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Abstract Carotid and coronary vascular problems, such as heart attack or stroke,
are often originated in vulnerable plaques. Hence, the accurate characterization of
plaque echogenic contents could help in diagnosing such lesions.
The Rayleigh distribution is widely accepted as an appropriate model to describe
plaque morphology although it is known that other more complex distributions de-
pending on multiple parameters are usually needed wheneverthe tissues show sig-
nificant heterogeneity.
In this chapter a new model to describe the tissue echo-morphology by using a
mixture of Rayleigh distribution is described. This model,calledRayleigh Mixture
Model(RMM), combines the robustness of a mixture model with the mathematical
simplicity and adequacy of the Rayleigh distributions to deal with thespecklemul-
tiplicative noise that corrupts the ultrasound images.
The method for the automatic estimation of the RMM mixture parameters by using
theExpectation Maximization(EM) is also algorithm is described.
The performance of the proposed model is evaluated with a database of in-vitro
IVUS samples. We show that the mixture coefficients and Rayleigh parameters ex-
plicitly derived from the mixture model are able to accurately describe different
plaque types and to significantly improve the characterization performance of an
already existing methodology.
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(a) (b)

Fig. 1 (a) IVUS image represented in cartesian coordinates and (b) itscorresponding polar rep-
resentation;ρ represents the depth in the tissue andθ the position (angle) in the rotation of the
probe.

1 Introduction

Atherosclerotic plaques may eventually present high risk of rupture, consequently
leading to brain stroke or heart attack [1]. Albeit vulnerable plaque is a concept
well accepted as a clinical entity with potential harmful consequences, its echo-
morphology and pathological evolution it is not yet well understood. Hence, it is
important to objectively characterize the plaque echo-morphology to identify this
kind of lesions and develop or refine methods for risk prediction.

Ultrasound images are corrupted by a characteristic granular pattern, called
speckle[2], that depends on the number of scatterers (reflectors) aswell as their
size. This speckle signal is usually considered noise and there is a lot of work in the
literature proposing methods to its removal [3–6]. However, speckleencodes infor-
mation about tissue acoustic properties [7] that can be usedfor diagnostic purposes.

As pointed out in [8], features extracted from these noisy images can be con-
sidered as tissue histological descriptors. Moreover, IVUS is an imaging technique
which enables to clearly assess the arterial wall internal echo-morphology. The tech-
nical procedure of acquiring IVUS data consists in introducing a catheter, carrying a
rotating ultrasound emitter inside the vessel. During rotation, a piezoelectric trans-
ducer transmits US waves and collects the reflected components which are after-
wards converted into electrical signals (A-lines) and sampled by an Analog to Digi-
tal Converter (see Fig. 1(b)). The IVUS image is obtained by processing the received
echoes is a 360-degree tomographic view of the inner arterial walls (Fig. 1(a)). The
proximity of the ultrasound probe from the inner arterial walls makes it possible to
use high frequency US probes and therefore obtain high quality US images. Con-
sequently, IVUS is commonly considered a suitable technique for accuratein-vivo
characterization of the coronary plaques composition [9].

Studies which rely on tissue appearance [10,11] were pursued to qualitatively
and subjectively characterize plaque echo-morphology as soft (echolucent), fi-
brous (intermediate echogenicity), mixed (several acoustical subtypes) and calci-
fied (strongly echogenic). Given the high variability in tissue appearance, the IVUS
imaging parameters (such as brightness and contrast) are often tuned to improve
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Fig. 2 Hypothetical acoustic tissue model, including different scattering phenomena which points
out the need for using a mixture model of distributions.

visualization. This pre-processing operation modifies theIVUS signal properties,
hinders the comparison of tissues on different images and prevents the application
of appearance-based methods. Thus, analysis from RF data isneeded to obtain dis-
crimination of plaques. Recently, automatic quantitativemethods for plaque charac-
terization have been proposed, based either on high-order statistical texture analysis
[12–14] and on spectral features extracted from the raw RF signals acquired by the
IVUS equipment [15–17].

The work presented in this chapter aims to model the atherosclerotic plaque
through the analysis of the envelope backscattered IVUS data. For this purpose,
an hypothetical model is considered where a scanned tissue sample suffers from a
certain number of scattering phenomena, as depicted in Fig.2.

The commonest model for speckle formation is known as fully [18] and considers
a tissue or region composed by a large number of scatterers, acting as echo reflec-
tors. These scatterers arise from structural inhomogeneities with size approximately
equal or smaller than the wavelength of the ultrasound, suchas in the parenchyma,
where there are changes in acoustic impedance on a microscopic level within the
tissue. Under fully developed speckle, pixel intensities in envelope images are well
modeled by Rayleigh PDFs [2,19]. When this condition does nothold, other more
complex parametric models, such as K [20], Rician [21], homodyned-K [22] and
Nakagami [23] are suitable to describe the data.

The motivation to use the single parameter Rayleigh distribution comes from
the fact that the regions defining atherosclerotic tissue are piecewise homogeneous
and do not present strong scatterers nor edges, as it happensacross the rest of the
image, where other speckle conditions are verified and otherstatistical models are
more convenient. These other models, such as Rice, K or Nakagami distributions,
depend on a large number of parameters which makes the estimation of tissue echo-
morphology a hard task.

Plaque echo-morphology may result from different types of components, spa-
tial organization and complexity which determine different scattering phenomena
where the Rayleigh distribution would be a reasonable approximation but a com-
pound statistical model would be more appropriate. Hence, the description of tissue
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echo-morphology may be tackled with complex distributionsdepending on multiple
parameters or with a mixture of simple distributions. In this paper a combination of
Rayleigh distributions, calledRayleigh Mixture Model(RMM), is proposed to de-
scribe the tissue echo-morphology in atherosclerotic plaques from IVUS images.
The coefficients of the mixture are estimated with theExpectation Maximization
(EM) algorithm [24] adapted to this kind of mixture.

The RMM consists of a technique to describe a particular datadistribution by
linearly combining different Rayleigh PDFs. Up to our knowledge, the RMM was
never used for tissue characterization in ultrasound, although these models have
been successfully employed in other fields, such as in underwater acoustics and
speech processing problems [25,26].

This chapter are organized as follows. First, in Section 2.1a comprehensive
mathematical formulation of the mixture model is provided,using the EM algorithm
for estimating the coefficients and Rayleigh parameters of the mixture. Second, the
adequacy of the proposed model to describe the envelope ultrasound data is evalu-
ated on validated IVUS data of different plaque types (Section 3.3). Moreover, the
RMM is applied for modeling plaques as monolithic objects, i.e. by considering all
the pixels enclosed in the plaque. The features explicitly obtained from the mixture
model (cf. Section??) are used to investigate the discriminative power of the model
for identifying different tissue types, namely fibrotic, lipidic and calcified ones. In
Section 3.4 the ability of the RMM for pixel-wise classification of plaque composi-
tion is evaluated when using only the proposed features and when combining them
with textural and spectral features recently proposed [27]. Finally, we investigate
the significance of the obtained classification improvementwhen using the RMM
features (cf. Section 3.5 and 3.6).

2 Methods

In this section a mathematical formulation of the problem isprovided and the esti-
mation algorithm for the coefficients of the mixture (weights) and Rayleigh param-
eters of each component, by using the EM algorithm, is described.

2.1 Rayleigh Mixture Model

Let Y = {yi},1 ≤ i ≤ N, be a set of pixel intensities of a given region of interest,
particularly a plaque, from an ultrasound image. Pixel intensities are considered
random variables which are described by the following mixture ofL distributions

p(yi |Ψ) =
L

∑
j=1

θ jφ j(yi), (1)
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Fig. 3 Rayleigh PDFs generated with parameter 102 < σ < 103 (from darker to lighter curves).

whereΨ = (θ1, ...,θL,σ1, ...,σL) is the vector of parameters to estimate.θ j are the
coefficients of the mixture andσ j are the parameters of each Rayleigh component,
φ j(yi) = p(yi |σ j),

p(yi |σ j) =
yi

σ2
j

exp

(
− y2

i

2σ2
j

)
, (2)

The condition∑L
j=1 θ j =1 must hold to guarantee thatp(yi |Ψ) is a true distribu-

tion function.
The parametersσ j associated with the pixel intensityyi , characterize the acoustic

properties of the tissue at theith location [28]. The effect of changingσ in the
shape of the distribution and thus in the image intensity is illustrated in Fig. 3.
The joint distribution of the pixel intensities, considered independent and identically
distributed (i.i.d.), is given by,

p(Y|Ψ) =
N

∏
i

p(yi |Ψ). (3)

The goal is to estimateΨ by maximizing thelikelihood function,

Ψ̂ML = argmax
Ψ

L (Y,Ψ), (4)

where

L (Y,Ψ) = logp(Y|Ψ) =
N

∑
i=1

log

(
L

∑
j=1

θ j p j(yi |σ j)

)
. (5)

The maximization of (5) is a difficult task because it consists of a logarithmic
function of a sum of terms. To overcome this difficulty the EM [24] method is used
where a set of hidden variables are introduced,K = {ki} with ki ∈ {1, ...,L}. The
value ofki = j informs us about the mixture componentj that generated theith pixel
intensity,yi , with probabilityp(yi |σki ) defined in (2).

Eachnth iteration of the EM method is composed of two steps
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• E step: where theexpectationof the newlikelihood function, L (Y,K,Ψ), is
computed with respect toK,

Q(Y,Ψn,Ψ) = EK [L (Y,K(Ψn),Ψ)] (6)

and
• M step: where a new estimate ofΨ , Ψn+1, is obtained by maximizing the func-

tion Q,
Ψn+1 = argmax

Ψ
Q(Y,Ψn,Ψ). (7)

These two steps alternate until convergence is achieved, which happens when
|Ψn+1−Ψn|< ξ , e.g.,ξ = 10−3.

The likelihood function involving all unknowns, visible and hidden, is

L (Y,K,Ψ) = logp(Y,K|Ψ) =
N

∑
i=1

logp(yi ,ki |Ψ)

=
N

∑
i=1

logp(yi |σki )+ logp(ki |σki )︸ ︷︷ ︸
θki

,
(8)

where p(yi |σki )|ki= j , defined in (2), is thekth
i component of the RMM andθki is

the mixture coefficient associated with thekth
i component. The maximization of

(8) is impossible because the hidden variablesK are not known. Therefore, the
expectationwith respect toK is computed as follows,

Q(Ψ ,Ψ̂) = EK
[
L (Y,K,Ψ)|Y,Ψ̂

]

=
N

∑
i=1

Eki

[
logp(yi |σki )+ logp(ki |σki )

]

=
N

∑
i=1

L

∑
j=1

γi, j [logp(yi |σ j)+ logθ j ],

(9)

whereΨ̂ = (θ̂1, ..., θ̂L, σ̂1, ..., σ̂L) is the previous estimation of the parameters and
γi, j(Ψ̂) is the distribution of the unobserved variables which is defined as follows,

γi, j = p(ki = j|yi ,Ψ̂) =
p(yi |σ̂ j)p(ki = j)

p(yi |Ψ̂)
, (10)

where
L

∑
j=1

γi, j = 1. (11)

In (10), p(yi |σ̂ j) is computed as in (2),p(ki = j) = θ̂ j and, by definition,
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p(yi |Ψ̂) =
L

∑
j=1

θ j p(yi |σ̂ j). (12)

The likelihood function (9) contains two independent terms, one dependingon
θ j and the other onσ j . Therefore, the functionQ can be minimized independently
with respect to each one. The log-likelihood function in (9) can be rewritten by
separating the terms which depend exclusively onθ j andσ j . Taking into account
(2) leads to

Q(Ψ ,Ψ̂) =
N

∑
i=1

L

∑
j=1

γi, j log(θ j)+
N

∑
i=1

L

∑
j=1

γi, j

[
log

(
yi

σ2
j

)
− y2

i

2σ2
j

]
. (13)

Hence, the functionQ can now be minimized independently with respect toθ j

andσ j .
By using the methodLagrange multipliers[29] the term of (13) depending onθ

can be maximized under the constraint

L

∑
j=1

θ j = 1. (14)

which also provides a necessary condition for optimality inconstrained problems
[29]. By introducing a new variable (λ ) and solving the partial derivative of the
term depending onθ , the following expression is obtained,

∂
∂θr

[
N

∑
i=1

L

∑
r=1

γi,r log(θr)+λ
(

∑
r

θr −1

)]
= 0, (15)

which leads to
N

∑
i=1

γi,r =−λθr . (16)

By summing both sides of (16) overr,

N

∑
i=1

L

∑
r=1

γi,r

︸ ︷︷ ︸
(11)

=−λ
L

∑
r=1

θr

︸ ︷︷ ︸
(14)

, (17)

we get thatN =−λ , which leads to

θ̂r =
1
N

N

∑
i=1

γi,r . (18)

The mixture parametersσ j are found by differentiating the term in (13), depend-
ing exclusively onσ j , and setting it to zero, as follows,
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∂
∂σr

[
N

∑
i=1

L

∑
r=1

γi,r

(
log

(
yi

σ2
r

)
− y2

i

2σ2
r

)]
= 0, (19)

which is easily solved forσr to obtain,

σ̂r =
∑N

i=1 γi,r
y2
i
2

∑N
i=1 γi,r

=

√
1
N

N

∑
i=1

γi,r
y2

i

2
. (20)

The EM algorithm is initialized withL uniformly weighted coefficientsΘ =
{θ j =

1
L} while the mixture parameters are assigned with theMaximum Likelihood

(ML) estimator [30],σ̂ML =
√

1
2N ∑N

i=1y2
i .

The initial choice of components was set arbitrarily toL = 10. However, when
|σm−σn| < ε = 1 (ad hoc setting), meaning that two distributions are closely sim-
ilar, with (m 6= n) = {1, ...,L}, thenσ j =

σm+σn
2 andθ j = θm+θn. This constraint

assures stability of the RMM, particularly, for modeling plaque echo-morphology.
Preliminary observations allowed to verify thatL = 10 is an overestimated guess
(excessive number of mixture components) which has also implications in the com-
putational cost of the RMM algorithm. The study of an effective input value for the
number of mixture components to be used in the plaque characterization problem is
further investigated in Section 3.3 and 3.4.

In the next section of experimental results the RMM will be applied in the scope
of atherosclerotic plaque characterization and classification for diagnosis purposes.

3 Experimental Results

In this section we first provide a description of the methods used to acquire and pro-
cess the IVUS data and we briefly introduce the classificationframework adopted
for tuning the RMM algorithm and performing plaque characterization. Then, two
distinct experiments are conducted. The first studies the adequacy of the RMM for
describing different tissue types. This experiment is designated asmonolithic de-
scriptionsince the mixture model is estimated by considering all the pixels enclosed
in the plaque. The second experiment refers to plaque characterization made pixel-
by-pixel (hence, calledplaque local characterization), where the RMM is applied
not to the entire plaque but to each processing block centered at the pixel to be
characterized. In order to apply the RMM technique on a classification problem,
in local basis, the RMM must be estimated locally and descriptive features must
be extracted. Given the envelope image (cf. Section 3.1), local RMM features are
computed by means of aKs×Ks sliding window, moved by a step ofS= 3

4Ks. For
each position, a 2L+1-feature array is obtained and presented in the following man-
ner: the firstL positions correspond to the Rayleigh parameters sorted in ascending
order, followed by theL respective coefficients, arranged accordingly. The last po-
sition corresponds to the number of effective mixture components,τ = {1, . . . ,L}.
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Fig. 4 IVUS data processing (see text for details).

The ability of the RMM for local characterization of plaque composition is eval-
uated when using only the RMM features and when combining them with other
texture and spectral features recently proposed in [27].

Finally, we present a statistical analysis that supports the relevance of the ob-
tained classification improvement when using the RMM features.

3.1 In-vitro data processing

The adequacy of the proposed RMM to describe real tissue types is evaluated
through anin-vitro study of atherosclerotic plaques from an IVUS database. The
IVUS data set has been recently presented in [27] and consists of 8 post-mortem
arteries, resulting in 45 frames with 24 fibrotic, 12 lipidicand 31 calcified plaques.
This data set, composed of 67 plaques, has been validated by histological analysis.

Real-time Radio-Frequency (RF) data acquisition has been performed with the
Galaxy II IVUS Imaging System (Boston Scientific) with a catheter Atlantis SR Pro
40MHz (Boston Scientific). To collect and store the RF data the imaging system has
been connected to a workstation equipped with a 12-bit Acquiris acquisition card
with a sampling rate of 200MHz. The RF data for each frame is arranged in a data
matrix ofN×M samples, whereM = 1024 is the number of samples perA-line, and
N = 256 is the number of positions assumed by the rotational ultrasound probe.

The information encoded in the visual appearance of tissuesnaturally represents
a relevant feature for their description. However, during acquisition the imaging pa-
rameters of the IVUS equipment are typically changed to enhance tissue visualiza-
tion. Hence, parameters like contrast depth and brightnesscan change from patient
to patient or even from image to image. When the IVUS images arethen processed
for feature extraction, this fact may generate non-comparable features.

To avoid the aforementioned errors and to produce normalized data, the used data
follows a rigorous acquisition protocol where the IVUS images have been directly
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reconstructed from the raw RF signals rather than using the ones produced by the
IVUS equipment. For this purpose, we follow the image reconstruction algorithm
[27,31] outlined in Fig. 4. The reconstruction operations are applied to the RF data,
where a preliminary Time Gain Compensation (TGC) function is used,

TGC(r) = 1−e−β r , (21)

whereβ = ln10α f/20, α is the attenuation coefficient for biological soft tissues
(α ≈ 0.8 dB/MHz.cm for f = 40MHz [32]), f is the central frequency of the trans-
ducer in MHz andr is the radial distance from the catheter in cm. After signal com-
pensation, using TGC, and envelope detection, using the Hilbert transform, the sig-
nal processing procedure described in [27] is applied to getthe polar representation
of the IVUS image, or simply the envelope image, resulting ina non-compressed,
256× 256 pixels image (cf. Fig. 1(b)). We recall that the polar image is used to
estimate the RMM and to extract the corresponding features.To improve the vi-
sualization the polar image is transformed to Cartesian coordinates and its pixels
intensities are re-scaled to normalize the observed IVUS image.

This data is exclusively used to representing the image and not for feature extrac-
tion.

3.2 Classification framework

As stated before, the weights and parameters of the mixture,whose estimation was
early described, are used as features to describe differenttypes of plaque. In order to
evaluate the correct model to be used in a multi-class classification framework that
has been successfully used in plaque characterization [27]. The role of the classifica-
tion scheme is two-fold: (1) it allows to evaluate the discriminative power of RMM
features and (2) it is used to support a cross-validation process, adopted to tune the
L parameter (number of mixture components) in RMM model and the kernel size
(image window size where the RMM is estimated).

The classification framework is based on [27] for discriminating among fibrotic,
lipidic and calcified plaques. The multi-class problem is tackled by combining bi-
nary classifiers in theError-Correcting Output Codes(ECOC) framework [33]. In
fact, ECOC is a technique to decompose a multi-class probleminto several binary
problems. Each binary problem is here solved by using theAdaptive Boosting(Ad-
aBoost) classifier [34] where the weak classifiers aredecision stumps[35].

The classifier performance is evaluated by means of theLeave-One-Patient-Out
(LOPO) [31] cross-validation technique, where the training set is built by taking at
each validation fold, all patients’ data except one, used for testing. Note that each
patient data may consist of different number of images (hence, different number of
plaques).

Performance results are given in terms of Sensitivity:S= TP
TP+FN , Specificity:

K = TN
TN+FP, Precision:P= TP

TP+FP and global Accuracy:A= TP+TN
TP+TN+FP+FN , where
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Fig. 5 (a-c) RMM modeling of three tissue types. (d-f) 3-component mixture PDFs estimated for
each tissue type, overlapped with single Rayleigh PDFs.

TP = True Positive, TN = True Negative, FP = False Positive andFN = False Nega-
tive.

3.3 Plaque monolithic description with RMM

The first experiment consists of considering a set of fibrotic, lipidic and calci-
fied plaques from the entire data set, according to histological analysis. Fig. 5(a)-
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Table 1 Accuracy values for tuning the number of mixture components in RMM.

LOPO No. mixture components

(%) 1 2 3 4

A 44.16 (36.28) 68.52 (33.29)85.56 (18.85) 69.82 (31.00)

Table 2 Performance of RMM, SRM and median features for monolithic classification.

LOPO (%) Sf ib Scal Slip A

median 65.00 (39.09) 81.53 (20.34) 44.00 (37.82) 66.30 (15.92)

SRM 41.67 (46.85) 0.00 (0.00) 90.42 (15.84) 44.16 (36.28)

RMM 91.67 (13.94) 93.75 (15.30) 82.00 (24.90) 85.56 (18.85)

Fig. 5(c) show three examples of IVUS images containing one (or more) distinct
tissue types.

The purpose of the current study is to verify the ability of the RMM to describe
and distinguish among the three different tissue types. In this particular experiment,
the RMM algorithm is applied to the entire set of pixels enclosed in each plaque.
Given this, the monolithic plaque area can be characterizedby a unique set of RMM
features which define a unique plaque type.

Note that this global monolithic approach differs from the other one, described
in the next section, where a local analysis make it possible to detect different over-
lapped types of plaques in the same image. In that approach mixtures are estimated
over the pixels of a sliding window the sweeps the whole image.

The classification framework is used to tune the parameters of the RMM method.
The most critical parameter to be defined is the number of components to use in the
mixture model. In order to determine the optimalL value, we use the LOPO cross-
validation method where the classification accuracy is considered as the parameter
to maximize.

For each plaque, we apply the RMM algorithm for different number of mixture
components fromL = 1 to L = 10. This process results in a set of features having
different lengths. For instance, forL= 3 we get a 7-length feature vector whereas for
L= 4 we get a feature vector with 9 elements for each plaque. The training sets com-
posed of RMM features created withL = (1, . . . ,10) are used in the cross-validation
process. Results, reported in Table 1, show that the best accuracy is achieved when
3 Rayleigh PDFs (components) are used in the mixture model. Therefore we will
use 3 components for this specific plaque classification application. For the sake of
simplicity, since classification performance decreases substantially forL > 4, we
only show the obtained results withL varying from 1 to 4.

In order to demonstrate the effectiveness of RMM when compared to the single
distribution, here termedSingle Rayleigh Model(SRM), or the median grey inten-
sity, we show on Table 2 a comparison of these three types of features for classifying
monolithic plaques. The single parameter estimation of theSRM, obtained with the
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Table 3 Kullback-Leibler divergence tests using RMM and SRM: geometric mean computed over
67 plaques.

KL Calcified Fibrotic Lipidic

RMM 1.77E-4 7.68E-4 2.20E-3

SRM 1.62E-3 4.93E-3 6.54E-3

ML criterion [30], is given byσ̂ML =
√

1
2N ∑N

i=1y2
i , whereyi is the intensity of the

ith pixel within the plaque. It is clear that the application of RMM outperforms the
classification results obtained with the other tested features (note that the SRM com-
pletely fails in identifying calcified plaques).

Fig. 5(d)-Fig. 5(f) show normalized data histograms of lipidic, fibrotic and cal-
cified tissues, together with the estimated mixture (RMM) and single (SRM) distri-
butions, respectively. Visually, the mixture model composed of 3 components (early
determined to be the best value) describes significantly better the data when com-
pared to the single distribution. Interestingly, as we movefrom lipidic to fibrotic and
calcified tissue, the difference between the mixture distribution and the single dis-
tribution increases. At this point, we quantify the adequacy of the mixture model for
describing each type of tissue. For this purpose, the mixture and single distributions
were estimated for each plaque and theKullback-Leibler(KL) divergence [36] of
such distributions with respect to the data was computed. Hence, the smaller the KL
divergence is between a given distribution and the data, themore similar they are.
We summarize the results by computing the geometric mean of the KL divergence
for RMM and ML distributions for each plaque (Table 3).

Observations made in Fig. 5, supported by the results presented in Table 3 rein-
force the idea that a single distribution is not sufficient todescribe the data, suggest-
ing that different plaques types can be correctly describedwith different mixture
distribution (and thus different RMM parameters). This fact confirms the usefulness
of RMM in a tissue modeling problem.

The RMM estimation algorithm is applied to the entire data set, where for each
plaque the RMM takes into account all the pixels enclosed in it. The obtained RMM
features are presented in Table 4. Particularly, it is observed that lipidic plaques are
well described by 2 mixture components, while calcified and fibrotic plaques are
modelled by 3 components, where the main difference lies in the range of estimated
Rayleigh parameters (Table 4). It is worth noting that in fibrotic tissue estimation
the ”peakedness” of the single Rayleigh distribution is lower than the observed his-
togram. There is, indeed, a considerable amount of pixels with high intensity which
means that the maximum likelihood parameter of the Rayleighdistribution (com-
puted as in Section 3.3) has a higher value than the expected.As a consequence,
the shape of the single Rayleigh distribution will move slightly towards the right
direction, as observed in Fig. 5(e). This fact enforces the need for a mixture model
to correctly model tissues.
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Table 4 Mean values of Rayleigh parameters and Mixture coefficients estimated with RMM ap-
plied for the data set of 67 plaques.

RMM Components lipidic fibrotic calcified

1 188 140 318
Rayleigh parameters 2 410 275 1171

3 - 555 3390

1 0.82 0.51 0.33
Mixture coefficients 2 0.18 0.39 0.46

3 - 0.10 0.21

The main conclusions that can be obtained from these resultsare:

1. lipidic tissues are predominantly modelled by a single Rayleigh distribution. The
KL divergence is of the same order for SRM and RMM (see Table 3)and the
optimum order of the mixture is one (see Table 4),

2. fibrotic tissues are approximately described by a mixtureof second order,
3. calcified tissues are better described by 3 components, and
4. there is no significant overlapping between the range of Rayleigh parameters

obtained for the lipidic and fibrotic tissues when compared to calcified tissues.

3.4 Plaque local characterization

We have established the usefulness of using a mixture of distributions to model
the plaque content in a monolithic experiment. It is worth tonote that, in practice,
plaques are not individually segmented, thus the RMM estimation considering all
the pixels enclosed in the plaques is not generally a feasible method for plaque char-
acterization. Nevertheless, a region of interest which includes the plaque(s) can be
at least pointed out by the physician without compromising the time of a diagnostic
exam. Thus, a local-wise characterization, made pixel-by-pixel, becomes a natural
and more appropriate strategy. This strategy consists in estimating the RMM over
successive processing blocks within the plaque region and assigning the RMM fea-
tures to each center pixel. Subsequently, each pixel is classified into a specific tissue
type (lipidic, fibrotic or calcified) and then confronted with the ground truth.

As previously mentioned, in order to apply the RMM algorithmto a local analy-
sis, we first need to define the dimension of the kernel to be used. The computational
cost associated with the local-wise estimation of RMM features using a processing
block (kernel) of sizeks is O(2ks). The tuning of this critical parameter is performed
again by means of the cross-validation process. For this purpose, the RMM-based
features are computed inside a kernel of sizeks = {2,4,8,16,24,32}. Hence, 6 dif-
ferent data sets have been obtained, and for each one of them the cross-validation
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Fig. 6 Classification based on RMM features according to the kernel sizeand number of mixture
components.

has been performed, while varying the number of mixture componentsL= {2,3,4}.
Results in terms of global accuracies are depicted in Fig. 6.Given the obtained re-
sults,ks = 16 andL = 3 are adopted. Hence, the length of the RMM-based feature
set extracted from each kernel is 2L+1= 7.

In order to assess the true contribution of the proposed RMM algorithm, the
plaque characterization problem is solved under three different conditions, where
distinct features were computed from polar RF data (cf. Fig.4). First, only the RMM
features are used for tissue discrimination in the classification framework: the ob-
tained classifier is here namedC.1. Then, a set of 51 textural and spectral features
presented in [27] is used to train a second classifier (C.2). Finally, RMM features
are joined to the textural and spectral features, thus creating a 59-element feature
vector, used to train a third classifier (C.3).

The three classifiers are used to characterize the plaques ofthe database accord-
ing to the LOPO technique. At each fold of both training and validation process, the
data set for each kind of plaque has been randomly down-sampled up to the maxi-
mum value of the less represented class over all the cases (around 2000 points per
class) in order to obtain a balanced data set among classes.

For each cross-validation fold we compute the aforementioned performance cri-
teria (cf. Section 3.2); consequently, for the entire LOPO experiment (8 folds) we
take the average and standard deviation of the results obtained for each fold. Clas-
sification results have been obtained by repeating 20 times the cross-validation and
finally by averaging the obtained performance parameters.

The comparison ofC.1, C.2 andC.3 classifiers gives an important evidence of
the effectiveness of the RMM features as well as their discriminative power. Clas-
sification results achieved with the proposed classifiers are shown in Fig. 7; a more
detailed description is given in Table 5.

The use of features estimated with the RMM (C.1) provides good results in terms
of calcified and fibrotic sensitivity and overall accuracy. Apoor performance in
terms of correct detection of lipidic tissue is, however, observed. Nevertheless, this
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Table 5 Performance of plaque characterization: results presented asmean (std).

LOPO (%) C.1 C.2 C.3

A 64.70 (21.35) 91.37 (5.02)92.56 (6.18)

Sf ib 63.93 (8.94) 94.38 (4.79)96.12 (4.30)
Slip 26.41 (13.03) 87.03 (16.06)88.19 (20.10)
Scal 86.89 (11.02) 91.48 (5.24)93.42 (3.90)

K f ib 74.68 (25.95) 92.49 (6.22)94.02 (5.32)
Klip 80.98 (14.59) 97.18 (2.85)97.69 (3.41)
Kcal 94.27 (11.36) 95.22 (5.61)95.90 (6.85)

Pf ib 88.55 (11.28) 94.34 (6.74)95.69 (4.71)
Plip 86.78 (21.06) 69.26 (28.52)69.71 (29.94)
Pcal 94.99 (8.44) 96.89 (3.59)96.86 (5.18)

is a meaningful achievement in the context of automatic plaque characterization if
we consider that the dimension of the feature set is small andexclusively originated
from a data source (envelope image, cf. Fig. 4). The combination of the proposed
RMM features (C.1) with spectral and textural features [27] (C.2) is expected to
produce improvements on the classification performance. Hence, as shown in Fig. 7
and Table 5, the classifierC.3 yields the best classification accuracy, around 92.6%
and brings the class sensitivity up to 96.1%, 88.2%, 93.4% for fibrotic, lipidic and
calcified plaques, respectively. This represents an improvement of more than 1% in
accuracy, about 2% in fibrotic-class, more than 1% in lipidic-class and around 2%
in calcified-class sensitivities, when compared to the classifier which only considers
textural and spectral features (C.2). These observations support the relevance of the
RMM features for plaque characterization.
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(a) (b) (c)

Fig. 8 Examples of plaque classification using theC.3 classifier. (a) IVUS images, (b) ground truth
images, segmented according to the histological analysis, (c) classification. In blue (dark), green
(mid-grey) and yellow (light-grey) are indicated calcified,fibrotic and lipidic tissues, respectively.

This result shows that features extracted from RMM are complementary to the
rest of the features. Examples of plaque characterization using theC.3 classifier are
shown in Fig. 8.
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3.5 Statistical analysis

In order to reinforce the usefulness of the RMM approach, we perform a test on the
statistical significance of results.

To assess the statistical significance among the classifiersperformance, we apply
the FriedmanandBonferroni-Dunntest [37]. First of all, the rankingr i

j for each
separate classification testi and each classifierj is computed. Then, the mean rank-

ing Rj for each one of thej th classifier is computed asRj = 1
N̂

∑N̂
i=1 r i

j , where

N̂ = MNp is the total number of rounds. Obtained results are reportedin Table 6.
Note that the best rank corresponds to theC.3 classifier, i.e. the classifier trained
with the whole feature set.

In addition, in order to reject thenull-hypothesisthat the differences on the mea-
sured classification performance are due to randomness, theFriedmantest is per-
formed. For this purpose, theFriedman statistic valueis computed,

χ2
F =

12N̂
k(k+1)

[
∑

j
R2

j −
k(k+1)2

4

]
, (22)

wherek = 3 is the number of considered classifiers. The obtained value is χ2
F =

202.74. As reported in [37], given the conservative property of the Friedman value,
theIman-Davenportcorrection value is preferred,

FF =
(N̂−1)χ2

F

N̂(k−1)− χ2
F

. (23)

The value obtained in this case isFF = 274.9. With 3 methods and a total ofN̂ = 160
experiments,FF is distributed according to theF distribution with 2 and 318 degrees
of freedom. The critical value ofF(2,∞), for α = 0.05 is 2.99. Since the obtained
value forFF is higher than the critical value, the null-hypothesis is rejected, i.e., the
differences in the obtained results are not due to randomness.

Once the null-hypothesis has been rejected, we check if the classifierC.3, result-
ing in the best discriminative power, is significantly better than the other classifiers.
For this purpose, theBonferroni-Dunntest [37] is performed. The performance of
two classifiers is significantly different if the corresponding average ranks differ by
at least thecritical difference,

Table 6 Mean Rank for the accuracy of each classifier

classifier C.1 C.2 C.3

mean rank 2.8438 1.89381.2625
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CD= qα

√
k(k+1)

6N̂
, (24)

whereqα is based on the Studentized range statistic divided by
√

2. Since our goal is
the comparison of theC.3 classifier with respect to the others, theBonferroni-Dunn
test is suitable, and a correction factor must be consideredin theqα value (cf. [37]
for details). In our case we obtainCD = 0.2949 which is smaller than each difference
among the mean rank of the classifierC.3 and the rank of each other classifier. For
this reason, we can infer that the classifier is significantlybetter than the rest with a
confidence of 95%.

3.6 Features weight analysis

Finally, we want to evaluate the importance of the included features in the quality
of the classifierC.3. The AdaBoost algorithm [38] assigns a certain weight to each
weak classifier selected at each round, during the training process [34]. Since the
decision stump weak classifier is only related to a single feature [35], we can use
the weight assigned by AdaBoost to evaluate the importance of each feature during
the training process. Note that each feature can be selectedmore than one time: in
that case, the sum of each weight for a specific feature is considered.

Let us defineNP the number ofin-vitro cases,NF the number of features,K the
number of binary problems,f = 1, . . . ,NF the index of each feature,k = 1, . . . ,K
the index of each binary problem,NR the number of rounds by whose the com-
putation has been repeated andα f

k,p,r the weight assigned to thef th feature. The
normalized weight assigned by AdaBoost to each feature can be computed as
Wf = max{w1

f , . . . ,w
1
f }, where

wk
f =

1
NPNR

NP

∑
p=1

NR

∑
r=1

α f
k,p,r

max{α1
k,p,r , . . . ,α

NF
k,p,r}

(25)

In Fig. 9 the normalized weights of each feature are represented together with
their detailed description. It is worth to note the importance given by the classifier
to the RMM features, particularly to feature #1 (1st Rayleigh parameter), feature #6
(3rd mixture coefficient) and feature #7 (no. effective mixture components). Given
the high discriminative power of theC.3 classifier, the expressive weights assigned
to the RMM-based features corroborate the importance of theRMM model, as well
as its capability for discriminating different tissues. Hence, this experiment illus-
trates the relevance of the RMM features for the AdaBoost classifier. Naturally, the
information provided about the most discriminant featuresfor classification may be
used on a feature selection procedure in future work relatedto tissue characteriza-
tion.
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Fig. 9 Analysis of the normalized weight for each feature of theC.3 classifier.

4 Conclusions

This chapter proposes a method for plaque characterizationin IVUS data based on
a mixture of Rayleigh distributions. The coefficients and parameters of the mixture
model are used as features for describing fibrotic, lipidic and calcified plaques.

The RMM algorithm was evaluated and tuned using a classification framework
based on a multi-class problem applied to a validated IVUS data set and following a
cross-validation strategy. Results suggest that the optimal RMM method for plaque
characterization consists ofL = 3 mixture components and should be computed on
a kernel of sizeks = 16.

First, the true value of RMM features for tissue characterization was evaluated
through a plaque monolithic problem using a cross-validation strategy, providing a
global accuracy of 86%. This result highlights the relevance of RMM features for
discriminating among the three different types of tissue.

Furthermore, the method was evaluated on a local-wise classification problem
when using only the RMM tuned features and when combining them with textu-
ral and spectral features used in an authors’ previous study. The inclusion of RMM
features demonstrates to generally improve the classification performance up to a
global accuracy of 92.6%. According to the most significant performance parame-
ters, such as accuracy and class sensitivity, fusing RMM features with textural and
spectral features represents a general improvement of morethan 1% and in some
cases about 2%.

Finally, statistical analysis using theFriedman and Bonferroni-Dunnshows that
the classifier which includes RMM, textural and spectral features is significantly
better than the other studied ones, thus reinforcing the significance of the obtained
improvement when using RMM features.

The analysis of features relevance attributed by AdaBoost demonstrates that the
RMM features give an important contribution to the plaque characterization prob-
lem.
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The method is intended to characterize tissues enclosed in apreviously seg-
mented plaque. Moreover, automatic segmentation capabilities can be potentially
achieved by classifying the whole image and then by post-processing the labelled
regions. Without a deep analysis on features similarities between different vessel
areas, the classification result on regions different from plaques cannot be stated.
Indeed, it can be guessed that, at least for what concerns thetextural features, re-
gions enclosing struts (in presence of stent) can be classified as calcified plaque, and
the whole adventitia layer as fibrotic plaque. No guessing can be done for the blood
region.

Hence, this chapter has demonstrated that the RMM has a high impact on plaque
characterization and could significantly contribute to a more accurate study of
plaque composition, and consequently to an objective identification of vulnerable
plaques.
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