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Abstract Speckle corrupting Ultrasound images depends on the acoustic charac-
teristics of the observed tissues. De-speckling methods are usually employed to
improve visualization and interpretation of anatomical details and the information
encoded in speckle pattern is usually discarded. This information, however, may
contain useful information for diagnostic purposes.
This chapter proposes a joint method to estimate the despeckled and speckle compo-
nents from the ultrasound data for morphological and textural analysis of the tissues.
The method is based on a two-step approach. In the first step a denoised image is
computed and in the second step the speckle field is obtained from the despeckle
data obtained on the first step and from the original image.
The despeckle image provides morphological and anatomicalinformation of the
region under analysis while the speckle field is suitable to compute textural infor-
mation mainly related with tissue micro-structure.
The adequacy of the proposed decomposition method is assessed by using both
synthetic and real data from distinct tissues. Several different case studies and ap-
plications are presented to illustrate the usefulness of the method for tissue charac-
terization purposes.
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1 Introduction

Ultrasound imaging has become a standard procedure for medical diagnosis world-
wide, particularly in assessing arterial diseases [1,2]. Although diagnostic by using
ultrasound imaging is considered a harmless technique and allows real-time non-
invasive scanning of anatomical details, B-mode ultrasound (BUS) images are per-
vaded by a severe type of multiplicative noise, calledspeckle, that makes its inter-
pretation a difficult process highly depending on the subjective appreciation of the
operator.

The presence of speckle noise in such images has been documented since the
early 1970s, when researchers such as Burckhardt [3], Wagner [4] and Goodman
[5] described the fundamentals and statistical propertiesof speckle. Speckle is the
primary factor which limits the contrast resolution in images, thereby hindering the
detection of small, low contrast lesions and turning the interpretation of images into
a challenging task. Speckle also limits the effective application of image processing
and analysis algorithms for region, edge detection, segmentation and classification
purposes.

There is described in the literature a large number of methods for speckle re-
duction either for medical ultrasound imaging [6] and othermodalities involving
coherent radiation such as synthetic aperture radar (SAR) [7] and LASER [8]. Such
wide spectrum of techniques suggests that the problem remains a topic of interest
for the image processing community and is far from being completely solved.

De-speckling is always a trade-off between noise suppression and loss of infor-
mation, which is a critical issue specially when medical diagnosis is involved. Most
of the work aims at removing noise for image quality improvement [9–13]. How-
ever, other works are also explore the information contained in the noise pattern for
the extraction of echo-morphology and texture features fortissue analysis [14–17].

Ultrasound speckle [3] arises from constructive and destructive interferences be-
tween diffuse scatterers within a certain resolution cell.The most popular model
to describe speckle formation is the fully speckle condition which considers a large
number of scatterers whose reflected signals combine according a random walk pro-
cess of component phasors sum. This speckle model implies a Rayleigh statistics
for the envelope of the backscattered (amplitude) signal [18]. For what concerns
the grey-level image appearance the Rayleigh distributionhas shown to be a good
approximation for modeling pixel intensities in homogeneous regions despite other
distributions, including the K- [19], Nakagami [20], and Rician Inverse Gaussian
[18], are more convenient, mainly when the image presents bright edges/transitions
or strong isolated scatterers.

Speckle pattern is often referred as being multiplicative since its variance de-
pends on the underlying signal intensity, meaning more noise power in brighter
regions than in darker ones. Thus, de-noising methods basedon the commonAd-
ditive White Gaussian Noise(AWGN) observation model is not unappropriated to
deal with this type of noise. Additionally, other methods have been proposed for
de-noising and reconstruction based on median and adaptivefiltering [21], wavelets
[22], anisotropic diffusion [23] or other approaches [12,13].
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This chapter presents a joint framework for image de-noising and speckle es-
timation which takes into account the multiplicative nature of the speckle signal.
The de-noising procedure, that is usually anill-posed[24] problem, may be tackled
by using a Bayesian approach [25] which considersa priori information about the
unknown noiseless image to be estimated.

The problem is formulated as an optimization task where a two-term energy
function is minimized. In particular, the first term pushes the solution toward the
observations (noisy pixel intensities) and the second regularizes it. Regularization
is performed with a suitable edge-preserving prior, designated aslog-Euclidean,
which is used with a two-fold purpose: (i) being edge-preserving, and (ii) allowing
to formulate the de-speckling task as a convex optimizationproblem. This method is
also referred throughout this chapter asRayleigh-Log Total Variation(RLTV) filter.

The main contribution of this chapter is to introduce a speckle reducing method
based on a Bayesian approach [25] which assumes a Rayleigh observation model
to describe the ultrasound pixel intensities and usesa priori information about the
speckle-free image to be estimated. Such prior information, based on TV (Total
Variation) [26], allows to regularize the solution by removing speckle while pre-
serving the relevant anatomic details.

As previously mentioned, the information encoded in ultrasound speckle is of-
ten discarded but it is widely recognized that this phenomenon is dependent of the
intrinsic acoustic properties of tissues [27]. The proposed method assumes the rel-
evance of speckle for tissue analysis. Therefore, the method is designed to esti-
mate both the noiseless and speckle components (images) from the ultrasound data.
Hence, the de-speckling method, which will be further detailed provides clear im-
ages for medical interpretation and speckle fields for echo-morphology and texture
characterization.

The remainder of this chapter is organized as follows. Section 2 describes the
various steps of the speckle decomposition method, as depicted in Fig. 1. First, the
mathematical formulation on the basis of the de-speckling algorithm is detailed, to-
gether with the optimization strategy adopted to find the noiseless solution. Subse-
quently, Section 2.1 describes the procedure to extract thespeckle component from
the estimated noiseless image. Furthermore, Section 2.2 presents a feature extrac-
tion procedure which enables to extract echogenicity and textural information from
the image components previously obtained with the speckle decomposition method.

Section 3 exposes two types of results. The first exemplifies the speckle decom-
position method, providing separation of BUS images into noiseless and speckle
components. The adequacy of the proposed ultrasound image processing is assessed
with both synthetic and real data. Second, insight on the usefulness of features ex-
tracted from noiseless and speckle images for tissue analysis is exploited through
different case studies.

Finally, Section 4 concludes this chapter.
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Fig. 1 Ultrasound speckle decomposition framework.

2 Methods

The decomposition method comprises two main steps; i) speckle removal from the
the noisy ultrasound image to obtained a cleaned noiseless image with morphologi-
cal information about the organs and ii) speckle isolation,obtained form the noise-
less and original noisy image, containing the textural information about the tissues.
The first procedure, the more complex of both steps, is formulated in a Bayesian
framework, where the unknown noiseless imageΣ = {σi, j} is estimated form the
noisy one,Y = {yi, j}. TheMaximum a Posterioricriterion (MAP) [28] is adopted
to deal with theill-poseness[24] nature of the problem. Therefore, thedespecking
problem is formultated as an optimization task where an energy function is mini-
mized,

Σ̂ = argmin
Σ

E(Y,Σ), (1)

where

E(Y,Σ) = Ed(Y,Σ)+Ep(Σ). (2)

Ed(Y,Σ), calleddata fidelityterm, pushes the solution toward the data andEp(Σ),
calledprior term, regularizes the solution by introducing prior knowledge aboutΣ .

Thedata fidelityterm is thelog-likelihood functionEd(Y,Σ) = − log(p(Y|Σ))

and by assuming statistical independence of the pixels,p(Y|Σ) = ∏N,M
i, j=1 p(yi, j |σi, j)

wherep(yi, j |σi, j) is a Rayleigh distribution,

p(yi, j |σi, j) =
yi, j

σ2
i, j

exp

(

−
y2

i, j

2σ2
i, j

)

. (3)

The estimation ofΣ by simply using theML criterion, corresponding to the min-
imization ofEd(Y,Σ), is anill-posedproblem in the Hadamard sense because the
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Fig. 2 Log-Euclidean prior. a) 4-pixel neighboring system S and a 3-pixel clique. b) Comparison
of different potential functionsρ(x,x′) for a 2-pixelcliquewith x′ = 1.

solution is not unique and it may not depend continuously on the data [24,29]. A
regularization term is added to overcome this difficulty, turning the problem into
a well-posed problem. The distributionp(Σ) introduces prior knowledge about the
image to be estimated, thus regularizing and favoring smooth solutions. Even with a
regularization term the minimization procedure ofE(Y,Σ) may be a difficult task,
mainly when the energy function (2) is not convex. Therefore, two main issues must
be taken into account in the designing of the prior function:i) the inclusion of real-
istic constraints and ii) convexity of the whole energy function.

The determination of a suitable prior distribution is difficult to attain, particularly
in medical applications where straightforward assumptions about the prior distribu-
tion may lead to wrong diagnosis. The common assumption about these images is
that they are band-limited, changing slowly in space exceptnear the organs bound-
aries where abrupt transitions are expected. This prior information is difficult to
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implement because the location of the transitions are unknown and must be esti-
mated. Nevertheless,Σ can be modeled as a MRF (Markov random field) under the
assumption that neighboring pixels are likely to have similar intensities, except if
they are located at a transition.

From the Hammersley-Clifford theorem [30], the joint probability density func-
tion (PDF) ofΣ , assuming that it is a MRF, is a Gibbs distribution

p(Σ) =
1
Z

exp









−α
N,M

∑
i, j

ρ(ci, j)

︸ ︷︷ ︸

Gibbs energy









, (4)

whereZ is the partition function [31],ρ( ) is designated aspotential functionand
ci, j is the set of pixels involved in the(i, j)th clique of the neighborhood system
Sdefined inΣ , as it is shown in Fig. 2(a). The parameterα models the interaction
strength between neighbors. Asα increases, the prior becomes more significant than
the data fidelity term, yielding a smoother solution.

Thus, the prior term is

Ep(Σ) =− log(p(Σ)) = α
N,M

∑
i, j=1

ρ(ci, j)+K, (5)

whereK is a constant. Differences between neighboring nodes are penalized by the
prior term while the overall energy of thecliquesis minimized, therefore contribut-
ing to speckle suppression.

Typical potential functions are based on the L1 (Manhattan) and L2 (Euclidean)
norms [32], corresponding toρ(ci, j) = |σi, j−σi−1, j |+ |σi, j−σi, j−1)| andρ(ci, j) =
(σi, j − σi−1, j)

2 + (σi, j − σi, j−1)
2, respectively. Particularly, when the L2 norm is

used, the differences in neighboring pixel intensities arequadratically penalized.
This potential function is able to efficiently remove the noise but is also attenuates
or removes important anatomical details.

The Log-Euclidean prior, proposed in [33], is particular suitable in positive-
constrained optimization problems, such as in this despeckling problem where the
Rayleigh parameters to be estimated areσi, j > 0. This prior is based on the distance
functionρ(x,x′) = | log(x/x′)|, wherex′ is a neighboring pixel ofx, which is in fact
a metric because the following conditions hold: (i)ρ(x,x′) ≥ 0, (ii) ρ(x,x′) = 0 if
and only ifx= x′, (iii) ρ(x,x′) = ρ(x′,x) andρ(x,x′′)+ρ(x′′,x′)≥ ρ(x,x′). As men-
tioned before, the Log-Euclidean prior is here employed dueto its edge-preserving
properties and also because it turns the optimization problem formulated in (1) into
a convex problem [34]. The potential function associated with this prior is

ρ(ci, j) =
√

log2(σi, j/σi−1, j)+ log2(σi, j/σi, j−1), (6)
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where in eachclique three nodes are involved,ci, j = {σi, j ,σi−1, j ,σi, j−1}. Fig. 2(b)
displays the LEPF (Log-Euclidean potential function), | log(x/x′)| jointly with the
common L1 = |x− x′| and L2 = (x− x′)2 for a two pixelcliquewherex′ is an unit
intensity pixel,x′ = 1. As it is observed the penalization introduced by the Log-
Euclidean potential function (LEPF) whenx andx′ are similar is larger than the L2

prior and smaller than L1, meaning better performance than the L2 prior to remove
speckle but poorer than the L1 norm. However, when the difference betweenx and
x′ is large the penalization introduced by the LEPF is much smaller than the one
introduced by the other two norms, thus leading to better preservation of the tran-
sitions which hypothetically contain relevant anatomicalinformation. Additionally,
for a given value ofx′, whenx goes to zero the penalization introduced by the L1 and
L2 norms goes to a constant value while the penalization introduced by the LEPF
continues to grow, which is very convenient in this case where the parameter of the
Rayleigh distribution is strictly positive,σi, j > 0, but can be arbitrarily small.

The overall energy function, obtained from (2) is the following:

E(Y,Σ) = ∑
i, j

[

y2
i, j

2σ2
i, j

+ log(σ2
i, j)

]

+α ∑
i, j

√
√
√
√log2

(

σ2
i, j

σ2
i−1, j

)

+ log2

(

σ2
i, j

σ2
i, j−1

)

(7)

which is non-convex because, although the data fidelity termis convex, the prior
term is concave. Its minimization is a difficult task mainly when gradient-descent
methods are used [34]. However th following change o variable can be performed to
transform (7) into a convex function,x= log(σ2). The new convex energy function
is,

E(Y,X)=∑
i, j

[

y2
i, j

2
exp(−xi, j)+xi, j

]

+α ∑
i, j

√

(xi, j −xi−1, j)2+(xi, j −xi, j−1)2+ε

︸ ︷︷ ︸

TV(X)

. (8)

where the prior term, the TV ofX = {xi, j}, is now convex because all of its terms
are convex (second derivative is positive).

The stationary point of (8),∇XE(Y,X∗) = 0, that minimizes the energy function
is iteratively computed by use of a line search [34] algorithm,

X̃k+1 = X̃k+ωkD̃k, (9)

where the descent direction,D̃k, is found with the Newton method [24]

D̃k = H−1(Ỹ, X̃)∇X̃E(Ỹk, X̃k). (10)

In (10),X̃ andỸ are column vectors obtained by lexicographic ordering ofX andY
respectively. In addition,∇XE(Ỹk, X̃k) is the gradient column vector ofE(Ỹk, X̃k)
with respect toX̃ andH(Ỹ, X̃) = [hi, j ] is the corresponding Hessian matrix where:
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Algorithm 1 convex optimization
Require: Ỹ ∈ℜ+

0

1: Initialize: k= 0, Ỹ0 = log( Ỹ2

2 ), X̃0 = log(Ỹ0), η = 10−6, s= 0.3
εN = 1 (cooling),c1 = 10−4 andβ = 0.5 (Armijo)

2: while εN ≥ η do
3: compute E(Ỹ, X̃k,εN) and∇E(Ỹ, X̃k,εN)
4: if |∇X̃E(Ỹ, X̃k,εN)|< η then
5: εN← s× εN

6: compute E(Ỹ, X̃k,εN) and∇X̃E(Ỹ, X̃,εN)
7: end if
8: compute H(Ỹ, X̃) andD̃k
9: ω = 1

10: whileE(Ỹ, X̃k+αD̃k)>E(Ỹk, X̃k)+c1ω∇T
X̃

E(Ỹ, X̃k)D̃k do
11: ω ← βω
12: end while
13: Xk+1← Xk+ωdk
14: k← k+1
15: end while

hi, j =
∂ 2E(Ỹ, X̃)

∂ x̃i∂ x̃ j
. (11)

The Hessian matrix is aNM×NM hepta-diagonal sparse matrix where for each
pixel (i, j) six partial derivatives corresponding to its six neighbors, (x̃i, j ;x̃i, j),
(x̃i, j ;x̃i, j−1), (x̃i, j ;x̃i−1, j), (x̃i, j ;x̃i, j+1), (x̃i, j ;x̃i+1, j), (x̃i+1, j ;x̃i+1, j−1), (x̃i, j+1;x̃i−1, j+1).

The iterative numerical technique adopted in (9) chooses, at each iterationk, a
search direction by moving along̃Dk given by (10) while taking an appropriate step
sizeωk. One useful way to identify a step size that achieves adequate reductions in
E(Y,X) at minimal cost is by using theArmijo rule [35]. Given an initial step size,
s> 0 andβ ∈ [0,1] chooseωk to be the largest value in{s,sβ ,sβ 2, ...} such that:

E(Ỹk, X̃k+ωkD̃k)≤ E(Ỹk, X̃k)+c1ωk∇T
X̃E(Ỹk, X̃k)D̃k. (12)

The Armijo rule is used with the following parameters:s= 1,β = 0.5 andc1= 10−4.
Hence, the strategy to chooseωk ensures a strictly decreasing sequence of energy
valuesE() along the iteration process.

Moreover, a continuous variation strategy, also known ascooling, is used where
a small decreasing constantε, updated at each iteration, is added in order to deal
with the non-smooth term of (8).

The main steps of the overall despeckling (RLTV) algorithm are listed inAlgo-
rithm 1 . Finally, the estimated speckle-free image is obtained from X by making
Σ = exp(X).
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2.1 Speckle Extraction

The previous section described the algorithm employed to estimate a noiseless im-
age from B-mode ultrasound data. Here, the estimation of speckle is derived from
the obtaining the denoised and original images.

Speckle corrupting the ultrasonic data is multiplicative in the sense that its vari-
ance depends on the underlying signalΣ = {σi, j}. Hence, the image formation
model may be formulated as follows

yi, j = σi, jηi, j , (13)

whereσi, j is the intensity of pixel(i, j) of the despeckled image, whileyi, j andηi, j

are the observed (noisy) and speckle images, respectively.
In this model the speckle fieldN= {ηi, j} is independent of the signal as occurs in

a common AWGN model where the noisy pixels,y= σ +η , are corrupted by noise,
η , which is independent of the underlying signalσ . In the case of multiplicative
model the operation is not additive but multiplicative as shown in (13). By assuming
a Rayleigh distribution for the ERF image,

p(y|σ) =
y

σ2 exp

(

−
y2

2σ2

)

(14)

the distribution forη is

p(η) =
∣
∣
∣
∣

dy
dη

∣
∣
∣
∣
p(y) = η exp

(

−
η2

2

)

, η ≥ 0, (15)

which shows that the noise imageη is an unit parameter Rayleigh distribution inde-
pendent ofσ .

This result suggests that speckle does not carry significantechogenic informa-
tion when studied locally, providing a more suitable sourcefor describing textural
characteristics.

The speckle field,N = {ηi, j}, is computed straightforwardly from the original
ultrasound image,Y = {yi, j}, and the speckle-free version,Σ = {σi, j}, estimated
from (13),

ηi, j =
yi, j

σi, j
. (16)

2.2 Features extraction

The decomposition method described in the previous sections will be used for tissue
analysis where different types of features are computed from the estimated noiseless
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and speckle components. Afterwards, we investigate the usefulness of such features
for tissue analysis in different case studies.

The following features are considered:

2.2.1 Echogenicity index

Theechogenicity index, referring to tissue distinct acoustic properties in a specific
region, is represented by the averaged valueσ̄W of local echogenicity valuesσi, j

inside then×m windoww= {σi, j} extracted from the de-speckled imageΣ̂ .

2.2.2 Local Rayleigh estimators

In a previous work [36] the authors propose to compute features, to locally charac-
terize the acoustic properties of tissues, directly form the estimated noiseless image,
Σ = {σi, j}. This is done by using the analytical expressions for several statistics
depending on the parameter of the distribution, estimated during the denoising op-
eration. This means, we will estimate this statistics not directly from the observed
noisy data but from the estimated parameters of the distribution that generates that
data, in this case, Rayleigh distributions.

The statistics used in this work are the mean,σµ(i, j), median,συ(i, j), standard
deviation(SD), σσ (i, j), and percentile 40,σP40(i, j). The percentile 40 refers to
the percentage of pixels with echogenicity index lower than40. This measure is
particularly useful to identify low echogenic sites withina region of interest and
is often used in the literature for characterize atherosclerotic plaques [37]. Their
analytical expressions for the Rayleigh distribution are







σµ(i, j) =

√
σ̂(i, j)2π

2

συ(i, j) =
√

2log(2)σ̂(i, j)2

σσ (i, j) =
√

4−π
2 σ̂(i, j)2

σP40(i, j) = 1−exp
(
−402

2σ̂(i, j)2

)

.

(17)

2.2.3 Echogenicity decay

The intensity decay along depth is a common phenomenon occurring in diffuse liver
disease [38] and is also visible in high-reflectivity tissues, like calcified carotid and
coronary plaques [39]. The feature referring toechogenicity decay, sd, is obtained
by linear regression over the mean values of each line of the block k= {σm,n : m=
1, ...,M,n = 1, ...,N}, σ̄k

m = ∑N
n=1 σm,n. It is obtained by minimizing the following

cost function,
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J =
M

∑
m=1

(sd m+b− σ̄k
m)

2. (18)

Fig. 7(b.1)-Fig. 7(b.2) illustrate the distinct intensityprofiles from de-speckled
images of normal and pathologic livers, overlayed with the estimatedechogenicity
decaysfor each case.

2.2.4 Speckle-derived wavelet energies

The structure and directionality of speckle is hypothesized as being a relevant fea-
ture for tissue discrimination. Thus, suitable texture descriptors could be extracted
from the isolated speckle field by considering the first Haar wavelet decomposition
energies, particularly the approximation energyEa, together with horizontalEdH

and verticalEdV detail energies. Additionally, to quantify the relative detail in each
direction, the ratio of horizontal to vertical detail energies,rHV = EdH/EdV is com-
puted, whererHV ≈ 1 means that there is no predominant speckle directionality.

3 Experimental Results

The speckle decomposition method produces a despeckled image, carrying informa-
tion about the local tissue echogenicity, and a speckle field, related to the structure
and the characteristic pattern of tissues.

3.1 RLTV Filtering

In this section the performance of the despeckling method isevaluated by using a
phantom image (w) depicted in Fig. 3(a). The pixel values of this image are useto
generate the log-compressed noisy imagez, displayed in Fig. 3(b), that simulate the
B-mode ultrasound image acquired by the scanner. The denoised image,σ , obtained
with the RLTV algorithm is displayed in Fig. 3(c).

Pixel intensity diagonal profiles of imagesw, z andσ are presented in Fig. 3(d).
Moreover, in Fig. 3(e) the Rayleigh distributions obtainedwith averaged parameters
computed inσ(W1), σ(W2), σ(W3) are overlapped with data histograms inz(W1),
z(W2) andz(W3). As it is observed in Fig. 3(d) and Fig. 3(e), the algorithm isable
to correctly estimate the Rayleigh local parameters used toproduce the phantom
image.
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Fig. 3 (a-c) RLTV filtering in a phantom image. (d) Diagonal profiles of (a-c). (e) PDFs and data
histograms.

3.2 Filters Comparison

Moreover, we compare the speckle reduction results of the proposed de-noising
method (RLTV) with other related work. From the view point offilter compari-
son it is important to study distinct filtering approaches rather than making a bi-
ased description of speckle suppression techniques. Hence, we have collected a set
of techniques based on distinct concepts and formulations.In particular, we have
used linear filters, such as the LSF (Linear Scaling Filter) [40], the pixel-wise
adaptive Wiener method (WIE) [41] and the LHMAF (Linear Homogeneous Mask
Area Filter) [42], non-linear filters, namely the MF (Median filters) [43] and the
MHOPNF (Maximum Homogeneity Over Pixel Neighborhood Filter) [44], diffusion
filters, including the ADF (Anisotropic Diffusion Filter) and the SRADF (Speckle
Reducing Anisotropic Diffusion Filter) [23], wavelet filtering such as the WAVF
(WAVelet-based Filter) and other more recent and sophisticated strategies, includ-
ing the NLMF (Non-Local Means Filter) [13], the SBF (Squeeze Box Filter) [12],
the MGF (Modified Gabor Filter) [45], the WRMLF (Weighted Rayleigh Maximum
Likelihood Filter) [46].

For medical ultrasound images, quality can be objectively assessed in terms of
performance in clinically relevant tasks such as lesion detection, segmentation and
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Fig. 4 Ultrasound speckle decomposition method applied to different tissue types.
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Fig. 5 Comparison of the proposed RLTV filter and other approaches described in the literature,
according to de-speckled images (a), edge maps (b) and image intensity profiles (c).

Table 1 Comparison of filters performance using different FOM.

Figures of Merit (FOM)
Filter µ100.52

1 µ18.23
2 σ19.56

1 σ9.18
2 SSNR5.14

1 SSNR1.99
2 pBenf pUnif t (s)

LSF 100.32 18.24 10.21 6.91 9.82 2.64 1.11E-0160.063 0.31
LHMAF 102.64 19.72 19.19 8.91 5.35 2.21 2.22E-016 0.26 333.29

WIE 100.26 18.00 11.40 6.91 8.80 2.60 2.22E-016 0.13 0.082
MF 99.98 17.67 12.32 7.03 8.11 2.51 4.44E-0160.083 6.22

MHOPNF 100.49 18.24 16.49 8.30 6.10 2.20 2.22E-0160.074 6.57
ADF 100.32 18.25 10.27 6.92 9.77 2.64 2.22E-016 0.06 8.00

SRADF 78.93 14.82 5.87 5.24 13.44 2.83 3.33E-016 0.42 4.31
WAV 100.53 18.23 16.75 8.28 6.00 2.20 3.33E-0160.079 1.04
SBF 99.79 18.32 16.11 8.81 6.19 2.08 0 0.12 2.33

NLMF 99.71 18.36 8.44 6.33 11.82 2.90 0.11 0.12 380.90
WRMLF 81.52 14.37 12.71 6.054 6.41 2.37 5.55E-0160.017 10.98

MGF 88.33 16.26 7.03 5.74 12.56 2.83 3.33E-016 0.16 1.16
RLTV 102.09 17.55 5.05 6.66 21.61 2.63 9.22E-0140.089 192.07

classification [47]. In the synthetic case, where the original images are available, a
number of quantitative measures aiming at comparing the outcome of different fil-
ters can be studied, however dealing with real images poses some limitations. As a
consequence, we assess the quality of each filter result according to three different
criteria, including visual inspection, edge maps obtainedfrom the de-noised images
and quantitative criteria. Image quality in terms of visualinspection refers to con-
trast enhancement, speckle pattern suppression and edge-preservation. Moreover,
the computation of edge maps foresees the application of segmentation algorithms
in the noiseless images. Given this, an edge map which contains most of the anatom-
ical details and very few outliers will theoretically produce the best segmentation re-
sults. Finally, we have used some quantitative measures, namely the SSNR (Speckle
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Signal to Noise Ratio) [4], and the MPVR (Mean Preservation Variance Reduction).
The latter can be assessed by computing the mean and variancein different regions
within the image. The closer the computed mean within the noiseless and original
image is, and the lower the variance, the better the filteringmethod is. Moreover,
we use a test of reasonableness (naturalness) of each filter outcome. The application
of some filters could lead to artificial images, although visually appealing in terms
of speckle suppression and edge enhancement. Knowing that the first digit of the
gradient magnitude in natural images follows the Benford law [48,49] we perform
the Kolmogorov-Smirnov conformity test using the Benford law as well as the uni-
form distribution. If the Benford law-based test is close to0 this means that the filter
outcome produces a natural image.

Moreover, the computational efficiency of speckle removal filters, as these meth-
ods are supposed to be part of real time medical applications, becomes an unavoid-
able need. All the filters were implemented in Matlab and computed on an Intel
Core 2 CPU @ 1.66GHz.

The effectiveness of the proposed RLTV filter is compared with other state-of-
the-art methods, using a real ultrasound image of the thyroid. First, we show the
outcomes of each filter in Fig. 5(a). From visual inspecting the noiseless images it
becomes clear that the best results are obtained with the SRADF, NLMF and RLTV
filter, according to efficient speckle suppression in homogeneous regions and excel-
lent edge-preservation of relevant anatomical details. Some other methods, such as
the MGF and the ADF are capable of removing most of speckle butthey tend to blur
the image.

Moreover, because de-speckling is often used as a pre-processing step for seg-
mentation purposes, we have computed edge maps from each filter outcome using
the Canny detector [50]. These results are depicted in Fig. 5(b). As it can be ob-
served, the edge maps obtained from the SRADF and RLTV filter provide contain
the most relevant edges in the image, particularly the ones that allow to outline the
thyroid, while removing outlier edges.

Finally, Fig. 5(c) presents the image intensity profiles of some filters along a path
marked in Fig. 5(a). This result reinforces the regularization effect produced by the
RLTV filter, which is clearly able to eliminate most of the noise causing intensity
variability while keeping abrupt intensity transitions due to transitions.

Filter comparison is also evaluated from a quantitative viewpoint. Table 1 presents
some quantitative measures obtained for each filter outcome, using different FOM.
Some of these FOM are computed from the marked regions in Fig.5(a). A detailed
observation enables to conclude that the RLTV method provides excellent results in
terms of mean preservation and standard deviation reduction, while it outperforms
other methods in terms of SSNR.
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Fig. 6 (a) Despeckled and speckle component estimates obtained from BUSIVUS image. (b)
SSNR map computed over the speckle fieldη̂ .

3.3 Speckle Decomposition

In the previous experiment we have demonstrated the excellent speckle suppression
and edge-preserving properties of the proposed RLTV filter.Here, we investigate
the incorporation of such method into the so-called speckledecomposition method,
providing not only the filter outcome but also a speckle field.

Fig. 4 presents different examples of the application of theproposed ultrasound
speckle decomposition algorithm in different image types.To investigate the robust-
ness of the despeckling method we have used ultrasound data from different struc-
tures and tissues (see Fig. 4), including thyroid (a), carotid artery (b), heart (c) and
liver (d). Optimization results were obtained in 67(109.9s), 50(82.2s), 55(92.5s)
and 61(101.6s) iterations, respectively. These results illustrate the ability of the
RLTV algorithm to deal with different types of real images.

To complete this set of experiments related with speckle image decomposition,
an example withintra-vascular ultrasound(IVUS) image of the coronary artery
is provided in Fig.6(a). Additionally, theSpeckle Signal-to-Noise Ratio(SSNR) is
computed within a sliding window across the whole speckle image and the SSNR
map is shown in Fig. 6(b). A precursor study [3] conducted in real ultrasound im-
ages, showed experimentally that when fully developed speckle occurs, the SSNR
is in the range of 1.5 to 2.5. Given this, it is observed that the speckle field has sta-
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tistical properties resembling a Rayleigh distributed signal, which strongly suggests
the likelihood of the assumption of the Rayleigh observation model for the RLTV
despeckling method.
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Fig. 7 Feature extraction based on ultrasound speckle decomposition applied to different case
studies. (a) first Haar wavelet energies based on speckle from plaque (1), thyroid (2) and liver
(3). (b) feature based onechogenicity decay(1-2) and feature space of normal and steatotic livers.
(c) Sample extraction from noiseless and speckle components, obtained from thyroid images (1);
wavelet decomposition from speckle field (2).

Results of the speckle decomposition method have just been presented. Hence,
it is now important to show that the outcomes of the proposed method are useful
image sources of information for tissue analysis. Consequently, we present different
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case studies using distinct ultrasound data:

Evidence of tissue-dependent textural features:the speckle field of ultra-
sound images from different tissue types, in particular of carotid plaque, thyroid
and liver (Fig. 7(a)) are used to show that the energies associated with the first
wavelet decomposition fields with Haar functions,Ea, Ed and rHV , differ signif-
icantly from one anatomical structure to another, as well asfrom one tissue area
to another. In particular, the wavelet energies and energy ratios are (see Fig. 7(a)):
Ea(wa)=99.6,Ed(wa)=0.4,rHV(wa)=2.8;Ea(wb)=95.4,Ed(wb)=4.6,rHV(wb)=4.7;
Ea(wc.1)=92.3,Ed(wc.1) =7.7,rHV(wc.1)=2.3;Ea(wc.2)=94.3,Ed(wc.2)=5.7,
rHV(wc.2)=3.1;Ea(wc.3)=96.3,Ed(wc.3)=3.7,rHV(wc.3)=2.1.

Liver steatosis binary classification:a Bayes classifier trained with features
related toechogenicity decay(see Fig. 7(b)) and wavelet energies is used in a bi-
nary classification problem. Features were extracted from adataset of 20 livers,
which were clinically validated as normal or steatotic (with abnormal lipid retention)
[51], yielding the following feature set and values: for normal liver, s̄d=0.48 (0.18)
ĒdH=9.79 (2.68)ĒdV=6.78 (1.63); and for fatty liver, ¯sd=0.80 (0.11)ĒdH=19.97
(4.54) ĒdV=4.66 (1.61). Results, given in terms of sensitivity (S=1.00) and speci-
ficity (K=0.95), support the usefulness of features extracted both from the noiseless
and speckle image sources for a specific tissue classification problem.

Subject identification based on thyroid ultrasound data:a subject identifi-
cation problem based on thyroid tissue ultrasonic data was performed [52], con-
sidering a population of 10 subjects (several samples per subject). Again, features
were extracted from both the estimated de-speckled image (echogenicity index) and
speckle field (wavelet energies) as depicted in Fig. 7(c). Subsequently, the estimated
feature set was used for training a bayesian classifier. Sensitivity results obtained for
the problem of subject identification were:S=0.79, with echogenicity index features,
S=0.70, with wavelet energies andS=0.94 with a combination of both. Again, this
example shows that distinct feature values can be obtained from thyroid tissue on
the basis of the proposed ultrasound speckle decompositionmethod.

4 Conclusions

This chapter describes a new strategy for decomposing ultrasound B-mode images
into its noiseless and speckle components, as well as, a new state of the art algorithm
for despeckling.

First, a suitable de-noising algorithm is presented which aims at providing
clearer yet edge-preserving images for medical interpretation. Subsequently, be-
cause speckle has multiplicative nature, an image containing the speckle pattern
is estimated after knowing the corresponding noiseless image.
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The adequacy of the RLTV filtering method has been compared with other filters,
and afterwards established through synthetic examples andultrasound images hav-
ing different types. Moreover, as theoretically expected,an example using IVUS
data, clearly shows that the speckle field has statistical properties resembling a
Rayleigh distributed signal.

Furthermore, we have computed different features from noiseless and speckle
image sources, arguing that such information is useful for tissue analysis. Hence,
we have shown the convenience of working with the estimated echogenicity and
textural features for tissue description through distinctreal cases.

The first study is conducted to illustrate how features computed from the speckle
field differ from a tissue to another and even within the same tissue. Wavelet de-
tail and approximation energies together with the relativedirectional energy ratio
have shown to be relevant tissue descriptors. The second andthird examples use
features extracted both from noiseless and speckle image sources. In particular, the
second study uses a feature computed from the despeckled image (echogenicity
decay) which is very convenient in the investigated two-class problem. In the two
classification problems presented, the use of information resulting from the pro-
posed speckle decomposition procedure leads to high classification scores.

Thus, we have shown that the proposed algorithm is able to provide more suit-
able images for visual diagnosis as well as useful sources ofinformation for tissue
analysis in different clinical scenarios.
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