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Abstract Chronic Liver Disease is a progressive disease, most ofrtieedsymp-
tomatic, and potentially fatal. In this chapter, an automptocedure to stage the
disease is proposed based on ultrasound liver images;allemd laboratorial data.
A new hierarchical classification and feature selectiorraagh, inspired in the cur-
rent diagnosis procedure used in the clinical practiceg lvatledClinical Based
Classifier is described. The classification procedure follows thd esfablished
strategy of liver diseasdifferential diagnosisThe decisions are taken with differ-
ent classifiers by using different features optimized tophseicular task for which
they were designed. It is shown that tG&nical Based Classifiemethod outper-
forms the traditionabne against almethod because it take into account the natural
evolution of the hepatic disease. Different specific fesguare used to detect and
classify different stages of the liver disease as it happetise classical diagnosis
performed by the medical doctors.

The proposed method uses multi-modal features, extrametdltrasound images,
laboratorial and clinical data, that are known to be more@mpated according the
disease stage we want to detect. Therefore, a battery dfiftdas and features are
optimized and used in a hierarchical approach in order teease the accuracy of
the classifier.
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For the normal class we achieved 100% accuracy, for the ehhapatitis 62%,
for compensated cirrhosis 8B% and for decompensated cirrhosis 91.7%.
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1 Introduction

Chronic liver diseas€CLD) is a significant cause of morbidity and mortality in
developed countries and commonly is caused by viral hépatitd alcohol abuse
[1].

The initial stages of CLD are usually asymptomatic suclstastosisor hep-
atitis. Hepatitisis the inflammation of the liver, resulting in liver cell dageand
destruction[1]. It is caused by hepatitis viruses, which lsave several types, or by
other factors, e.g. alcohol. Moreover the natural evolutibthe disease may lead
to cirrhosis or evenhepatocellular carcinomawhich are more severe pathological
conditions, with high morbidity and mortalitfirrhosisis a chronic disease that
is characterized anatomically by widespread nodules ititbeecombined with fi-
brosis [2]. It is possible to distinguish two phases in @sis, a stable form, called
compensated cirrhosiend a more dangerous form that could lead to widespread
failure of the liver, calledlecompensated cirrhogi3].

Liver biopsy has been the preferred tool in the evaluatioth staging of the
CLD. However, its invasive nature and the development oéiotore accurate non-
invasive alternatives have lead to a decreasing on its usagessess the CLD.
Among these alternatives, CLD staging based on ultrasou&j data has proven
to be a promising and safer alternative to biopsy.

In the review study presented in [1] it is shown that echogjgnitexture charac-
terization and surface morphology of the liver parenchynesedfective features to
diagnose the CLD. However, the evaluation of these featamsrmally affected by
the subjective assessment of the human operator. Thig faetplead to significant
errors in the diagnosis and staging of CLD, since US livergesacan show great
variability, as shown in Fig. 1. Therefore, new objectivattere extraction and clas-
sification methodologies in@omputer Assisted Diagnodimmework are needed.

Several studies presented in the literature use objeantifes, extracted from
US images, and propose classification procedures to as&&#L Some of the
most common features are based on the first order statistiasccurrence matrix,
wavelet transform, attenuation and backscattering passand coefficients. A
brief description of some of these studies is given next.

In [5], an experimental study was performed aiming at torilisiate the liver
fibrosis from ultrasound images. They computed fractaliess, entropy measures
and co-occurrence information from ultrasound images tarastterize the liver
parenchyma form a textural point of view and the classificatiesults showed an
overall accuracy (OA) of 85.2% by using a Fisher linear ¢fassOther important
work described in [6] shows the ability of the Wavelet coddfits, also computed
from US images, to characterize the diffuse disease of Wlee [Their goal was to
discriminate normal, steatotic and cirrhotic conditioAs. OA of 90% is obtained
and comparison results by using other classes of featuneb, & co-occurrence
information, Fourier descriptors and fractal measureswsihat the wavelet based
classifier outperforms the classifiers based on the othéurtess 87%, 82% and
69%, respectively.
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Normal Chronic Hepatitis Compensated Cirrhosis Decompensated Cirrhosis

Fig. 1 Ultrasound images variability in the different stages of Cioduiver Disease

[7] categorized patient in normal (72), fatty liver (66) atitronic liver disease
(64), in order to evaluated the usefulness of standard tiewitgo measure the ho-
mogeneity of hepatic parenchyma from based on Ultrasouadés They observe
significant differences ¢ 0.0001) between the chronic liver disease group and the
normal and fatty liver groups. They also concluded that digtverage standard de-
viation values are related to wide distribution of intepsiailues within the ROI,
as reported for CLD group, which explains the characteregipearance of hetero-
geneous echo texture in CLD groups, such as chronic heypatit liver cirrhosis.
Depict the good results obtained, the authors suggestutameghe use of this fea-
ture, since it is highly dependent on the ROI location.

Two main contributions for the CLD assessment are presantédds work; i)
multi-modal features, extracted form US images, laboraftand clinical data and
i) a new classification procedure inspired in the clinicadgiice, here calle@lini-
cal Based ClassifiefCBC).

The discriminative power of the automatic classifier can teatyy increased if
the natural evolution and staging of the disease is takenaiotount.

The remainder of this chapter is organized as follows: 8eciintroduces the
pre-processing algorithm used, explaining the featureaetibn and selection pro-
cedures, as well as the classifiers and the dataset used iwdhk. In Section 3
the results are presented showing the feature selectialigesd the classification
results for each of the used classifier. The discussion afehigts are presented in
Section 4 and conclusions are presented in Section5.
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2 Methods

The CBC aims at discriminate normal and three main pathetoigithe CLD scope;
i) Chronic Hepatitisii) Compensated Cirrhosind iii) Decompensated Cirrhosis

The diagnosis of these pathologies is performed in the tatiaical practice
based on several sources of medical data such as US livergbgraa images, lab-
oratorial exams and clinical indicators recommended in esfablished and ac-
cepted medical guidelines [3]. The diagnosis, howeverbtained by integrating
all information based mainly on subjective criteria of thedital doctor.

The CBC is a quantitative and highly automatic procedureghves the medical
doctor objective and accurate information to help in therlidiagnosis process.

The CBC approach is composed by three main components; tifleésacompu-
tation from multi-modal sources, ii) design and trainingaafpecific suitable classi-
fication strategy that takes into account the CLD specifisitind iii) diagnosis and
validation of the method.

The main novelty of the method proposed in this chapter iseahthical clas-
sifier that mimics the structural approachdifferential diagnosidollowed in the
clinical practice to identify the different stages of the[T[8]. Instead of trying to
classify a given liver in one stage of the disease from a s@bssible stages by using
a multi-classclassifier, e.gk-Nearest NeighbotkNN) or Support Vector Machine
(SVM), the hierarchical approach, represented in Fig.dsed. In this strategy sev-
eral partial binary decisions are taken according the ahawolution of the disease.
In each step, a decision is taken by different binary classifirained, tunned and
optimized specifically for that task.

The first classification step (CS) discriminatewmal versuspathologyliver. If
the liver is classified as pathologic in this first step, dieanation ofchronic hepati-
tis without cirrhosisandcirrhosisis attempted. In the last stepmpensated cirrho-
sisanddecompensated cirrhosise discriminated. The decompensated cirrhosis is
assumed as the end-stage of every chronic liver diseaseethefpatocellular car-
cinoma

The CBC (see Fig.2) design and optimization is performeavatiévels: i) fea-
tures and ii) classifier type and parametrization seleatieed specifically in each
CS. This means that at each CS of our hierarchical approactidksifier type and
features can be different.

The feature selection procedure is formulated as an otiniz task with the
sensitivity maximization criterion [9,10]. The set of faegs at each CS is tunned for
the specificities of the corresponding CLD stage prior tlasgifier type selection.
This is done by thesequential forward floating selectiq®FFS) [11] method with
the linear discriminant analysis (LDA) criterion. The lea@ne-out cross-validation
technique is used for error estimation purposes.

The classifier selection at each CS is done with ROC analysiserthe selected
classifier, KNN or SVM [12], is the one that jointly maximizibetrue positive rate
(TPR) and thdrue negative rat€TNR).
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Fig. 2 Design of the CBC decomposition strategy for CLD classification.

The non-parametric KNN classifier is tested in this studgldssifies a test sam-
ple to a class according to the majority of the training nbiis in the feature space
by using the minimum Euclidean distance criterion [13,T4je algorithm for the
nearest neighbor rulés summarized as follows [12]; Given an unknown feature
vectorx and a distance measure, then:

e Out of theN training vectors, identify thk nearest neighbors, regardless of class
label.

e Out of thesek samples, identify the number os vectdss,that belong to class
w,i=1, 2, ..., M.

e Assignx to the clasgg with the maximum numbdg of samples.

The other classifier tested in is the SVM classifier. Its aintoigind a deci-
sion plane that has a maximum distance (margin) from theesearaining pat-
tern[14,15]. Given the training dafg@x,w )| =1or —1, i =1,...,N} for a two-
class classification (whebog is the input feature¢y is the class label anN is the
number of training sample), the SVM maps the features to hemdimensional
space [14]. Then, SVM finds a hyperplane to separate the @gses with the deci-
sion boundary set by the support vectors[15].
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The general form of the decision functig(x) for the SVM is [15]:

N
g(x) = Zaiin.'TZJr b 1)
1=
where thea; and b are selected during the training process, constrdiged

S aiyi = 0 and 0< a; < ¢, where ¢ is a user-defined penalty term, regulating the
general performance of the SVM. Under certain conditiams computationally in-
tensive mapping process can be reduced with an appropaatelkunctiork such
that the decision function g(x) becomes,

N
g(x) = ZaiyiK(mbe 2

In this paper, the kernels adopted are the polynomial,

K(xi,X) = (x x+1)¢ (3)

and the Gaussian radial-basis function,

K (x,x) = e "7, (4)

whered is the degree of the polynomial kernel anis the radius coefficient of
the Gaussian radial basis function kernel [15].

The performance of the CBC is assessed by comparing thespomding clas-
sification results with the common multi-class decomposititrategy one against
all. Theone against al{OAA) strategy consists on building one classification proc
dure per class, trained to distinguish the samples in aesanglass from the samples
in all remaining classes.

The features extracted from US data are some of the most ierg@nd discrim-
inative ones to the diagnosis. Therefore, in the next seetidetailed description of
them and the way they are computed is described.

2.1 Ultrasound Image pre-processing and features extraati

The US images are corrupted by a type of multiplicative naiaedspecklethat is
usually considered undesirable to interpret the morphoédinformation about the
anatomy of the organs under analysis. Howeverstiexklepattern contains useful
information about the tissues that can be used in the medimghosis [16].

Here, the method described in [16] is used. The B-mode USésarquired by
the commonest US scanner available at most of medicaltfasilis pre-processed
and decomposed into two fields:De-specklend ii) Speckle

The pre-processing stage is used to estimate the RF US imaije hot usually
available in the US scanners but that is needed for the dezsitign procedure. The
decomposition is performed in two steps; i) Denoising, whée estimated RF US
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image,y; j, is filtered to obtain thée-speckldield x; j and ii) Speckleextraction,
ni.j, obtained from the RF US noisy imagg,j, and form theDe-specklefield,
Xi.j, obtained in the previous step, under the adoption ofMiudiplicative White
Rayleigh Mode[16],
Yi,j
nij X )

TheDenoisingalgorithm is formulated in a Bayesian framework were the|six
of the noisy RF US estimated image are assumed to be Raylattbdted [16].
Here, theDe-specklidield is used to extract morphological features, such as live
contour regularity and attenuation coefficient with dept) $heSpeckleone, con-
taining the noise pattern, is used to extract textural featfrom the parenchyma of
the liver. Figure 3 illustrates an example of the decompmsinethodology.

Fig. 3 Decomposition procedure of US liver parenchyma. a) ObseBretbdeUS image. Esti-
mated b) envelope RF image,d)-despeckland d)specklemage fields.

Next a small description of each class of features is pralide

Acoustic attenuation coefficient

Acoustic attenuation along depth has been extensively imsék literature and
in clinical practice as an indicator of the CLD. However, thee correlation be-
tween this indicator and the hepatic disease is still cotial as referred in [17],
namely with respect tairrhosis where some author report strong correlation be-
tween attenuation with depth while others do not find anyiigmt relation. Other
studies suggested that fibrosis can also produce largaiatien values but it was
also reported fibrotic cases with normal attenuation.

In [18] the attenuation/backscatter is computed from theeoked B-Mode US
image instead of the more common RF US image. This is for s&karplicity
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and availability, since in most of the scanners the RF sign@bt available. In their
method a ROI corresponding to the biopsy site is selectedaapdlygonal line,
describing the biopsy needle trajectory along the dep#cton, is registered. The
average gray-level values for each point along a polygamai$ computed by aver-
aging 7 horizontal pixels and the attenuation coefficienbigined by linear regres-
sion. They show that the attenuation clearly discriminga®-fatty from normal
livers where the area under the curve (AUC) is equal to 1.8D Another interest-
ing result indicates that the presence of inflammation opéis; even in cases of
severe stetosis, leads to a significant decreasing on tbendisative power of the
attenuation slope to distinguish healthy from steatotierk.

Therefore, the attenuation coefficient, alone, does notisgsiminative power
for CLD diagnosis. However, together with other featurea more general classi-
fication framework, as the one presented here, it can proxatieble information
for the performance of the classifier.

The attenuation coefficient, BBMHz *cm1, can be obtained as follows [17],

a(f) = 5—10logg ( |Sip f(<ff)>> ©

wheref is the frequency itMH?z, ljiver is the thickness of the sampl&,(f)| is the
power spectrum without specimen, a8 ¢ (f)| is the power spectrum with speci-
men. This generates an approximately linear attenuatiorednside the frequency
band whose slope, obtained linear regression, is functidrequency. The global
value is computed by integrating in frequency.

In this work the attenuation coefficientis estimated by using the method pro-
posed in [18] that is basically the following linear regiiessproblem

m= arg rpnin/(x) @)

whereX is theN x M De-speckldield. The objective function is
N
/=Z)<al+b—f<l>>2 (8)
|=

wheref(l) = ﬁ zgﬂzmc is the average value intensity of eable-specklamage
line, in the assumption, that depth increases along eacimeol

First-order statistics

First order statistics, computed from the histogra), of the estimated gray-scale
RF US imageY, where pixel spatial correlation is not taken into accoarg,some
of the most important features for the echo texture anabyfdise liver parenchyma
[7,13]. The first order characteristics used in this work theemean and standard
deviation
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3 (i), ©)

NM
1 256 ] )
o= <NM_1.Z<“('>‘“> ) (10)

Co-occurrence

The elements of th€o-ocurrencetensor,Co = {¢; j(4,Ac)}, describe the gray
level spatial inter-relationship in the image [13]. Moregisely, elemert; ;(4;,Ac)
represents the joint probability of the pixel intensitieand j in relative spatial
position of(4;,A.) [15] and can be computed as follows

N .
1if( mc—l) (Mtalcrac= i)
i, 8c) = Z Z {O otherwise (11)

In [15] it is reported an OA of 90% using features extracteairfrthe Co-
occurrenceensor in the detection of thedrrhosis condition. They show, in a high-
frequency (2MH2) US study described in [19], that the values of the featutes o
tained from theCo-occurrenceensor are able to discriminate cirrhotic, steatotic and
healthy livers. However, the classification accuracy desed when discrimination
between different grades of steatosis and fibrosis areraptd.

The following statistical features, computed from tbe-occurrencdensor for
(41,4c) € {(6,0)}, as suggested by [6], are used in this work:

e Contrast measure the local variations in the co-occurrence matrix,
. L2 e
S li—iPe(.i) (12)
I,j

e Correlation measure the joint probability occurrence of the specifigdlpairs,

] Gi0j
e Energy also known as the angular second moment [13],
S c(ii)? (14)

]

e Homogeneitymeasures the closeness of the distribution of elemerttgimatrix
to the matrix diagonal,
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¢(i, )
2 i) 1)

The Wavelet Transform

The Wavelet Transfornmis used here to perform a multi-scale analysis of the
Speckldield, containing the noise pattern of the estimated RF USyenéor liver
parenchyma textural characterization purposes. The deasition is performed ac-
cording the Fig.4 where a sequence of low-pa&§, &nd high-passH), filtering
operations followed by down-sampling the result?, generates a pyramidal rep-
resentation of the original image with decreasing resofutiomprising a lower res-
olution low-pass component (approximation component)),(and three high-pass
components (detailed components) along the horizontal), (tertical, (LH), and
diagonal directions, (HH), according Fig.5. An example ahalti-scale wavelet
transform analysis using tH&peckidield of an US liver image is provided in Fig.
6.

The high-pass component${) contain the detailed information of the image
at different resolution scales along three directions evttie low-pass versiong)
contain the approximation component.

columns columns

ol[=]Le][=
T
—

Fig. 4 Discrete image wavelet decomposition scheme (from [20])

LL, HL,

HL,
LH, HH,

LH; HH,

Fig. 5 Wavelet pyramidal decomposition of images.
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Fig. 6 Wavelet pyramidal decomposition example with Sgeckldield of an US liver image.

Tissue characterization based on wavelet multi-resaiudicalysis as been per-
formed in several works [6,15,19,21]. This approach isatiffe in the morphologi-
cal characterization of the image from the approximatiod$iand at the same time
in a textural characterization at several resolution schiem the detailed fields.
For instance, in [6], the application of non-separable Weiveansform features for
liver tissue characterization is investigated. The edionaof a texture quality is
performed with the four-leveduincunxdecomposition which makes it possible to
obtain feature vectors with maximal length of five elemefisahd an overall clas-
sification accuracy of 90% and a specificity of 92%. Sensjtivi the detection of
cirrhosis and steatosis is 92% and 97%, respectively. &imgkults are also reported
in [15,19].

Autoregressive model

The autoregressive (AR) model approach has been used sitgcerhe with success
in several applications of engineering where identificaéod characterization of
systems and processes is needed [22]. In the canonicaltiefiof a 1D p-order
AR model each sample is modeled as a linear combination @irtheousp samples
with unknown coefficientsgy [23]

x(n) = Zla;x(n—i)+r(n) (16)
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where the residue signai(n), is assumed to be white and zero mean normal dis-
tributed. For image applications the following 2D formidat of the (p,q)-order
AR model is used [24]

x(n,m):i S ajx(m—i,n—j)+r(n,m) 17)
i=0]=

wherex(n,m) is the™™th pixel of the image andyo =0 .

There are many algorithms to compute AR parameters; Lenifog, least-
squares, gradient based, lattice filter and Kalman filte}. [Rbthis work, we will
use the most popular, the least-squares algorithm [25]

The order of the mode(,p,q), controls the error associated with the AR signal
approximation [26]. Small orders ignore the main and lomgtstatistical proper-
ties of the original signal while larger ones may lead to fitéing effects [26,27].
Therefore, choosing the order of the model becomes a keygrmoand there are
several methods to do it [23—-27]. Here the first order modal adopted because it
was confirmed by [28] that in this scope it leads to the mininarmor probability.

Liver surface contour

Beside the textural features used to discriminate the jpagfes of the liver, as re-
ferred before, US images may also be used to compute moigibaldeatures cor-
related with some of these pathologies. The importance ®fuB image in the
assessment liver surface nodularity, portal vein mean fielaoity and the enlarge-
ment of the caudate lobe is stressed in [29]. Particulavigy kurface nodularity as
been documented as a reliable sign in the detection of livérasis [3,30,31].

An accuracy of more than 70% as been reported by [3] and intf80huthors
showed that the observed liver contour irregularities aiyecorrelated with the
gross apperance of the cirrhotic liver as seen at lapargstoer surface nodular-
ity in US can be well appreciated when ascites (presenceeefffuid within the
abdominal cavity) is present or when a high-frequency tteoer (7.5 - 12 MHz)
is used [32]. In [3], where a low-frequency transducer (3.54Hz), also refer that
liver surface is an important parameter associated witthist®pathological diag-
nosis of liver cirrhosis.

Despite the consensual correlation of the liver surfacepmaopgy with cirrhosis,
the effectiveness of the different diagnosis methods usele clinical practice is
very limited because the analysis is most of the time sulbabon-reproducible
and operator-dependent [33].

Here, a semi-automatic objective method for the liver sugrfeharacterization is
proposed. The liver surface contour is segmented fronDixspecklecomponent
of the US image by using a snake technique proposed by [34h@en in Fig. 7.

The irregularity of the contour is measured by means of tloé mean square
of the different angles, produced by the points that charee the contour and the
variation of the points of the contour in tlyeaxis. In this approach the contour first
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Original US image De-speckled US image Detected Contour

Fig. 7 Method used to detect the liver surface contour. First row spords to a normal liver;
second row to a compensated cirrhotic liver and the last row teamdpensated cirrhotic liver.

point is assumed as the reference point. The first ordesstat{mean and variance)
of the referred variables are also extracted.

Biochemical and Clinical features

Besides image based features, several other clinical dat@diachemical tests are
useful for evaluating and managing patients with hepatsfudyction.

These features are selected according to their purporitedatland pathophys-
iological role in CLD [8]. The clinical and pathophysiolagil characteristics of
CLD can be grouped in terms of hepatic insufficiency, poryaddrtension, hyper-
dynamic circulation, liver inflammation, necrosis and f#isp as well as etiologic
factors [8,29,31]. Hepatic insufficiency is suggested ky@ild-Pugh score, albu-
min, total bilirubin, encephalopathy and prothrombin tif@g Portal Hypertension
is usually accessed by the presence of ascites, varicesaati-gntestinal bleed-
ing, among others. Creatinine and sodium are variables fasetie study of hy-
perdynamic circulation [8]. Liver inflammation, necrodibyosis and histology can
be evaluated, according to [8], based on aspartate tranaaen{AST), gamma glu-
tamyl transpeptidase (gGT), lactate dehydrogenase (LDH panine transaminase
(ALT). Also the etiologic factors are taking into accounanmely the alcohol absti-
nence, alcoholic ethiology, hepatitis B and C and othereéusthe CLD [29].
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The features extracted from the US images, the laboratanidlclinical infor-
mation that were considered for the feature selection phaeeare listed in Table
1.

Source Feature
Liver Acoustic attenuation coefficient(F1), measured by the slope coefficient of
echogenicity  the linear regression of intensities along the depth/linel [18
(de-speckled  First-order statistics, including the meanF,) and standard deviatiorf)
field) of the pixel intensities;
Root mean squareof the anglesproduced by the points that characterize
the contour ), where the first point was assumed as the reference point.

Liver surface

((:é):-ts:erckled Root mean squareof the coordinatesof the contour points in the y axis
field) (Fs)

Mean (Fs) andvariance () of theangles

Variance of the y axiscoordinatesat each pointKsg).

Correlation coefficient of the y axis coordinates).

Co-occurrence matrix, which enables to derive [35]: the contrabid) ,

correlation F11) that measures the joint probability occurrence of specific

pixel pairs, energyHi») of the image (obtained by summing of squared el-

ements of the image) and homogeneRys] which quantifies the closeness

of the distribution of matrix elements to its diagonal.

Wavelet energiesmeasured by the verticat{s) and horizontall;s) detail

energies of the first Haar wavelet decomposition.

Autoregressive (AR) coefficients of a first order 2D model,

{200(F16),21.0(F17),80.1(F18)}-

Laboratorial ~ Total bilirubin (F1g) , prothrombin time Ey) , albumin 1) , creatinine

Information [29] (F22), AST (F23), ALT (F24), gGT (F2s) , glycemia Fg), sodium F27), urea
(F28) and lactate dehydrogenabgy).

Clinical Cause of diseaséy), which include none (0), alcohol (1), hepatitis B (2),

Information [29] hepatitis C (3), alcoholic hepatitis B (4) and C (5) and Alj,(&nd the fol-
lowing binary indicators: tumorFs1), ascites F3»), encephalopathyFgs),
Gastro-Intestinal bleedind4) infection (F3s), alcoholic habits F3) and
Child-Pugh scoreHs7).

Liver Texture
(speckle field)

Table 1 Features extracted from the US images, Laboratorial andd@limformation

2.2 Data set

Patients with an established diagnosis of chronic liveeakg, in the various stages
of the disease, were included for this study. A total of 115i\& images from 115
patients, including 26 normal liverdlprmal), 26 chronic hepatitis without cirrho-
sis (Chronic Hepatitie} 27 compensated cirrhosi§gmpensated Cirrhosgisind 36
decompensated cirrhosiBécompensated Cirrhogiswere involved in the experi-
ments.

The patients were selected from the Gastroenterology Depat of the Santa
Maria Hospital, in Lisbon, with known diagnosis based orliiopsy results. Their
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clinical histories, laboratory tests and US images weraiobtl in the same day.
The study protocol was approved by the Ethics Committeeefdferred Hospital,
it was explained to the the patients and informed consenbbtsned in each case,
according to the principles of the Declaration of Helsinki.

All patients underwent hepatic US exam, performed by an rtizeeusing a
Philips©CX50 scanner with a broadband curved array transducer Viidggaency
range of 2.0 to 5.0MHz. All US images were stored in DICOM fatmA ROI of
128x 128 pixels along the medial axis was extracted from each énzagl pre-
processed by using the algorithm described in Section2.4hawn in Fig. 8.

Anatomical Field

Selected ROI

Textural Field

Fig. 8 Generic design for the selection of a ROI from the Ultrasound &eand posterior pre-
processing result

3 Results

In this section the results with data from real patientsawietd with the Matlab
toolbox for Pattern Recognition, PRTools 4.1 [36], are presd to validate the
proposed CBC method.

3.1 Feature Extraction and Selection

The features extracted from the different medical modaiGomputed in this work
are all used along the classification pathway of the CBC. Weweat each step,
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only a fraction of the entire set is used, so a feature selegiocedure is needed.
Consequently, an optimum sub-set of features from the whelds selected by
maximizing the accuracy result of the LDA classifier. Thigimzation procedure

is used for both classification strategies, OAA and CBC. déotihat at this stage we
are interested in choosing the best features and not thelasstfiers, that the rea-
son only the LDA classifiers is used [9]. For comparison anfopmance analysis,

classification results at each CS without feature seledsiafso computed and the
results are shown in Table 2.

Feat. Set Normal Chronic Hepatitis Comp. Cirrhosis Decomp. Qirhosis
us 3.9(67.8) 23.1(75.7) 25.9 (75.7) 44.4 (67.8)
NoFS LabClin 92.3(91.3) 11.5(72.1) 40.7 (74.8) 75.0 (86.0)
All 88.5(90.4) 30.8(70.4) 37.0 (69.6) 72.2 (86.2)
OAA Lapciin - 100.0 (98.0) 62.0 (78.3) 48.0 (77.0) 81 (89.6)
FS OAA 100.0 (100.0) 68.0 (80.4) 56.0 (78.0) 86 (92.0)
CBC 100.0 (100.0) 65.4 (75.3) 80.5(82.5) 90.7 (82.5)

Table 2 Sensitivity and overall performance, in parenthesis, pergenesults for the one against
all strategy with the US-based feature set (US), with laboiatand clinical feature set (LabClin)
and All features (All) without the feature selection procedl(No FS); and the results using the
feature selection (FS) procedure for the one against all giratih laboratorial and clinical feature
set (OAA anciin), the with the complete feature set (OAA) and Clinical Basedsifeer (CBC)

Table 2 shows the results obtained with only image, onlyicdirbased features
and with the complete features set without and with FS praeedt is observed
that by using only US-based features without feature delectinacceptable re-
sults for clinical practice are obtained with sensitistef 3.9%, 23.1%, 25.9% and
44.4% for theNormal, Chronic Hepatitis Compensated Cirrhosisnd Decompen-
sated Cirrhosiglass, respectively. Classification only with clinical edgeatures,
and again without feature selection, which is the usual @agr in the daily clini-
cal practice (LabClin), leads also to unsatisfactory tssin particular, focChronic
Hepatitisand Compensated Cirrhosiwith sensitivities of 11.5% and 40.7%, re-
spectively. The combination of both sets of features leadsarginal improvement
for the Chronic Hepaptitisclass but a decreasing for all other classes.

Feature selection seems to be a key operation to a good perfce of the clas-
sification process as it can be observed from Table 2. In ttenskpart of the Table
the classification results are presented with FS for thriéerdnt classificaion strate-
gies; i) One-Against-Al(OAA) only with laboratorial and clinical based features
(OAA | apciin), 1i) OAA and iii) CBC.

The classifier inspired odifferential diagnosigCBC) with both US and LabClin
features, selected with the proposed FS scheme, outperfihrenother configura-
tions with exception of th&€hronic Hepatitiswhere the OAA strategy with FS is
the better (68.0(80.4)%), as observed in Table 2.

The specific features for each CS on the CBC and OAA are listddble 3.
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OAA CBC
us Lab Clinical us Lab Clinical
N - - 24,30, 36,37 - - 24,30, 36, 37
CH 2,16 19, 24, 25,26,28 33 16, 17 19, 24, 26,28 37
CC 5,10,11,15,17 19,20,29 - 10,11,14,16,17 - -
DC 15 21 30, 32, 34 10, 11, 14, 16, 17 -

Table 3 Set of features selected for the one against all strategy (OAAJ Elinical
Based Classifier (CBCN=Normal; CHC=Chronic HepatitisCC=Compensated Cirrhosis; and
DC=Decompensated Cirrhosis.

The optimum features for thdormal detector in both strategies are the same,
belonging entirely to the LabClin set; clinicfisg, Fs7, Fsg] and laboratoria[F,4],
which means that the traditional approach in clinical pcacto detect illness based
on clinical and laboratorial indicators seems to be appatg.

For theChronic Hepatitisthe OAA strategy selects 8 features, mainly from the
laboratorial,[F1o, F24, F25, Fos, F2g] and clinical,[Fs3], sets. However, it also selects
features from the US images; liver textyfgg] and liver echogenicityF]. In the
case of the CBC strategy for ti@hronic Hepatitisdetector, different optimum fea-
tures are selected; 4 from the laboratorial §6fg, F24, Fo6, F2g], two from the US
set, texturdFy7,F16], and one from the clinical s€ffs7].

The optimum set of features in the case@mpensated Cirrhosisvith the
OAA strategy, are based on US images; text{Fg;, F10, F17, F11], and surface con-
tour, [Fs], and on laboratorial informationfg, Foo, F1g]. For theDecompensated
Cirrhosis this same strategy makes use of 5 features preponderamtiydiinical
data.

The discrimination ofCompensate@dnd Decompensated Cirrhosigs obtained
in the CBC strategy, by using only 5 US-based textural fest{f;s, F17, F14, F10, F11].

These are the optimum features used in each CS. Next thésredd simil-
iar procedure by using both strategies, OAA and CBC, forsifi@s selection are
presented.

3.2 Classifier selection

For each CS one out of two classifiers, KNN or SVM, is selectmmbiing the
classification accuracy optimality criterion for that stByifferent parameterizations
of each classifier are tested and the optimum configuratidrckassifier is select for
each CS.

kNN classifier

Nine different neighborhood configurations, correspogdak = 1..9, were tested
in each CS with both optimal sets of features obtained in teeipus section.



Classification and Staging of Chronic Liver Disease 19

N detector CHC detector CC detector DC detector

TNR TPR(N) OA TNR TPR(CHC) OA TNR TPR(CC) OA TNR TPR(DC) OA
100 100 100 87.64 4231 7739 875 2963 73.91 9241 88.89 91.3
100 100 100 93.26 15.38 75.65 95.45 22.22 78.26 96.2 75 89.57
100 100 100 87.64 46.15 78.26 90.91 44.44 8(4.94 86.11 92.17
100 100 100 91.01 38.46 79.13 95.45 33.33 80.87 96.2 83.33 1792.
100 100 88.76 46.15 79.133.18 37.04 80 92.41 86.11 90.43
100 100 100 93.26 30.77 79.13 94.32 25.93 78.26 93.67 83.33 .4390
97.75 100 98.26 91.0 50 81.74 92.05 37.04 79.13 91.14 83.33 88.7
97.75 100 98.26 94.38 34.62 80.87 95.45 14.81 76.52 93.67 3383. 90.43
97.75 100 98.26 88.76 50 80 94.32 25.93 78.26 92.41 83.33 789.5

TARANTNDA
©O~NOUA®N R
=
o
S

Table 4 TNR, TPR and OA percentage results of the kNN classifier for tladuation set of the
OAA strategy for each clasl=Normal; CHC=Chronic HepatitisCC=Compensated Cirrhosis;
andDC=Decompensated Cirrhosis.

CS; (Normal detector) CS, (CHC detector) CS; (Cirrhosis detector)

TPR(N) TNR OA TPR(CHC) TNR OA TPR(CC) TNR(DC) OA
k=1 100 100 100 42.30 8730 74.16 0 100 77.78
k=2 100 100 100 73.08 68.25 69.66 22.22 100 74.60
k=3 100 100 100 61.54 82.54 76.40 70.37 94.44 84.13
k=4 100 100 100 69.23 71.43 70.78 81.48 88.89 84.13
k=5 100 100 100 57.69 80.95 74.16 80.78 91.67 85.71
k=6 100 100 100 69.23 74.60 73.03 77.78 91.67 84.13
k=7 100 97.75 98.26 65.38 77.78 74.16 74.07 94.44 84.13
k=8 100 97.75 98.26 73.08 7460 74.16 74.07 94.44 84.13
k=9 100 97.75 98.26 53.85 77.78 70.79 74.07 94.44 82.54

Table 5 TPR, TNR and OA percentage results of the kNN classifier for treduation set
of the CBC strategyN=Normal; CHC= Chronic Hepatitis;,CC=Compensated Cirrhosis; and
DC=Decompensated Cirrhosis.

Table 4 illustrates the results obtained for the OAA strat@igh the kNN classi-
fier. These results show a sensitivity to discriminateNbemalclass of 100% for all
configurations. The best sensitivities fohronic Hepatitis Compensated Cirrhosis
andDecompensated Cirrhos&e 50.0%(k=7), 44.44% (k=2) and 86.11% (k=2,5),
respectively.

The equivalent results obtained by the CBC strategy are showable 5. As
in the previous strategy, the performance of the normaloti@tés optimum, which
means, maxima TPR, TNR and OA, foe=1,2,3,4,5,6.

In the case of the chronic hepatitis detector the best OALGP4) is for k=8,
corresponding to a TPR of 73.08% and FPR of 74.6% (cirrhasisation). In the
last CS, the cirrhosis detector, the results reveal an OA50f 8% for k=5. The
TPR is 80.78% Compensated Cirrhogisind the TNR is 91.67%0Decompensated
Cirrhosis).

SVM classifier with polynomial kernel

The same analysis performed previously for the kNN classifi# be now pre-
sented for the SVM one.
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Several parameterizations of the polynomial kernel westete The parameter
are the costc = 1,10,100 500, and the degred,= 1,2,3,4,5. Here, only the best
results obtained for = 1 are presented.

degree N detector CHC detector CC detector DC detector
TNR TPR(N) OA TNR TPR(CHC) OA TNR TPR(CC) OA TNR TPR(DC) OA
1 . 1 7397 89.89 23.08 74.78 81.82 59.26 76,52 91.14 2272. 85.22
2 98.88 100 99.13 87.64 73.08 84.35 85.23 59.26 79.183.67 91.67 93.04
3 98.88 100 99.13 85.39 61.54 80 79.55 55.56 73.91 9241 88.891.3 9
4 100 100 100 89.89 50 80.87 80.68 55.56 74.7®4.94 91.67 93.91
5 98.88 100 99.13 88.76 46.15 79.13 80.68 51.85 73.91 89.87 6791. 90.43

Table 6 TNR, TPR and OA percentage results of the SVM classifier with paryial kernel for
the evaluation set of the OAA stratedy=Normal; CHC= Chronic HepatitisCC=Compensated
Cirrhosis; andC=Decompensated Cirrhosis.

The results obtained with the polynomial kernel by using@#éA strategy are
listed in Table 6. An ideal classification result is obtaiirethe normal detector for
d = 4. For chronic hepatitis and cirrhosis detectors the bestltieford = 2, are:
sensitivity 73.08% and 59.26% f&@hronic Hepatitisand Compensated Cirrhosis
respectively. The optimum configuration in thecompensated Cirrhosisse is for
d = 4, corresponding to a senitivity of 91.67%.

degree CS (Normal detector) CS; (CHC detector) CS; (Cirrhosis detector)
TPR(N) TNR OA TPR(CHC) TNR OA TPR(CC) TNR(C) OA
1 96.63 100 97.39 69.23 84.13 79.76 77.78 91.67 85.71
2 98.87 100 99.13 65.38 79.37 75.28 70.37 86.11 79.36
3 98.87 100 99.13 69.23 82.54 78.65 66.67 80.56 74.60
4 100 100 100 61.54 84.13 77.53 62.96 83.33 74.60
5 98.87 100 99.13 65.38 82.54 77.53 66.67 83.33 76.19

Table 7 TPR, TNR and OA percentage results of the SVM classifier withipatyial kernel for
the evaluation of the CBC stratedy=Normal; CHC= Chronic HepatitisCC=Compensated Cir-
rhosis; andDC=Decompensated Cirrhosis.

Table 7 shows the results obtained by using the proposed @R&ach. The
normal detector fod = 4 is ideal under all figures of merit (OA, TPR, TNR =
100%). For the remaining CS the optimal kernel degreeslatel. In the chronic
hepatitis detector the best OA is 79.76%, with a sensitvit§9.23%. For th&€€om-
pensated Cirrhosithe sensitivity is 77.78% while for tieecompensated Cirrhosis
is 91.67%.

SVM classifier with Gaussian radial-basis kernel

To optimize the SVM with Gaussian radial-basis kernel, Far different classifica-
tion tasks, the radius parameter (r) was ranged from 0.1 tdtbsteps of 0.5. The
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¢ parameter was also tested in different valwes,1,10,100 500, for each radius
value. The best results are obtainedder 10.

radius N detector CHC detector CC detector DC detector
TNR TPR(N) OA TNR TPR(CHC) OA TNR TPR(CC) OA TNR TPR(DC) OA
0.1 100 100 100 100 0 77.39 100 0 76.52 98.73 222 74.78
0.6 100 100 100 9551 3.85 74.78 100 0 76.52 96.2 75 89.57

11 100 100 100 93.26 15.38 75.65 97.73 14.81 78.26 94.94 83.33 .3 91
1.6 96.63 100 97.39 93.26 26.92 78.26 96.59 29.63 80.87 91.14 83.33 88.7
21 9551 100 96.52 92.13 23.08 76.536.59 44.44 84.3591.14 83.33 88.7

26 96.63 100 97.39 92.13 11.54 73.91 95.45 29.63 8@1.14 86.11 89.57
3.1 9551 100 96.52 96.63 3.85 75.65 94.32 11.11 74.78 91.14 186.189.57

3.6 9551 100 96.52 98.88 3.85 77.39 93.18 3.7 7217 91.14 86.119.578
41 9551 100 96.52 98.88 3.85 77.39 96.59 0 73.91 91.14 86.11 5789.
46 9551 100 96.52 98.88 3.85 77.39 97.73 0 7478 91.14 75 86.09

Table 8 TNR, TPR and OA percentage results of the SVM classifier withalduhsis kernel for
the evaluation set of the OAA stratedy=Normal; CHC= Chronic HepatitisCC=Compensated
Cirrhosis; andC=Decompensated Cirrhosis.

The SVM classification results with Gaussian radial-basis&ls for the OAA
strategy are summarized in Table 8. For this strategy, thgsifier exhibit the worst
results for all detectors when compared with the other deskessifiers . The sen-
sitivity is 100% forNormalclass, with the first three radius values, a sensitivity of
26.92% forChronic Hepatitisclass, withr = 1.6, 44.44% forCompensated Cirrho-
sis with ar = 2.1, and 86.11% fobecompensated Cirrhosgdass, withr = 2.6.

radius CS; (Normal detector) CS, (CHC detector) CS; (Cirrhosis detector)
TPR(N) TNR OA TPR(CHC) TNR OA TPR(CC) TNR(DC) OA
0.1 100 100 100 0 100  70.79 0 100 57.14
0.6 100 100 100 23.08 96.83 75.28 22.22 100 66.67
1.1 100 100 100 38.46 95.24 78.65 70.37 94.44 84.12
1.6 96.63 100 97.39 34.62 95.24 77.53 81.48 88.89 85.71
2.1 95.50 100 96.52 34.62 93.65 76.40 81.48 91.67 87.30
2.6 96.63 100 97.39 23.08 93.65 73.03 77.78 91.67 85.71
3.1 95.50 100 96.52 19.23 95.24 73.03 74.07 94.44 85.71
3.6 95.50 100 96.52 11.54 96.83 7191 74.07 94.44 85.71
4.1 95.50 100 96.52 11.54 100 74.16 74.07 94.44 85.71
4.6 95.50 100 96.52 11.54 100 74.16 74.07 91.67 84.13

Table 9 TPR, TNR and OA percentage results of the SVM classifier withaldshsis kernel for
the evaluation set of the CBC stratefy=Normal; CHC= Chronic HepatitisCC=Compensated
Cirrhosis; andC=Decompensated Cirrhosis.

With the CBC strategy the results are better than using thA G®e as shown
in Table 9.As in the previous case, the normal detector pte<@A, TPR and TNR
of 100% withr = 0.1,0.6,1.1. The wort results is for th€hronic Hepatitiswhere
the sensitivity is 38.46% and the OA is 78.65%= 1.1). For the last CS of the
CBC approach, the optimal radiusris= 2.1 resulting in an OA of 87.3%. The indi-
vidual performances showed a sensitivity of 81.48% and®@.6r Compensated
CirrhosisandDecompensated Cirrhosisespectively.
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4 Discussion

The proposed CBC algorithm for diagnosis and staging of th 6as been ap-
plied to an experimental database of 115 patients, with estiiblished diagnosis,
according the guidelines accepted in the gastroenteratagical community.

The multi-modal feature set proved to be an appropriatecagmbrfor this classi-
fication problem. An algorithm was designed and implemettdestlect the optimal
set of features for each CS. The performance of the FS algontas evaluated
and the results compared with the ones obtained without 6&gdure. This proce-
dure, based on the SFFS with LDA criterion, leads to a clearfyrovement of the
classification accuracy and sensitivity in all classeglders.

The results reveal an important issue: each modality featet has, at each CS,
different discriminative power. In the first CS, laboraédrand clinical features are
more discriminative than the US based features. As alretdgdsbefore, this fact
confirms the appropriateness of the traditional diagnogthod used in clinical
practice. For more severe stages of CLD, the FS procedunenatitally attributes
more and more importance to the US image based features.XtiBalefeatures,
obtained from the first order AR model coefficients and the eletvcoefficients
obtained form the first Haar wavelet decomposition, ardqdar relevant.

This fact corroborates the difficulty reported in the litere [3] in discriminating
advanced stages of the CLD only from laboratorial and dihiicformation. This is
particularly visible in the last CS, where only US baseduest are automatically
selected.

The US textural features selected here are in accordanhehetresults of sev-
eral other studies [6,15,21,27]. In these studies, wavedeisform [6,15,21] and
AR coefficients [27] based features, from US images, arespited as having high
discriminative power in the assessment of CLD stages.

Liver contour US based features were extract from a senciraatic post-
processing algorithm. Apparently, this set of featuresisvery important because
they are only selected in one of the strategies, the OAA anthd proposed CBC
they are not selected at all. This class of features wasdedin this study because
several works in the literature [3,30,31] refer its potahtisefulness for CLD diag-
nosis. However, our results also reinforce the conclusion83], where it is stated
that the liver surface morphology analysis performed basedS data is subjective
and non-reliable.

Another important conclusion is that US echogenicity isswtable for discrim-
ination in CLD. This confirms previous results in the litenat [17,18] where it was
shown the low discriminative power of the featufes F,, Fs).

The main novelty of this work is the proposal of a new clasaifan and staging
strategy for CLD where the natural evolution of the diseaskken into account.
The well established protocol dfifferential diagnosisused in the medical com-
munity, also inspired the design of the CBC. This approadperiorms the OAA
strategy.

For theNormalclass the results showed a perfect accuracy in discrimigaitie
normal from the diseased patients, for all classifiers irh ls@icompositions. It is
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possible to refer that we improved the reported resultsridest in the literature

[6,13,15]. This is due to the proposed multi-modal featund geature selection
approach, since the system only selected clinical and d¥bal data. The disease
clinical knowledge proved to be crucial for this CS.

Liver fibrosis is related, in part, wit@hronic Hepatitigpatients without cirrhosis.
In the study preformed by [15] it is referred the difficultythre classification of liver
fibrosis based on US images. Their study revealed an OA of W@%ba sensitivity
of 60% for patients with fibrosis grade of &lfronic Hepatitisclass) and 88.6%
for patients with fibrosis grade of £{rrhosisclass). In the present study, we were
able to improve the detection of ti@hronic hepatitisclass by using the SVM with
a polynomial kernel of degreg= 1, when compared with the results presented in
[15]. Our results are an OA of 79.8% with a sensitivity of 68.2nd 84.1% for
Chronic HepatitisandCirrhosisclass, respectively.

Concerning the cirrhosis detector, with the CBC strate8}r¢ported that the
accuracy in detecting signs of compensated cirrhosis haseem well investigated.

Concerning the cirrhosis detection, our results show hopoitant the US-based
features are in CBC. The best results were obtained with trees§an radial-basis
SVM classifier ( = 2.1), where an OA of 87.3% with a sensitivity of 81.48% for
the Compensated cirrhosidass and 91.7% for thBecompensated cirrhos@ass
were achieved. In [3] a sensitivity of 82.2% for tBempensated cirrhosidass was
reported.

The final optimized configuration adopted for the CBC classificcording all
tests of features and classifiers selection performed swirk, is the following
(see Fig.9): C§ Normal detector, is a KNN withk(= 1); CS, Chronic hepatitis
detector, is a polynomial kernel SVM witldl & 1); and CS, Cirrhosis detector, is
a Guassian radial-basis kernel SVM with 2.1).

5 Conclusions and Future Work

Many scientific and medical problems require different apis or classes to be
distinguished. The goal is to extract sufficient discrinbamg information to assign
an object reliably, each in the medical field is of major intpace. In this sense
this study was develop with the premise that the multi-c@assification problem
should address the normal behavior of chronic liver dise&sesolve this investi-
gation question, we develop ti@&inical Based Classifiestrategy. The proposed
multi-feature and multi-classifier system, based on a poegssing US image de-
composition proved to be a useful approach to the CLD cla8fit problem.

The results presented in this study showed that it is passibidentify the dif-
ferent stages of chronic liver disease based on US livera@sigarticularly textural
features, as well as laboratorial and clinical featuress &hachievable by decom-
posing the data based on the different stages of the dis€dse group with the
most severe stagBecompensated cirrhosis well discriminate, while patients in
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Fig. 9 Proposed algorithm for the classification of Chronic Liver Dggebaased on US images,
clinical and laboratorial features
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lower stagesChronic Hepatitisand Compensated cirrhosisieed further analysis,
in order to improve even more the classification results.

In future work, the proposed multi-feature approach willds@anded to incor-
porate more textural and morphological features. Moredwemre work will also
investigate classifier combination techniques as well hsrdeatures selection al-
gorithms.
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