A Rayleigh Mixture Model for IVUS Imaging
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Abstract Carotid and coronary vascular problems, such as hearkattastroke,
are often originated in vulnerable plaques. Hence, theratewharacterization of
plaque echogenic contents could help in diagnosing sudnies

The Rayleigh distribution is widely accepted as an appetermodel to describe
plague morphology although it is known that other more caxjplistributions de-
pending on multiple parameters are usually needed whetiggdissues show sig-
nificant heterogeneity.

In this chapter a new model to describe the tissue echo-rotogh by using a
mixture of Rayleigh distribution is described. This modellledRayleigh Mixture
Model (RMM), combines the robustness of a mixture model with théheraatical
simplicity and adequacy of the Rayleigh distributions taldeith thespecklemul-
tiplicative noise that corrupts the ultrasound images.

The method for the automatic estimation of the RMM mixturegpaeters by using
the Expectation MaximizatiofEM) is also algorithm is described.

The performance of the proposed model is evaluated with @bdaé of in-vitro
IVUS samples. We show that the mixture coefficients and Rglylparameters ex-
plicitly derived from the mixture model are able to accukatéescribe different
plague types and to significantly improve the charactédmaperformance of an
already existing methodology.
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(b)

Fig. 1 (a) IVUS image represented in cartesian coordinates and (bpitesponding polar rep-
resentationp represents the depth in the tissue #@hthe position (angle) in the rotation of the
probe.

1 Introduction

Atherosclerotic plaques may eventually present high riskupture, consequently
leading to brain stroke or heart attack [1]. Albeit vulndeaplaque is a concept
well accepted as a clinical entity with potential harmfuhsequences, its echo-
morphology and pathological evolution it is not yet well enstood. Hence, it is
important to objectively characterize the plaque echophology to identify this
kind of lesions and develop or refine methods for risk préatict

Ultrasound images are corrupted by a characteristic gaarattern, called
speckle[2], that depends on the number of scatterers (reflectorgjetisas their
size. This speckle signal is usually considered noise agre ils a lot of work in the
literature proposing methods to its removal [3—6]. Howespeckleencodes infor-
mation about tissue acoustic properties [7] that can be fasatlagnostic purposes.

As pointed out in [8], features extracted from these noisgges can be con-
sidered as tissue histological descriptors. Moreover,3\i&Jan imaging technique
which enables to clearly assess the arterial wall interctabenorphology. The tech-
nical procedure of acquiring IVUS data consists in intradg@ catheter, carrying a
rotating ultrasound emitter inside the vessel. Duringtiote a piezoelectric trans-
ducer transmits US waves and collects the reflected compomédrich are after-
wards converted into electrical signals (A-lines) and dachpy an Analog to Digi-
tal Converter (see Fig. 1(b)). The IVUS image is obtainediogessing the received
echoes is a 360-degree tomographic view of the inner arteais (Fig. 1(a)). The
proximity of the ultrasound probe from the inner arteriallezanakes it possible to
use high frequency US probes and therefore obtain hightgua$ images. Con-
sequently, IVUS is commonly considered a suitable techefgu accuratén-vivo
characterization of the coronary plagues composition [9].

Studies which rely on tissue appearance [10,11] were pdreugualitatively
and subjectively characterize plaque echo-morphology adis (scholucent), fi-
brous (intermediate echogenicity), mixed (several acoalssubtypes) and calci-
fied (strongly echogenic). Given the high variability irsti® appearance, the IVUS
imaging parameters (such as brightness and contrast) e tofned to improve
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Fig. 2 Hypothetical acoustic tissue model, including different scetgephenomena which points
out the need for using a mixture model of distributions.

°
080
000

visualization. This pre-processing operation modifiesI¥dS signal properties,

hinders the comparison of tissues on different images aedepts the application
of appearance-based methods. Thus, analysis from RF da¢aded to obtain dis-
crimination of plaques. Recently, automatic quantitathethods for plaque charac-
terization have been proposed, based either on high-cratestical texture analysis
[12—-14] and on spectral features extracted from the raw Bfats acquired by the
IVUS equipment [15-17].

The work presented in this chapter aims to model the athieragic plaque
through the analysis of the envelope backscattered IVUS. diadr this purpose,
an hypothetical model is considered where a scanned tissnpls suffers from a
certain number of scattering phenomena, as depicted ir2Fig.

The commonest model for speckle formation is known as fdl8} pnd considers
a tissue or region composed by a large number of scatterdisg as echo reflec-
tors. These scatterers arise from structural inhomogeneiith size approximately
equal or smaller than the wavelength of the ultrasound, agdh the parenchyma,
where there are changes in acoustic impedance on a miciodewgl within the
tissue. Under fully developed speckle, pixel intensitresmvelope images are well
modeled by Rayleigh PDFs [2,19]. When this condition doeshiodd, other more
complex parametric models, such as K [20], Rician [21], hdymed-K [22] and
Nakagami [23] are suitable to describe the data.

The motivation to use the single parameter Rayleigh digtion comes from
the fact that the regions defining atherosclerotic tissegp@cewise homogeneous
and do not present strong scatterers nor edges, as it happerss the rest of the
image, where other speckle conditions are verified and ctiagistical models are
more convenient. These other models, such as Rice, K or Makiagjstributions,
depend on a large number of parameters which makes the @etirétissue echo-
morphology a hard task.

Plaque echo-morphology may result from different typesahponents, spa-
tial organization and complexity which determine differenattering phenomena
where the Rayleigh distribution would be a reasonable agmation but a com-
pound statistical model would be more appropriate. Hemmeegéscription of tissue
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echo-morphology may be tackled with complex distributidapending on multiple
parameters or with a mixture of simple distributions. Irsthaper a combination of
Rayleigh distributions, calleRayleigh Mixture Mode{RMM), is proposed to de-
scribe the tissue echo-morphology in atheroscleroticys#adgrom IVUS images.
The coefficients of the mixture are estimated with Ewpectation Maximization
(EM) algorithm [24] adapted to this kind of mixture.

The RMM consists of a technique to describe a particular deiaibution by
linearly combining different Rayleigh PDFs. Up to our knedtje, the RMM was
never used for tissue characterization in ultrasoundpatih these models have
been successfully employed in other fields, such as in uratervacoustics and
speech processing problems [25,26].

This chapter are organized as follows. First, in Section & domprehensive
mathematical formulation of the mixture model is providesing the EM algorithm
for estimating the coefficients and Rayleigh parametere®htixture. Second, the
adequacy of the proposed model to describe the envelogsalind data is evalu-
ated on validated IVUS data of different plaque types (9ec8.3). Moreover, the
RMM is applied for modeling plaques as monolithic objects, by considering all
the pixels enclosed in the plaque. The features expliclitpimed from the mixture
model (cf. Sectior??) are used to investigate the discriminative power of theehod
for identifying different tissue types, namely fibrotigpililic and calcified ones. In
Section 3.4 the ability of the RMM for pixel-wise classifiat of plague composi-
tion is evaluated when using only the proposed features d@hwombining them
with textural and spectral features recently proposed. [Bifjally, we investigate
the significance of the obtained classification improvenvémn using the RMM
features (cf. Section 3.5 and 3.6).

2 Methods

In this section a mathematical formulation of the problerprisvided and the esti-
mation algorithm for the coefficients of the mixture (weiglh&ind Rayleigh param-
eters of each component, by using the EM algorithm, is desdri

2.1 Rayleigh Mixture Model

LetY = {yi},1 <i <N, be a set of pixel intensities of a given region of interest,
particularly a plaque, from an ultrasound image. Pixelnsites are considered
random variables which are described by the following nrxtof L distributions

L
PMI¥) = > G (), (1)
=
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Fig. 3 Rayleigh PDFs generated with paramete? 400 < 10° (from darker to lighter curves).

where¥ = (64,...,6.,01,...,0.) is the vector of parameters to estimaigare the
coefficients of the mixture and; are the parameters of each Rayleigh component,

@ (i) = plyiloj),
p(yiloj) = zi_zexp<—yi>, 2)

i 201'

The conditionsz:1 8; =1 must hold to guarantee thaty;|¥) is a true distribu-
tion function.

The parametergj associated with the pixel intensigy, characterize the acoustic
properties of the tissue at th#& location [28]. The effect of changing in the
shape of the distribution and thus in the image intensitylistrated in Fig. 3.
The joint distribution of the pixel intensities, considgiadependent and identically
distributed (i.i.d.), is given by,

N
p(Y[¥) =[] PMi|¥). (3)

The goal is to estimat®’ by maximizing thdikelihood function,

@’ML =arg na}ax?f(Y,lP), 4)
where " )
Z(Y,¥) =logp(Y|¥) = Zlog (Z 6ipj (yi0j>> . (5)
i= =1

The maximization of (5) is a difficult task because it corssist a logarithmic
function of a sum of terms. To overcome this difficulty the ERA] method is used
where a set of hidden variables are introdudeds {k } with ki € {1,...,L}. The
value ofk; = j informs us about the mixture compondrthat generated th&' pixel
intensity,y;, with probability p(yi|oy, ) defined in (2).

Eachn!" iteration of the EM method is composed of two steps
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e E step: where thexpectationof the newlikelihood function, Z(Y ,K,¥), is
computed with respect 1§,

2(Y,¥" W) =Ex [Z(Y,K(W"),¥)] (6)

and
e M step: where a new estimate &f, ", is obtained by maximizing the func-
tion 2,
Wl — arg rrlllax@(Y, wn ). (7)

These two steps alternate until convergence is achievedhwiappens when
|yl _yn < £ eq.,§ =103,

Thelikelihood function involving all unknowns, visible and hidden, is

N
Z(Y,K,¥)=logp(Y,K|¥) = _Zlog pyi, kil %)

N (8)
= zllog P(yi|ok) +log p(ki|oi),
B
where p(yi| 0k )|k, defined in (2), is théd" component of the RMM and is
the mixture coefficient associated with tk® component. The maximization of

(8) is impossible because the hidden variabfesire not known. Therefore, the
expectatiorwith respect tK is computed as follows,

2W, W) =Ex [Z2(Y,K,W)|Y,¥]

N
= 3 Ex [logp(vloy) +logp(kioi )] ©)

N L
= ZZ %.jllogp(yi|oj) +log6j],
i=1]=1

where® = (6,...,6.,01,...,6.) is the previous estimation of the parameters and

¥,j (W) is the distribution of the unobserved variables which israegfias follows,

~ pilgj)pki = j)

i=pki = jlyi,¥) = - , 10
v.i=pk = jlyi,¥) o P) (10)
where )
S vi=1 (11)
=1

In (10), p(yi|6j) is computed as in (2p(k = j) = éj and, by definition,
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pi|P) = Zejp ¥il07)- (12)

The likelihood function (9) contains two independent terms, one depending
0; and the other ow;. Therefore, the functio can be minimized independently
with respect to each one. The Itigelihood function in (9) can be rewritten by
separating the terms which depend exclusivelydpand g;j. Taking into account
(2) leads to

N L
/ =iZJZlv.,jlog(91)+iZZvJllog< ) 2ya'2] (13)

Hence, the functior2 can now be minimized independently with respecfo
anda;.

By using the methodlagrange multiplierg29] the term of (13) depending ah
can be maximized under the constraint

i 6 =1 (14)
=1

which also provides a necessary condition for optimalitg@mstrained problems
[29]. By introducing a new variableA( and solving the partial derivative of the
term depending oA, the following expression is obtained,

T

which leads to

N
Yir=—A6. (16)
i; r r
By summing both sides of (16) over
N L L
Ve=-AY 6, (17)
i;rzl o rzl '
N——" ——
(12 (14)

we get thalN = —A, which leads to

G-t S (18)
r—Ni;Vl,r-

The mixture parametexs; are found by differentiating the term in (13), depend-
ing exclusively onoj, and setting it to zero, as follows,
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L) B

which is easily solved foo; to obtain,

Ar—ZI 1yf2_ l i 20
’ ZI i ir Nzly ( )

The EM algorithm is initialized withL uniformly weighted coefficient® =
{6 = %} while the mixture parameters are assigned withNlaimum Likelihood

(ML) estimator [30],6mL = \/m

The initial choice of components was set arbitrarilyLte- 10. However, when
|om — on| < € =1 (ad hoc setting), meaning that two distributions are ¢josien-
ilar, with (m# n) = {1,...,L}, thenoj = 2at% and 6; = O+ By. This constraint
assures stability of the RMM, particularly, for modelingaguie echo-morphology.
Preliminary observations allowed to verify tHat= 10 is an overestimated guess
(excessive number of mixture components) which has alsbdatins in the com-
putational cost of the RMM algorithm. The study of an effeetinput value for the
number of mixture components to be used in the plaque cleaization problem is
further investigated in Section 3.3 and 3.4.

In the next section of experimental results the RMM will b@lgd in the scope
of atherosclerotic plaque characterization and classidicdor diagnosis purposes.

3 Experimental Results

In this section we first provide a description of the methagksdito acquire and pro-
cess the IVUS data and we briefly introduce the classificdtmmework adopted
for tuning the RMM algorithm and performing plaque charagtgion. Then, two
distinct experiments are conducted. The first studies teguaty of the RMM for
describing different tissue types. This experiment is glesied asnonolithic de-
scriptionsince the mixture model is estimated by considering all tkelpenclosed
in the plaque. The second experiment refers to plaque desization made pixel-
by-pixel (hence, calleglaque local characterization where the RMM is applied
not to the entire plague but to each processing block cehigréhe pixel to be
characterized. In order to apply the RMM technique on a iflaason problem,
in local basis, the RMM must be estimated locally and deteadeatures must
be extracted. Given the envelope image (cf. Section 3.¢3l BMM features are
computed by means oft; x K sliding window, moved by a step &= 3K. For
each position, al2+ 1-feature array is obtained and presented in the followiag-m
ner: the firstL positions correspond to the Rayleigh parameters sortescienaing
order, followed by thd. respective coefficients, arranged accordingly. The last po
sition corresponds to the number of effective mixture congmts, T = {1,...,L}.
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Fig. 4 IVUS data processing (see text for details).

The ability of the RMM for local characterization of plaqueneposition is eval-
uated when using only the RMM features and when combininghthéth other
texture and spectral features recently proposed in [27].

Finally, we present a statistical analysis that supporsrétevance of the ob-
tained classification improvement when using the RMM fezgur

3.1 In-vitro data processing

The adequacy of the proposed RMM to describe real tissuestigoevaluated
through anin-vitro study of atherosclerotic plagues from an IVUS database. The
IVUS data set has been recently presented in [27] and cersis® post-mortem
arteries, resulting in 45 frames with 24 fibrotic, 12 lipidied 31 calcified plagues.
This data set, composed of 67 plaques, has been validatadtbiofjical analysis.

Real-time Radio-Frequency (RF) data acquisition has beeiormmned with the
Galaxy Il IVUS Imaging System (Boston Scientific) with a cetér Atlantis SR Pro
40MHz (Boston Scientific). To collect and store the RF dataitiaging system has
been connected to a workstation equipped with a 12-bit Atacquisition card
with a sampling rate of 200MHz. The RF data for each framersragred in a data
matrix of N x M samples, wherM = 1024 is the number of samples petine, and
N = 256 is the number of positions assumed by the rotationalsdtind probe.

The information encoded in the visual appearance of tissaesally represents
a relevant feature for their description. However, duringuasition the imaging pa-
rameters of the IVUS equipment are typically changed to eoddissue visualiza-
tion. Hence, parameters like contrast depth and brightreesshange from patient
to patient or even from image to image. When the IVUS images$hare processed
for feature extraction, this fact may generate non-conigarf@atures.

To avoid the aforementioned errors and to produce nornthtiaéa, the used data
follows a rigorous acquisition protocol where the IVUS irradhave been directly
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reconstructed from the raw RF signals rather than using ties produced by the
IVUS equipment. For this purpose, we follow the image retmiesion algorithm
[27,31] outlined in Fig. 4. The reconstruction operatioresapplied to the RF data,
where a preliminary Time Gain Compensation (TGC) funct®ased,

TGCrr)=1—e P, (21)

where 8 = In10°7/20 o is the attenuation coefficient for biological soft tissues
(a =~ 0.8 dB/MHz.cm forf = 40MHz [32]),f is the central frequency of the trans-
ducer in MHz and is the radial distance from the catheter in cm. After sigioahe
pensation, using TGC, and envelope detection, using theeHitransform, the sig-
nal processing procedure described in [27] is applied tahgepolar representation
of the IVUS image, or simply the envelope image, resulting imon-compressed,
256 x 256 pixels image (cf. Fig. 1(b)). We recall that the polar gmas used to
estimate the RMM and to extract the corresponding featti@smprove the vi-
sualization the polar image is transformed to Cartesiamdinates and its pixels
intensities are re-scaled to normalize the observed IVUgan

This data is exclusively used to representing the image anfibnfeature extrac-
tion.

3.2 Classification framework

As stated before, the weights and parameters of the mixtthrese estimation was
early described, are used as features to describe diffign@es of plaque. In order to
evaluate the correct model to be used in a multi-class Giestson framework that
has been successfully used in plaque characterizationTBg&]role of the classifica-
tion scheme is two-fold: (1) it allows to evaluate the disgnative power of RMM
features and (2) it is used to support a cross-validationge®, adopted to tune the
L parameter (number of mixture components) in RMM model awrdkérnel size
(image window size where the RMM is estimated).

The classification framework is based on [27] for discrintimpamong fibrotic,
lipidic and calcified plaques. The multi-class problem ktad by combining bi-
nary classifiers in th&rror-Correcting Output CodeéECOC) framework [33]. In
fact, ECOC is a technique to decompose a multi-class probiemseveral binary
problems. Each binary problem is here solved by usinghtifegptive BoostingAd-
aBoost) classifier [34] where the weak classifiersdaeision stumpgs5].

The classifier performance is evaluated by means ol daee-One-Patient-Out
(LOPO) [31] cross-validation technique, where the tragnéet is built by taking at
each validation fold, all patients’ data except one, useddsting. Note that each
patient data may consist of different number of images (aedifferent number of
plaques).

Performance results are given in terms of Sensitiv&y: TFL%, Specificity:

_ TN o _ TP _ TP+TN
K = +xzpp, PrecisionP = +5 = and global AccuracyA = 5+ gpre s Where
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Fig. 5 (a-c) RMM modeling of three tissue types. (d-f) 3-component m&®DFs estimated for
each tissue type, overlapped with single Rayleigh PDFs.

TP = True Positive, TN = True Negative, FP = False PositiveNd False Nega-
tive.

3.3 Plaque monolithic description with RMM

The first experiment consists of considering a set of fibydimdic and calci-
fied plagues from the entire data set, according to histcédginalysis. Fig. 5(a)-
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Table1 Accuracy values for tuning the number of mixture componentsNtvR

LOPO No. mixture components

(%) 1 2 3 4
A 44.16 (36.28) 68.52 (33.2995.56 (18.85) 69.82 (31.00)

Table 2 Performance of RMM, SRM and median features for monolithic dliassion.
LOPO (%) Stib Sl Sip A

median  65.00 (39.09) 81.53 (20.34) 44.00 (37.82) 66.30 £)5.9
SRM 4167 (46.85) 0.00(0.00) 90.42 (15.84) 44.16 (36.28)
RMM 9167 (13.94) 93.75(15.30) 82.00(24.90) 85.56 (18.85)

Fig. 5(c) show three examples of IVUS images containing @mar(ore) distinct
tissue types.

The purpose of the current study is to verify the ability af RMM to describe
and distinguish among the three different tissue typesitngarticular experiment,
the RMM algorithm is applied to the entire set of pixels eseld in each plaque.
Given this, the monolithic plaque area can be characteligedunique set of RMM
features which define a unique plaque type.

Note that this global monolithic approach differs from thbery one, described
in the next section, where a local analysis make it possibtietect different over-
lapped types of plaques in the same image. In that approadhnes are estimated
over the pixels of a sliding window the sweeps the whole image

The classification framework is used to tune the paramefehed&RMM method.
The most critical parameter to be defined is the number of coreipts to use in the
mixture model. In order to determine the optinhatalue, we use the LOPO cross-
validation method where the classification accuracy is idemed as the parameter
to maximize.

For each plaque, we apply the RMM algorithm for different n@mof mixture
components fronh. = 1 to L = 10. This process results in a set of features having
different lengths. For instance, for= 3 we get a 7-length feature vector whereas for
L = 4 we get a feature vector with 9 elements for each plaque.réiverg sets com-
posed of RMM features created with= (1,...,10) are used in the cross-validation
process. Results, reported in Table 1, show that the begtamcis achieved when
3 Rayleigh PDFs (components) are used in the mixture modhelrefore we will
use 3 components for this specific plaque classificationegdpn. For the sake of
simplicity, since classification performance decreaséstantially forL > 4, we
only show the obtained results withvarying from 1 to 4.

In order to demonstrate the effectiveness of RMM when coetpéw the single
distribution, here terme8ingle Rayleigh ModdISRM), or the median grey inten-
sity, we show on Table 2 a comparison of these three typesiafries for classifying
monolithic plaques. The single parameter estimation oStR&1, obtained with the
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Table3 Kullback-Leibler divergence tests using RMM and SRM: geornetréan computed over
67 plaques.

KL Calcified Fibrotic Lipidic

RMM 1.77E-4 7.68E-4 2.20E-3
SRM 1.62E-3 4.93E-3 6.54E-3

ML criterion [30], is given bydy = ,/ﬁ ziN:lin, wherey; is the intensity of the
it pixel within the plaque. It is clear that the application dfIRl outperforms the
classification results obtained with the other tested feat(note that the SRM com-
pletely fails in identifying calcified plaques).

Fig. 5(d)-Fig. 5(f) show normalized data histograms ofdipj fibrotic and cal-
cified tissues, together with the estimated mixture (RMMJ aimgle (SRM) distri-
butions, respectively. Visually, the mixture model comgubsf 3 components (early
determined to be the best value) describes significanthgibtte data when com-
pared to the single distribution. Interestingly, as we mioem lipidic to fibrotic and
calcified tissue, the difference between the mixture distion and the single dis-
tribution increases. At this point, we quantify the adequaiche mixture model for
describing each type of tissue. For this purpose, the nexdnd single distributions
were estimated for each plaque and kdlback-Leibler(KL) divergence [36] of
such distributions with respect to the data was computedcélghe smaller the KL
divergence is between a given distribution and the datamibie similar they are.
We summarize the results by computing the geometric meamedL divergence
for RMM and ML distributions for each plaque (Table 3).

Observations made in Fig. 5, supported by the results ptexdém Table 3 rein-
force the idea that a single distribution is not sufficiendéscribe the data, suggest-
ing that different plaques types can be correctly descriitld different mixture
distribution (and thus different RMM parameters). Thigtfaanfirms the usefulness
of RMM in a tissue modeling problem.

The RMM estimation algorithm is applied to the entire datia where for each
plaque the RMM takes into account all the pixels encloset ifhie obtained RMM
features are presented in Table 4. Particularly, it is oleskthat lipidic plaques are
well described by 2 mixture components, while calcified abdofic plaques are
modelled by 3 components, where the main difference lielsémange of estimated
Rayleigh parameters (Table 4). It is worth noting that indilr tissue estimation
the "peakedness” of the single Rayleigh distribution isdothan the observed his-
togram. There is, indeed, a considerable amount of pixelshigh intensity which
means that the maximum likelihood parameter of the Rayldigtribution (com-
puted as in Section 3.3) has a higher value than the expekted.consequence,
the shape of the single Rayleigh distribution will move Istly towards the right
direction, as observed in Fig. 5(e). This fact enforces #edrfor a mixture model
to correctly model tissues.
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Table 4 Mean values of Rayleigh parameters and Mixture coefficiestisnated with RMM ap-
plied for the data set of 67 plaques.

RMM Components lipidic fibrotic calcified
1 188 140 318
Rayleigh parameters 2 410 275 1171
555 3390
1 0.82 051 0.33
Mixture coefficients 2 0.18 0.39 0.46
3 - 0.10 0.21

The main conclusions that can be obtained from these rem@lts

1. lipidic tissues are predominantly modelled by a singlgl&gh distribution. The
KL divergence is of the same order for SRM and RMM (see Tabler®) the
optimum order of the mixture is one (see Table 4),

2. fibrotic tissues are approximately described by a mixtdiseecond order,

calcified tissues are better described by 3 componerds, an

4. there is no significant overlapping between the range gldRgh parameters
obtained for the lipidic and fibrotic tissues when compareddcified tissues.

w

3.4 Plaque local characterization

We have established the usefulness of using a mixture afildisbns to model
the plaque content in a monolithic experiment. It is wortmtde that, in practice,
plaques are not individually segmented, thus the RMM esitomaonsidering all
the pixels enclosed in the plaques is not generally a feagilethod for plaque char-
acterization. Nevertheless, a region of interest whickuihes the plaque(s) can be
at least pointed out by the physician without compromishrgtime of a diagnostic
exam. Thus, a local-wise characterization, made pixepilsgl, becomes a natural
and more appropriate strategy. This strategy consiststima&ting the RMM over
successive processing blocks within the plaque region asidgi@ing the RMM fea-
tures to each center pixel. Subsequently, each pixel isifiled into a specific tissue
type (lipidic, fibrotic or calcified) and then confronted Wwihe ground truth.

As previously mentioned, in order to apply the RMM algorittora local analy-
sis, we first need to define the dimension of the kernel to be. (0dee computational
cost associated with the local-wise estimation of RMM feadwsing a processing
block (kernel) of sizé is &'(2ks). The tuning of this critical parameter is performed
again by means of the cross-validation process. For thisgsar, the RMM-based
features are computed inside a kernel of $ize {2,4,8,16,24,32}. Hence, 6 dif-
ferent data sets have been obtained, and for each one of tieeandss-validation
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Accuracy

16
Kernel size

Fig. 6 Classification based on RMM features according to the kernebsidenumber of mixture
components.

has been performed, while varying the number of mixture comeptd. = {2,3,4}.
Results in terms of global accuracies are depicted in FiGi¥en the obtained re-
sults,ks = 16 andL = 3 are adopted. Hence, the length of the RMM-based feature
set extracted from each kernelis21=7.

In order to assess the true contribution of the proposed RNgdrighm, the
plaque characterization problem is solved under threerdifft conditions, where
distinct features were computed from polar RF data (cf. #igrirst, only the RMM
features are used for tissue discrimination in the clasgifin framework: the ob-
tained classifier is here name&dl. Then, a set of 51 textural and spectral features
presented in [27] is used to train a second classifie?)( Finally, RMM features
are joined to the textural and spectral features, thusiogeat 59-element feature
vector, used to train a third classifi€z.8).

The three classifiers are used to characterize the plaquke database accord-
ing to the LOPO technique. At each fold of both training anlidaion process, the
data set for each kind of plague has been randomly down-gahupl to the maxi-
mum value of the less represented class over all the casesm(hP000 points per
class) in order to obtain a balanced data set among classes.

For each cross-validation fold we compute the aforemeatigrerformance cri-
teria (cf. Section 3.2); consequently, for the entire LORPegiment (8 folds) we
take the average and standard deviation of the resultsnelotdédr each fold. Clas-
sification results have been obtained by repeating 20 tilreesrbss-validation and
finally by averaging the obtained performance parameters.

The comparison of.1, C.2 andC.3 classifiers gives an important evidence of
the effectiveness of the RMM features as well as their disicitive power. Clas-
sification results achieved with the proposed classifiesshown in Fig. 7; a more
detailed description is given in Table 5.

The use of features estimated with the RM®X) provides good results in terms
of calcified and fibrotic sensitivity and overall accuracy.pAor performance in
terms of correct detection of lipidic tissue is, howeveisatved. Nevertheless, this
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Classifiers Performance
120 T
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Fig. 7 Bar graph comparing different classifiers (C.1, C.2, C.3) atingrto performance mea-
sures AcG Sip, Stib, Sal)-

Table5 Performance of plaque characterization: results presenteeas (std).

LOPO (%) C.1 c.2 c3

A 64.70 (21.35) 91.37 (5.02)92.56 (6.18)

Sy 63.93(8.94) 94.38 (4.79)96.12 (4.30)
Sip  26.41(13.03) 87.03 (16.08.19 (20.10)
Sa  86.89 (11.02) 91.48 (5.24)93.42 (3.90)

Kip  74.68(25.95) 92.49 (6.22)94.02 (5.32)
Kip  80.98 (14.59) 97.18 (2.85)97.69 (3.41)
Keal  94.27 (11.36) 95.22 (5.61)95.90 (6.85)

Pipb  88.55(11.28) 94.34 (6.74)95.69 (4.71)
ip  86.78 (21.06) 69.26 (28.580.71 (29.94)
P 94.99 (8.44) 96.89 (3.59)96.86 (5.18)

is a meaningful achievement in the context of automaticysacharacterization if
we consider that the dimension of the feature set is smaleaoldisively originated
from a data source (envelope image, cf. Fig. 4). The comioimatf the proposed
RMM features C.1) with spectral and textural features [21.2) is expected to
produce improvements on the classification performancecéleas shown in Fig. 7
and Table 5, the classifi€.3 yields the best classification accuracy, aroun®%
and brings the class sensitivity up to 96.1%, 88.2%, 93.4@4ilfootic, lipidic and
calcified plaques, respectively. This represents an inggn@nt of more than 1% in
accuracy, about 2% in fibrotic-class, more than 1% in lipidass and around 2%
in calcified-class sensitivities, when compared to thesdfi@s which only considers
textural and spectral featureS.R). These observations support the relevance of the
RMM features for plaque characterization.
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Fig. 8 Examples of plague classification using @8 classifier. (a) IVUS images, (b) ground truth
images, segmented according to the histological analysis, (c)fatasisin. In blue (dark), green
(mid-grey) and yellow (light-grey) are indicated calcifidithyotic and lipidic tissues, respectively.

This result shows that features extracted from RMM are cemphtary to the
rest of the features. Examples of plaque characterizasorguheC.3 classifier are
shown in Fig. 8.
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3.5 Statistical analysis

In order to reinforce the usefulness of the RMM approach, @réopm a test on the
statistical significance of results.

To assess the statistical significance among the clasgigeigrmance, we apply
the Friedmanand Bonferroni-Dunntest [37]. First of all, the rankincyij for each
separate classification tesind each classifigris computed. Then, the mean rank-

ing R; for each one of thgt" classifier is computed aRj = % ziN:l ri, where

N = MN, is the total number of rounds. Obtained results are repéntdéable 6.
Note that the best rank corresponds to &8 classifier, i.e. the classifier trained
with the whole feature set.

In addition, in order to reject theull-hypothesighat the differences on the mea-
sured classification performance are due to randomnessyigdmantest is per-
formed. For this purpose, thgiedman statistic valués computed,

, 1N k(k+1)?
X = kD h T4 ] (22)
wherek = 3 is the number of considered classifiers. The obtainedevialyZ =
20274. As reported in [37], given the conservative propertyhef Eriedman value,
thelman-Davenportorrection value is preferred,

N 2
= A(Nil)XFZ 23)
N(k—1) - x2

The value obtained in this casefis = 274.9. With 3 methods and a totalldf= 160
experimentskr is distributed according to tHe distribution with 2 and 318 degrees
of freedom. The critical value df (2,), for a = 0.05 is 2.99. Since the obtained
value forFe is higher than the critical value, the null-hypothesis jected, i.e., the
differences in the obtained results are not due to randasnnes

Once the null-hypothesis has been rejected, we check ifléissifierC.3, result-
ing in the best discriminative power, is significantly bettean the other classifiers.
For this purpose, thBonferroni-Dunntest [37] is performed. The performance of
two classifiers is significantly different if the corresparglaverage ranks differ by
at least theeritical difference

Table6 Mean Rank for the accuracy of each classifier

classifier C.1 C.2 C.3

mean rank 2.8438 1.893B2625
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K(k+1)
CD - =, 24
Ca 6N (24)

whereqy is based on the Studentized range statistic divideg'BySince our goal is
the comparison of th€.3 classifier with respect to the others, Benferroni-Dunn
test is suitable, and a correction factor must be considertte g, value (cf. [37]
for details). In our case we obta@D = 0.2949 which is smaller than each difference
among the mean rank of the classif@B and the rank of each other classifier. For
this reason, we can infer that the classifier is significalpditer than the rest with a
confidence of 95%.

3.6 Features weight analysis

Finally, we want to evaluate the importance of the includeatdres in the quality
of the classifieC.3. The AdaBoost algorithm [38] assigns a certain weight tthea
weak classifier selected at each round, during the trainingess [34]. Since the
decision stump weak classifier is only related to a singléufeg[35], we can use
the weight assigned by AdaBoost to evaluate the importaheadah feature during
the training process. Note that each feature can be selpuieglthan one time: in
that case, the sum of each weight for a specific feature idaenresl.

Let us defind\p the number ofn-vitro casesNg the number of feature& the
number of binary problemd, = 1,...,Nr the index of each featuré,=1,...,K
the index of each binary problemlr the number of rounds by whose the com-
putation has been repeated alqélp’r the weight assigned to thE" feature. The
normalized weight assigned by AdaBoost to each feature eacomputed as
Wi = max{w},...,w}}, where

f
1 v R akpr

Wi = N ZZ 1T N (25)
PNR & & max{ork_’p’r,...,ormr

In Fig. 9 the normalized weights of each feature are reptedetogether with
their detailed description. It is worth to note the impodamgiven by the classifier
to the RMM features, particularly to feature #1 (1st Rayhgigrameter), feature #6
(3rd mixture coefficient) and feature #7 (no. effective mnetcomponents). Given
the high discriminative power of the.3 classifier, the expressive weights assigned
to the RMM-based features corroborate the importance dRii& model, as well
as its capability for discriminating different tissues.nde, this experiment illus-
trates the relevance of the RMM features for the AdaBoosisdiar. Naturally, the
information provided about the most discriminant featdoexlassification may be
used on a feature selection procedure in future work relatéidsue characteriza-
tion.
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Fig. 9 Analysis of the normalized weight for each feature of@® classifier.

4 Conclusions

This chapter proposes a method for plaque characteriziatitviJS data based on
a mixture of Rayleigh distributions. The coefficients andapaeters of the mixture
model are used as features for describing fibrotic, lipidid ealcified plaques.

The RMM algorithm was evaluated and tuned using a classditdtamework
based on a multi-class problem applied to a validated 1VU83 sket and following a
cross-validation strategy. Results suggest that the ep®ivIM method for plaque
characterization consists bf= 3 mixture components and should be computed on
a kernel of sizéks = 16.

First, the true value of RMM features for tissue charactiin was evaluated
through a plaque monolithic problem using a cross-valihasitrategy, providing a
global accuracy of 86%. This result highlights the rele ot RMM features for
discriminating among the three different types of tissue.

Furthermore, the method was evaluated on a local-wiseifitag®n problem
when using only the RMM tuned features and when combiningntidgth textu-
ral and spectral features used in an authors’ previous stuayinclusion of RMM
features demonstrates to generally improve the classificaerformance up to a
global accuracy of 98%. According to the most significant performance parame-
ters, such as accuracy and class sensitivity, fusing RMMufea with textural and
spectral features represents a general improvement of tharel% and in some
cases about 2%.

Finally, statistical analysis using tfiiedman and Bonferroni-Dunshows that
the classifier which includes RMM, textural and spectratdess is significantly
better than the other studied ones, thus reinforcing tha@fgignce of the obtained
improvement when using RMM features.

The analysis of features relevance attributed by AdaBoestahstrates that the
RMM features give an important contribution to the plaquarelsterization prob-
lem.
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The method is intended to characterize tissues enclosedpievdously seg-
mented plaque. Moreover, automatic segmentation capebilian be potentially
achieved by classifying the whole image and then by postgwsing the labelled
regions. Without a deep analysis on features similaritietsvben different vessel
areas, the classification result on regions different fréagyes cannot be stated.
Indeed, it can be guessed that, at least for what concernsxtheal features, re-
gions enclosing struts (in presence of stent) can be cledsif calcified plaque, and
the whole adventitia layer as fibrotic plague. No guessimgbeadone for the blood
region.

Hence, this chapter has demonstrated that the RMM has arhjgdct on plaque
characterization and could significantly contribute to arenaccurate study of
plague composition, and consequently to an objective ifieation of vulnerable
plagues.
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