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Abstract Speckle corrupting Ultrasound images depends on the acasirac-
teristics of the observed tissues. De-speckling methoedsuaually employed to
improve visualization and interpretation of anatomicakde and the information
encoded in speckle pattern is usually discarded. This nmétion, however, may
contain useful information for diagnostic purposes.

This chapter proposes a joint method to estimate the delgueaid speckle compo-
nents from the ultrasound data for morphological and texamalysis of the tissues.
The method is based on a two-step approach. In the first step@sdd image is
computed and in the second step the speckle field is obtainedthe despeckle
data obtained on the first step and from the original image.

The despeckle image provides morphological and anatormiéamation of the
region under analysis while the speckle field is suitablecimpute textural infor-
mation mainly related with tissue micro-structure.

The adequacy of the proposed decomposition method is askbgsusing both
synthetic and real data from distinct tissues. Severabdifit case studies and ap-
plications are presented to illustrate the usefulnesseofitbthod for tissue charac-
terization purposes.
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1 Introduction

Ultrasound imaging has become a standard procedure forcaiaetiagnosis world-
wide, particularly in assessing arterial diseases [1,2hdugh diagnostic by using
ultrasound imaging is considered a harmless technique lfowlsareal-time non-
invasive scanning of anatomical details, B-mode ultradd8US) images are per-
vaded by a severe type of multiplicative noise, cakkpeckle that makes its inter-
pretation a difficult process highly depending on the subje@ppreciation of the
operator.

The presence of speckle noise in such images has been ddedhsémce the
early 1970s, when researchers such as Burckhardt [3], Wddghand Goodman
[5] described the fundamentals and statistical propediespeckle. Speckle is the
primary factor which limits the contrast resolution in inesgthereby hindering the
detection of small, low contrast lesions and turning theriptetation of images into
a challenging task. Speckle also limits the effective aggpion of image processing
and analysis algorithms for region, edge detection, setatien and classification
purposes.

There is described in the literature a large number of mettiod speckle re-
duction either for medical ultrasound imaging [6] and otherdalities involving
coherent radiation such as synthetic aperture radar (SARNd LASER [8]. Such
wide spectrum of techniques suggests that the problem nsnaaiopic of interest
for the image processing community and is far from being detefy solved.

De-speckling is always a trade-off between noise suppmessid loss of infor-
mation, which is a critical issue specially when medicapdiasis is involved. Most
of the work aims at removing noise for image quality improesm[9—13]. How-
ever, other works are also explore the information conthinghe noise pattern for
the extraction of echo-morphology and texture featuresigsue analysis [14—17].

Ultrasound speckle [3] arises from constructive and destreliinterferences be-
tween diffuse scatterers within a certain resolution cBfle most popular model
to describe speckle formation is the fully speckle conditidhich considers a large
number of scatterers whose reflected signals combine @éngadandom walk pro-
cess of component phasors sum. This speckle model impliesykiBh statistics
for the envelope of the backscattered (amplitude) signdi. [Eor what concerns
the grey-level image appearance the Rayleigh distributemshown to be a good
approximation for modeling pixel intensities in homogengcegions despite other
distributions, including the K- [19], Nakagami [20], andcRin Inverse Gaussian
[18], are more convenient, mainly when the image preseigdt®dges/transitions
or strong isolated scatterers.

Speckle pattern is often referred as being multiplicativees its variance de-
pends on the underlying signal intensity, meaning moreenpiswer in brighter
regions than in darker ones. Thus, de-noising methods baséide commorAd-
ditive White Gaussian Noig&WGN) observation model is not unappropriated to
deal with this type of noise. Additionally, other methodvédeen proposed for
de-noising and reconstruction based on median and addifteviang [21], wavelets
[22], anisotropic diffusion [23] or other approaches [13,1
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This chapter presents a joint framework for image de-ngisind speckle es-
timation which takes into account the multiplicative nataf the speckle signal.
The de-noising procedure, that is usuallyilkposed[24] problem, may be tackled
by using a Bayesian approach [25] which considegsiori information about the
unknown noiseless image to be estimated.

The problem is formulated as an optimization task where atemm energy
function is minimized. In particular, the first term pushhe solution toward the
observations (noisy pixel intensities) and the secondlagiges it. Regularization
is performed with a suitable edge-preserving prior, destigngh aslog-Euclidean
which is used with a two-fold purpose: (i) being edge-preisgy, and (ii) allowing
to formulate the de-speckling task as a convex optimizaifoblem. This method is
also referred throughout this chapterRayleigh-Log Total VariatiodRLTV) filter.

The main contribution of this chapter is to introduce a speoéducing method
based on a Bayesian approach [25] which assumes a Raylesgivation model
to describe the ultrasound pixel intensities and wspsori information about the
speckle-free image to be estimated. Such prior informati@sed on TV Total
Variation) [26], allows to regularize the solution by removing speckihile pre-
serving the relevant anatomic details.

As previously mentioned, the information encoded in utitasl speckle is of-
ten discarded but it is widely recognized that this phenames dependent of the
intrinsic acoustic properties of tissues [27]. The proposethod assumes the rel-
evance of speckle for tissue analysis. Therefore, the rdeithalesigned to esti-
mate both the noiseless and speckle components (imagesjHeoultrasound data.
Hence, the de-speckling method, which will be further dethprovides clear im-
ages for medical interpretation and speckle fields for enloophology and texture
characterization.

The remainder of this chapter is organized as follows. 8ei describes the
various steps of the speckle decomposition method, astedgit Fig. 1. First, the
mathematical formulation on the basis of the de-speckliggrdhm is detailed, to-
gether with the optimization strategy adopted to find theseleiss solution. Subse-
quently, Section 2.1 describes the procedure to extracttbekle component from
the estimated noiseless image. Furthermore, Section 8septs a feature extrac-
tion procedure which enables to extract echogenicity axtdital information from
the image components previously obtained with the spe@demposition method.

Section 3 exposes two types of results. The first exemplifiespeckle decom-
position method, providing separation of BUS images intseless and speckle
components. The adequacy of the proposed ultrasound innagessing is assessed
with both synthetic and real data. Second, insight on th&lrsess of features ex-
tracted from noiseless and speckle images for tissue asadysxploited through
different case studies.

Finally, Section 4 concludes this chapter.
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Fig. 1 Ultrasound speckle decomposition framework.

2 Methods

The decomposition method comprises two main steps; i) $peeknoval from the
the noisy ultrasound image to obtained a cleaned noisetesss with morphologi-
cal information about the organs and ii) speckle isolatatained form the noise-
less and original noisy image, containing the texturalimfation about the tissues.
The first procedure, the more complex of both steps, is faatedl in a Bayesian
framework, where the unknown noiseless image- {qg; j} is estimated form the
noisy one,Y = {y; j}. TheMaximum a Posteriorcriterion (MAP) [28] is adopted
to deal with theill-posenesg24] nature of the problem. Therefore, tespecking
problem is formultated as an optimization task where anggngmction is mini-
mized,

E:argn;inE(Y,Z), 1)

where
E(Y,Z)=Eq(Y,2)+Ep(2). (2)

Eq(Y,Z), calleddata fidelityterm, pushes the solution toward the data Bp(>),
calledprior term, regularizes the solution by introducing prior knadge about.

The data fidelityterm is thelog-likelihood functionE4(Y, %) = —log(p(Y|X))
and by assuming statistical independence of the pixéls|>) = ﬂi't'jgl P(YijlGij)
wherep(yi j|6ij) is a Rayleigh distribution,

pii|01) = ﬁgexp< zyj; ) . (3)

i i

The estimation of by simply using theVIL criterion, corresponding to the min-
imization of E4(Y, 2), is anill-posedproblem in the Hadamard sense because the
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Fig. 2 Log-Euclidean prior. a) 4-pixel neighboring system S and &8tglique. b) Comparison
of different potential functionp(x,X') for a 2-pixelcliquewith X' = 1.

solution is not unique and it may not depend continuouslyhendata [24,29]. A
regularization term is added to overcome this difficultyntog the problem into
a well-posed problem. The distributige{ ) introduces prior knowledge about the
image to be estimated, thus regularizing and favoring smealutions. Even with a
regularization term the minimization procedurek(fY,>) may be a difficult task,
mainly when the energy function (2) is not convex. Thereftw® main issues must
be taken into account in the designing of the prior functipthe inclusion of real-
istic constraints and ii) convexity of the whole energy fiioe.

The determination of a suitable prior distribution is difificto attain, particularly
in medical applications where straightforward assumggtiamout the prior distribu-
tion may lead to wrong diagnosis. The common assumptiontahese images is
that they are band-limited, changing slowly in space exoept the organs bound-
aries where abrupt transitions are expected. This priarinétion is difficult to
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implement because the location of the transitions are umkrend must be esti-
mated. Neverthelesg, can be modeled as a MRFMarkov random fielflunder the
assumption that neighboring pixels are likely to have smihtensities, except if
they are located at a transition.

From the Hammersley-Clifford theorem [30], the joint prbbi¢y density func-
tion (PDF) ofZ, assuming that it is a MRF, is a Gibbs distribution

1 N,M
p(Z)=exp| —a ; p(cij) |, 4)

-

Gibbs energ
whereZ is the partition function [31]p( ) is designated agotential functionand
Gi,j is the set of pixels involved in thé, j)I" clique of the neighborhood system
Sdefined inZ, as it is shown in Fig. 2(a). The parametemodels the interaction
strength between neighbors. &sncreases, the prior becomes more significant than
the data fidelity term, yielding a smoother solution.

Thus, the prior term is

N,M

Ep(Z)=—log(p(Z)>=a_zlp(q,j)+K7 (5)
i,|=

whereK is a constant. Differences between neighboring nodes aaiped by the
prior term while the overall energy of tleéiquesis minimized, therefore contribut-
ing to speckle suppression.

Typical potential functions are based on the(Manhattar) and L, (Euclidear)
norms [32], corresponding 10(c; j) = |Gi j — Gi—1,j| +|0i,j — i,j—1)| andp(cij) =
(6ij — 6i-1,))%>+ (0ij — i j_1)?, respectively. Particularly, when the Inorm is
used, the differences in neighboring pixel intensities guadratically penalized.
This potential function is able to efficiently remove thes®but is also attenuates
or removes important anatomical details.

The Log-Euclidean prior, proposed in [33], is particulaitale in positive-
constrained optimization problems, such as in this dedimecgroblem where the
Rayleigh parameters to be estimateda@rg> 0. This prior is based on the distance
functionp(x,x') = |log(x/x')|, wherex' is a neighboring pixel ok, which is in fact
a metric because the following conditions hold: gix,x") > 0, (ii) p(x,X) = 0 if
and only ifx=X, (i) p(x,X') = p(X,x) andp(x,X") +p(X",X) > p(x,X). As men-
tioned before, the Log-Euclidean prior is here employedtduts edge-preserving
properties and also because it turns the optimization prolibrmulated in (1) into
a convex problem [34]. The potential function associatetth #iis prior is

p(cij) = 1/106(61,1/i-1,;) +log(01; /01 1), (6)
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where in eacleliquethree nodes are involved,j = {6ij,0i-1,j, 0 j-1}. Fig. 2(b)
displays the LEPFL(og-Euclidean potential functign|log(x/x)| jointly with the
common lg = |[x—X| and Lp = (x— x')? for a two pixelclique wherex is an unit
intensity pixel,xX' = 1. As it is observed the penalization introduced by the Log-
Euclidean potential function (LEPF) wherandx’ are similar is larger than the,L
prior and smaller than 4, meaning better performance than thegrior to remove
speckle but poorer than thg Ihorm. However, when the difference betweeand
X' is large the penalization introduced by the LEPF is much lem#han the one
introduced by the other two norms, thus leading to bettesgaration of the tran-
sitions which hypothetically contain relevant anatomioérmation. Additionally,
for a given value oK', whenx goes to zero the penalization introduced by th@hd
L, norms goes to a constant value while the penalization inted by the LEPF
continues to grow, which is very convenient in this case wlikee parameter of the
Rayleigh distribution is strictly positiveg; j > 0, but can be arbitrarily small.

The overall energy function, obtained from (2) is the foliog:

I 2 qzl I 2 O-'ZJ (7)
+a 0g —— | +10g :
% Ui%l, j ‘751'71

which is non-convex because, although the data fidelity terwonvex, the prior
term is concave. Its minimization is a difficult task mainlyr@n gradient-descent
methods are used [34]. However th following change o vagiabh be performed to
transform (7) into a convex functior,= log(c?). The new convex energy function
is,

2

Yii

E(Y,2) =Y [2(;‘2' +log(a?))
1] 1)

E M )
(Y’X)_Z 7EXD(—X|,J)+X..J

]

o %\/(Xi,j —Xi—1,j)%+ (%i,j —Xij—1)%+€. (8)

TV(X)

where the prior term, the TV of = {x; ; }, is now convex because all of its terms
are convex (second derivative is positive).

The stationary point of (8LIxE(Y,X*) = 0, that minimizes the energy function
is iteratively computed by use of a line search [34] alganith

X1 = X+ Dy, 9)
where the descent directioBy, is found with the Newton method [24]
Dy = H (Y, X)OgE(Y, X). (10)

In (10), X andY are column vectors obtained by lexicographic ordering aindY
respectively. In additionlJx E (Y, X) is the gradient column vector &(Y,X)
with respect toX andH (Y, X) = [h; ;] is the corresponding Hessian matrix where:
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Algorithm 1 convex optimization
Require: Y € O
1: Initialize: k=0, Y = log( %), % = log(Yo), n = 106,5=0.3
&n = 1 (cooling),c; = 10~* andB = 0.5 (Armijo)

2: while ey > n do

3:  compute EY, X, en) andOE(Y, X, &n)

4:  if |OgE(Y, X, en)| < 1 then

5: EN < SX EN

6: compute EY, X, en) andOgE(Y, X, &)
7 end if

8:  compute HY,X) andDy

9: w=1

10:  while E(Y, X+ aDy)>E (Y, Xc) +c1w0LE(Y, %) Dy do
11: W<+ fw

12:  end while

13: Kypg < Xi+ wdy
14. k<« k+1
15: end while

F2E(Y,X)

hij= ’
YT a%0%;

(11)

The Hessian matrix is &M x NM hepta-diagonal sparse matrix where for each
pixel (i, ) six partial derivatives corresponding to its six neighbdfg;;%i ;),
(&%), & %ies ), &% 40, Kji%ies ), K ji&icsj-1), & jenifiogjra)-

The iterative numerical technique adopted in (9) choodesaeh iteratiork, a
search direction by moving alondy given by (10) while taking an appropriate step
sizewy. One useful way to identify a step size that achieves adeqeductions in
E(Y,X) at minimal cost is by using th&rmijo rule [35]. Given an initial step size,
s> 0 and < [0,1] chooseux to be the largest value ifs,sB,s82, ...} such that:

E(\?k,f(k—s—m(f)k) < E(\?k,)N(k)+c1m<D>T~(E(\?k7)~(k)f)k. (12)

The Armijo rule is used with the following parametess: 1, 3 = 0.5 andc; = 104
Hence, the strategy to chooag ensures a strictly decreasing sequence of energy
valuesE () along the iteration process.

Moreover, a continuous variation strategy, also knownaming, is used where
a small decreasing constasitupdated at each iteration, is added in order to deal
with the non-smooth term of (8).

The main steps of the overall despeckling (RLTV) algorithma lésted inAlgo-
rithm 1. Finally, the estimated speckle-free image is obtainethfXoby making
2 =exp(X).
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2.1 Speckle Extraction

The previous section described the algorithm employedtimate a noiseless im-
age from B-mode ultrasound data. Here, the estimation afképés derived from
the obtaining the denoised and original images.

Speckle corrupting the ultrasonic data is multiplicatinghe sense that its vari-
ance depends on the underlying sigaak= {g; j}. Hence, the image formation
model may be formulated as follows

Yi.i=0iiNij, (13)

wherea; j is the intensity of pixeli, j) of the despeckled image, whijg; andn; ;
are the observed (noisy) and speckle images, respectively.

In this model the speckle fieM = {n; j } is independent of the signal as occurs in
a common AWGN model where the noisy pixels;s ¢ + n, are corrupted by noise,
n, which is independent of the underlying sigr@al In the case of multiplicative
model the operation is not additive but multiplicative agwh in (13). By assuming
a Rayleigh distribution for the ERF image,

y y?
p(ylo) = GZEXD<—M) (14)
the distribution fom is
dy n?
= | — — - >
p(n) ‘dn p(y) nexp< 2)7 n=o, (15)

which shows that the noise imageds an unit parameter Rayleigh distribution inde-
pendent ofo.

This result suggests that speckle does not carry signifieembgenic informa-
tion when studied locally, providing a more suitable sodaredescribing textural
characteristics.

The speckle fieldN = {n; j}, is computed straightforwardly from the original
ultrasound imageY = {y; j}, and the speckle-free versioh,= {¢; ;}, estimated
from (13),

Yii
0,

nij= (16)

2.2 Features extraction

The decomposition method described in the previous sextiihbe used for tissue
analysis where different types of features are computed the estimated noiseless
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and speckle components. Afterwards, we investigate thelngss of such features
for tissue analysis in different case studies.
The following features are considered:

2.2.1 Echogenicity index

The echogenicity indexreferring to tissue distinct acoustic properties in a gmec
region, is represented by the averaged valyeof local echogenicity values |
inside then x mwindoww = {; ; } extracted from the de-speckled imape

2.2.2 Local Rayleigh estimators

In a previous work [36] the authors propose to compute featuo locally charac-
terize the acoustic properties of tissues, directly forengbtimated noiseless image,
> ={a}. This is done by using the analytical expressions for séwtaistics
depending on the parameter of the distribution, estimatgthg the denoising op-
eration. This means, we will estimate this statistics noéatly from the observed
noisy data but from the estimated parameters of the disiibthat generates that
data, in this case, Rayleigh distributions.

The statistics used in this work are the meay(i, j), median,oy (i, j ), standard
deviation(SD), oy (i, j), and percentile 40gp,,(i, j). The percentile 40 refers to
the percentage of pixels with echogenicity index lower td&@n This measure is
particularly useful to identify low echogenic sites withenregion of interest and
is often used in the literature for characterize atherestite plaques [37]. Their
analytical expressions for the Rayleigh distribution are

ouli, ) =/ 24
a(i,j) = /210928 (i, )2 a7
oo(i, i) = /%576 (), ])?

2.2.3 Echogenicity decay

The intensity decay along depth is a common phenomenonriregum diffuse liver
disease [38] and is also visible in high-reflectivity tissuée calcified carotid and
coronary plaques [39]. The feature referringetthogenicity decaysy, is obtained
by linear regression over the mean values of each line ofldeklx = {omp: M=
1,...,M,n=1,..,N}, 6& = SN_ Omn. It is obtained by minimizing the following
cost function,
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J= %(sd m+b—a¥)2. (18)

m=1

Fig. 7(b.1)-Fig. 7(b.2) illustrate the distinct intensftyofiles from de-speckled
images of normal and pathologic livers, overlayed with teneatedechogenicity
decaydor each case.

2.2.4 Speckle-derived wavelet energies

The structure and directionality of speckle is hypothesbias being a relevant fea-
ture for tissue discrimination. Thus, suitable texturecdigsors could be extracted
from the isolated speckle field by considering the first Haavelet decomposition
energies, particularly the approximation eneffy together with horizontakEgyy
and verticalEgy detail energies. Additionally, to quantify the relativaaiein each
direction, the ratio of horizontal to vertical detail enegyrpy = Eqn /Eqv is com-
puted, whereyy ~ 1 means that there is no predominant speckle directionality

3 Experimental Results

The speckle decomposition method produces a despecklgejmmarrying informa-
tion about the local tissue echogenicity, and a speckle, fieldted to the structure
and the characteristic pattern of tissues.

3.1 RLTV Filtering

In this section the performance of the despeckling meth@vyasuated by using a
phantom imagew) depicted in Fig. 3(a). The pixel values of this image aretose
generate the log-compressed noisy imagéisplayed in Fig. 3(b), that simulate the
B-mode ultrasound image acquired by the scanner. The dahioiggeg, obtained
with the RLTV algorithm is displayed in Fig. 3(c).

Pixel intensity diagonal profiles of images zandg are presented in Fig. 3(d).
Moreover, in Fig. 3(e) the Rayleigh distributions obtaimgth averaged parameters
computed ino(W;), o(W,), o(Ws) are overlapped with data histogramsz{iV, ),
z(W,) andz(\Ws). As it is observed in Fig. 3(d) and Fig. 3(e), the algorithnalide
to correctly estimate the Rayleigh local parameters usqatdduce the phantom
image.



12 Jo€ Seabra and J. Miguel Sanches

Phantom (w De-speckled (o)

Diagonal profile

50 100 150 200 25
Intensity

(d) (e)

Fig. 3 (a-c) RLTV filtering in a phantom image. (d) Diagonal profildga-c). (e) PDFs and data
histograms.

3.2 Filters Comparison

Moreover, we compare the speckle reduction results of tbpqsed de-noising
method (RLTV) with other related work. From the view point fdfer compari-
son it is important to study distinct filtering approachethea than making a bi-
ased description of speckle suppression techniques. Hemdeave collected a set
of techniques based on distinct concepts and formulationgarticular, we have
used linear filters, such as the LSErear Scaling Filtej [40], the pixel-wise
adaptive Wiener method (WIE) [41] and the LHMAEijear Homogeneous Mask
Area Filter) [42], non-linear filters, namely the MAVledian filterg [43] and the
MHOPNF Maximum Homogeneity Over Pixel Neighborhood Fil{d#d], diffusion
filters, including the ADF Anisotropic Diffusion Filtey and the SRADF $peckle
Reducing Anisotropic Diffusion Filtg{23], wavelet filtering such as the WAVF
(WAVelet-based Filtgrand other more recent and sophisticated strategies,dinclu
ing the NLMF (Non-Local Means Filtér[13], the SBF Squeeze Box Filt¢{12],
the MGF Modified Gabor Filte) [45], the WRMLF Weighted Rayleigh Maximum
Likelihood Filter) [46].

For medical ultrasound images, quality can be objectivebeased in terms of
performance in clinically relevant tasks such as lesioed&&in, segmentation and
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Fig. 4 Ultrasound speckle decomposition method applied to differsstié types.

13



14

Jo€ Seabra and J. Miguel Sanches




Ultrasound Speckle / Despeckle Image Decomposition for Tissueygisal

Noisy

LHMAF

MHOPNF

WAV SBF NLMF

MGF RLTV




16 Jo€ Seabra and J. Miguel Sanches

—Noisy
| — SRADF
1 ——SBF
—NLMF
---WRMLF
© MGF
—RLTV

50

I I I I
0 50 100 150 200 250 300
X

(©

Fig. 5 Comparison of the proposed RLTV filter and other approachesitiedcn the literature,
according to de-speckled images (a), edge maps (b) and imagsitpterofiles (c).

Table 1 Comparison of filters performance using different FOM.

Figures of Merit (FOM)

Filter U%OO'SZ “%8.23 012!.9.56 0-29.18 SSNF§.14 SSN%.QQ PRent Punif '[(S)
LSF [100.3218.24/10.21] 6.91| 9.82 2.64 |1.11E-0160.063 0.31
LHMAF [102.6419.72/19.19/ 8.91| 5.35 2.21 |2.22E-016 0.26333.29
WIE |100.2618.00/11.40/ 6.91| 8.80 2.60 |2.22E-016 0.13| 0.082
MF | 99.98/17.67/12.32| 7.03| 8.11 2.51 |4.44E-0160.083 6.22
MHOPNF|100.4918.24)16.49) 8.30| 6.10 2.20 |2.22E-0160.074 6.57
ADF |100.3218.25/10.27| 6.92| 9.77 2.64 |2.22E-016 0.06| 8.00
SRADF | 78.93|14.82| 5.87| 5.24| 13.44 | 2.83 |3.33E-0160.42| 4.31
WAV |100.5318.23/16.75| 8.28| 6.00 2.20 |3.33E-0160.079 1.04
SBF |99.79/18.32/16.11| 8.81| 6.19 2.08 0 0.12| 2.33
NLMF |99.71|18.36 8.44 | 6.33| 11.82 | 2.90 0.11 | 0.12{380.9¢
WRMLF | 81.52|14.37/12.71{6.054  6.41 2.37 |5.55E-0160.017 10.98
MGF | 88.33|16.26/ 7.03 | 5.74| 1256 | 2.83 |3.33E-0160.16| 1.16
RLTV |102.0917.55 5.05| 6.66| 21.61 | 2.63 [9.22E-0140.089192.07

classification [47]. In the synthetic case, where the odbimages are available, a
number of quantitative measures aiming at comparing theoow of different fil-
ters can be studied, however dealing with real images pases Bmitations. As a
consequence, we assess the quality of each filter resultdicegdo three different
criteria, including visual inspection, edge maps obtaiineoh the de-noised images
and quantitative criteria. Image quality in terms of visurepection refers to con-
trast enhancement, speckle pattern suppression and eelggrmtion. Moreover,
the computation of edge maps foresees the application ofiesgigtion algorithms
in the noiseless images. Given this, an edge map which camadst of the anatom-
ical details and very few outliers will theoretically pramiithe best segmentation re-
sults. Finally, we have used some quantitative measureslgahe SSNR$peckle
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Signal to Noise Rat)d4], and the MPVR Klean Preservation Variance Reductjon
The latter can be assessed by computing the mean and vainedifferent regions
within the image. The closer the computed mean within thealess and original
image is, and the lower the variance, the better the filtemeghod is. Moreover,
we use a test of reasonableness (naturalness) of eachfiltence. The application
of some filters could lead to artificial images, although &luappealing in terms
of speckle suppression and edge enhancement. Knowinghihditrst digit of the
gradient magnitude in natural images follows the Benfovd [&8,49] we perform
the Kolmogorov-Smirnov conformity test using the Benfaad/las well as the uni-
form distribution. If the Benford law-based test is clos@tihis means that the filter
outcome produces a natural image.

Moreover, the computational efficiency of speckle remoVar, as these meth-
ods are supposed to be part of real time medical applicatimt®omes an unavoid-
able need. All the filters were implemented in Matlab and cotag on an Intel
Core 2 CPU @ 1.66GHz.

The effectiveness of the proposed RLTV filter is comparedh wiher state-of-
the-art methods, using a real ultrasound image of the tlyferst, we show the
outcomes of each filter in Fig. 5(a). From visual inspectimg moiseless images it
becomes clear that the best results are obtained with th®FRW.MF and RLTV
filter, according to efficient speckle suppression in homnegels regions and excel-
lent edge-preservation of relevant anatomical detailmeSother methods, such as
the MGF and the ADF are capable of removing most of speckléheyttend to blur
the image.

Moreover, because de-speckling is often used as a pregsiagestep for seg-
mentation purposes, we have computed edge maps from eaclotitcome using
the Canny detector [50]. These results are depicted in Fm. Bs it can be ob-
served, the edge maps obtained from the SRADF and RLTV fil@rige contain
the most relevant edges in the image, particularly the dmetsadlow to outline the
thyroid, while removing outlier edges.

Finally, Fig. 5(c) presents the image intensity profilesarfis filters along a path
marked in Fig. 5(a). This result reinforces the regulararaeffect produced by the
RLTYV filter, which is clearly able to eliminate most of the seicausing intensity
variability while keeping abrupt intensity transitionsedio transitions.

Filter comparison is also evaluated from a quantitativevpi@int. Table 1 presents
some quantitative measures obtained for each filter outcogieg different FOM.
Some of these FOM are computed from the marked regions irbFag. A detailed
observation enables to conclude that the RLTV method pesvkcellent results in
terms of mean preservation and standard deviation redyatibile it outperforms
other methods in terms of SSNR.
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B-mode De-speckled Speckle

RLTV
filtering

Speckle
extraction

:.5
:5
jS
(1] 5
b

Fig. 6 (a) Despeckled and speckle component estimates obtained fromNBUS image. (b)
SSNR map computed over the speckle figld

(b)

3.3 Speckle Decomposition

In the previous experiment we have demonstrated the ertslieckle suppression
and edge-preserving properties of the proposed RLTV fiere, we investigate
the incorporation of such method into the so-called sped&tmposition method,
providing not only the filter outcome but also a speckle field.

Fig. 4 presents different examples of the application ofpfeposed ultrasound
speckle decomposition algorithm in different image tydesinvestigate the robust-
ness of the despeckling method we have used ultrasoundrdatadffferent struc-
tures and tissues (see Fig. 4), including thyroid (a), éduatery (b), heart (c) and
liver (d). Optimization results were obtained in(@09.9s), 50(82.2s), 55(92.5s)
and 611016s) iterations, respectively. These results illustrate thditpalof the
RLTV algorithm to deal with different types of real images.

To complete this set of experiments related with speckleggrdecomposition,
an example withintra-vascular ultrasoundIVUS) image of the coronary artery
is provided in Fig.6(a). Additionally, th8peckle Signal-to-Noise RatiS8SNR) is
computed within a sliding window across the whole specklagemand the SSNR
map is shown in Fig. 6(b). A precursor study [3] conductedeial ultrasound im-
ages, showed experimentally that when fully developedidpaxccurs, the SSNR
is in the range of b to 25. Given this, it is observed that the speckle field has sta-
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tistical properties resembling a Rayleigh distributechalgwhich strongly suggests
the likelihood of the assumption of the Rayleigh observatitodel for the RLTV
despeckling method.

0.2.®. 0.70.80.9
intensity intensity

(c.2)

Fig. 7 Feature extraction based on ultrasound speckle decompositmiedpo different case
studies. (a) first Haar wavelet energies based on speckle fromepldg, thyroid (2) and liver
(3). (b) feature based arhogenicity decafl-2) and feature space of normal and steatotic livers.
(c) Sample extraction from noiseless and speckle componentshettaom thyroid images (1);
wavelet decomposition from speckle field (2).

Results of the speckle decomposition method have just bememted. Hence,
it is now important to show that the outcomes of the proposethod are useful
image sources of information for tissue analysis. Consettyyeve present different
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case studies using distinct ultrasound data:

Evidence of tissue-dependent textural featuresthe speckle field of ultra-
sound images from different tissue types, in particularaotid plaque, thyroid
and liver (Fig. 7(a)) are used to show that the energies &gedcwith the first
wavelet decomposition fields with Haar functiofis,, Eq andryy, differ signif-
icantly from one anatomical structure to another, as wefras one tissue area
to another. In particular, the wavelet energies and enextigs are (see Fig. 7(a)):
Ea(Wa)=99.6,E4(Wa)=0.4,ryyv (Wa)=2.8; Ea(Wp)=95.4,Eq(Wp)=4.6, rnuy (Wp)=4.7;
Ea(We.1)=92.3,Eq(We.1) =7.7, iy (We.1)=2.3; Ea(We 2)=94.3,E4 (W 2)=5.7,
rHv(Wclz):S.l;Ea(Wc'3)296.3,Ed(WC_3)23.7,rHv(WC.3):2.1.

Liver steatosis binary classification:a Bayes classifier trained with features
related toechogenicity decagsee Fig. 7(b)) and wavelet energies is used in a bi-
nary classification problem. Features were extracted frodataset of 20 livers,
which were clinically validated as normal or steatotic fwabnormal lipid retention)
[51], yielding the following feature set and values: for mad liver, 54=0.48 (0.18)
EqH=9.79 (2.68)E4V=6.78 (1.63); and for fatty liversy=0.80 (0.11)EqH=19.97
(4.54)EqV=4.66 (1.61). Results, given in terms of sensitivi8z{.00) and speci-
ficity (K=0.95), support the usefulness of features extracted both the noiseless
and speckle image sources for a specific tissue classificatablem.

Subject identification based on thyroid ultrasound data:a subject identifi-
cation problem based on thyroid tissue ultrasonic data veafopmed [52], con-
sidering a population of 10 subjects (several samples fgest). Again, features
were extracted from both the estimated de-speckled imag@¢enicity index) and
speckle field (wavelet energies) as depicted in Fig. 7(d)s8guently, the estimated
feature set was used for training a bayesian classifieritBgétygesults obtained for
the problem of subject identification wef®=0.79, with echogenicity index features,
$=0.70, with wavelet energies argt0.94 with a combination of both. Again, this
example shows that distinct feature values can be obtanoed thyroid tissue on
the basis of the proposed ultrasound speckle decompositédinod.

4 Conclusions

This chapter describes a new strategy for decomposingsalirad B-mode images
into its noiseless and speckle components, as well as, atato$ the art algorithm
for despeckling.

First, a suitable de-noising algorithm is presented whighsaat providing
clearer yet edge-preserving images for medical interpogtaSubsequently, be-
cause speckle has multiplicative nature, an image congitiie speckle pattern
is estimated after knowing the corresponding noiselesgéma
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The adequacy of the RLTV filtering method has been compartdather filters,
and afterwards established through synthetic examplesil&iadound images hav-
ing different types. Moreover, as theoretically expectu,example using IVUS
data, clearly shows that the speckle field has statistiaghgaties resembling a
Rayleigh distributed signal.

Furthermore, we have computed different features frometeés and speckle
image sources, arguing that such information is usefulifsue analysis. Hence,
we have shown the convenience of working with the estimatddgenicity and
textural features for tissue description through distieet cases.

The first study is conducted to illustrate how features camgbérom the speckle
field differ from a tissue to another and even within the saissue. Wavelet de-
tail and approximation energies together with the reladiivectional energy ratio
have shown to be relevant tissue descriptors. The seconthaddexamples use
features extracted both from noiseless and speckle imageeso In particular, the
second study uses a feature computed from the despeckleg ifeahogenicity
decay) which is very convenient in the investigated twaslproblem. In the two
classification problems presented, the use of informatasulting from the pro-
posed speckle decomposition procedure leads to high fitasigin scores.

Thus, we have shown that the proposed algorithm is able td@d@anore suit-
able images for visual diagnosis as well as useful sourcagaination for tissue
analysis in different clinical scenarios.
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