulty inthe classification of liver
fibrosis based on US images. Their study revealed an OA of 72%,with a sensitivity
of 60% for patients with fibrosis grade of 3 (Chronic Hepatitisclass) and 88.6%
for patients with fibrosis grade of 4 (Cirrhosisclass). In the present study, we were
able to improve the detection of theChronic hepatitisclass by using the SVM with
a polynomial kernel of degreed = 1, when compared with the results presented in
[15]. Our results are an OA of 79.8% with a sensitivity of 69.2% and 84.1% for
Chronic HepatitisandCirrhosisclass, respectively.

Concerning the cirrhosis detector, with the CBC strategy, [3] reported that the
accuracy in detecting signs of compensated cirrhosis has not been well investigated.

Concerning the cirrhosis detection, our results show how important the US-based
features are in CBC. The best results were obtained with the Guassian radial-basis
SVM classifier (r = 2.1), where an OA of 87.3% with a sensitivity of 81.48% for
theCompensated cirrhosisclass and 91.7% for theDecompensated cirrhosisclass
were achieved. In [3] a sensitivity of 82.2% for theCompensated cirrhosisclass was
reported.

The final optimized configuration adopted for the CBC classifier, according all
tests of features and classifiers selection performed in this work, is the following
(see Fig.9): CS1, Normal detector, is a kNN with (k = 1); CS2, Chronic hepatitis
detector, is a polynomial kernel SVM with (d = 1); and CS3, Cirrhosis detector, is
a Guassian radial-basis kernel SVM with (r = 2.1).

5 Conclusions and Future Work

Many scientific and medical problems require different concepts or classes to be
distinguished. The goal is to extract sufficient discriminatory information to assign
an object reliably, each in the medical field is of major importance. In this sense
this study was develop with the premise that the multi-classclassification problem
should address the normal behavior of chronic liver disease. To solve this investi-
gation question, we develop theClinical Based Classifierstrategy. The proposed
multi-feature and multi-classifier system, based on a pre-processing US image de-
composition proved to be a useful approach to the CLD classfication problem.

The results presented in this study showed that it is possible to identify the dif-
ferent stages of chronic liver disease based on US liver images, particularly textural
features, as well as laboratorial and clinical features. This is achievable by decom-
posing the data based on the different stages of the disease :The group with the
most severe stage,Decompensated cirrhosis, is well discriminate, while patients in
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Fig. 9 Proposed algorithm for the classification of Chronic Liver Disease based on US images,
clinical and laboratorial features
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lower stages,Chronic HepatitisandCompensated cirrhosis, need further analysis,
in order to improve even more the classification results.

In future work, the proposed multi-feature approach will beexpanded to incor-
porate more textural and morphological features. Moreoverfuture work will also
investigate classifier combination techniques as well as other features selection al-
gorithms.
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Garćıa-Pagan, and Jaime Bosch. Ultrasonographic evaluation of liver surface and transient
elastography in clinically doubtful cirrhosis.Journal of Hepatology, 52(6):846 – 853, 2010.

32. V. Droga and D. Rubens.Ultrasound Secrets. Hanley and Belfus, 2004.
33. J A Ladenheim, D G Luba, F Yao, P B Gregory, R B Jeffrey, and G Garcia. Limitations of

liver surface US in the diagnosis of cirrhosis.Radiology, 185(1):21–23, 1992.
34. Chris Bregler and Malcolm Slaney.Snakes-A MatLab MEX file to demonstrate snake contour-

following, 1995.
35. Kazuo Maeda, Masaji Utsu, and Paul E. Kihaile. Quantification of sonographic echogenicity

with grey-level histogram width: A clinical tissue characterization.Ultrasound in Medicine &
Biology, 24(2):225 – 234, 1998.

36. R.P.W. Duin, P. Juszczak, P. Paclik, E. Pkalska, D. de Ridder, D.M.J. Tax, and S. Verzakov.
PR-Tools4.1, a matlab toolbox for pattern recognition, 2007.http://prtools.org.


