RF ultrasound estimation from B-mode images
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Abstract This chapter describes a method to estinraeover the ultrasound RF
envelope signal from the observed B-mode images by takiiogaiocount the main
operations usually performed by the ultrasound scannéreimtquisition process.
The proposed method assumes a Rayleigh distribution faREhsignal and a non
linear logarithmic law, depending on unknown parametersnodel the compres-
sion procedure performed by the scanner used to to impreveishalization of the
data.

The goal of the proposed method is to estimate the parantédnie compression
law, depending on the specific brightness and contrastiadungs performed by the
operator during the acquisition process, in order to reterprocess.

The method provides an accurate observation model whiotvallo design robust
and effective despecklingeconstruction methods for morphological and textural
analysis of Ultrasound data to be useddomputer Aided Dagnosis (CAD) appli-
cations.

Numerous simulations with synthetic and real data, acduireler different condi-
tions and from different tissues, show the robustness ofristhiod and the validity
of the adopted observation model to describe the acquigitiocess implemented
in the conventional ultrasound scanners.
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1 Introduction

Ultrasound statistical-based image processing for dampisegmentation and tis-
sue characterization is an attractive field of research day&[1-3] and may posi-
tively influence some diagnostic decisions in the near &utur

It is widely recognized that speckle in B-mode Ultrasountd 3 images arises
from the coherent interaction of random scatterers withiasmlution cell when a
certain anatomical region is scanned. The common modepfarkde formation as-
sumes a large number of scatterers where the sum of signgldentormulated
according to a typical phasors random walk process [4]. Thizdition, known
as fully developed speckle, determines Rayleigh stadi$tic the Envelope Radio-
Frequency (ERF) data [5]. In addition, different non-linear procegsoperators are
used to improve the visualization of the displayed imageg bermed B-mode im-
age. In particular, the amplitude of the ERF signal is Iapamically compressed
and non-linearly processed so that a larger dynamic rangeak to strong echoes
can be represented in the same image.

The compressed data, typically acquired in a polar gridh, figrin interpolated and
down-sampled in order to convert it to a Cartesian grid teahore appropriated
for visualization in the rectangular monitors of the scaasn€&inally, in a clinical
setting, physicians typically adjust other parameter$ sigchrightness and contrast
to improve image visualization.

Many research work has been developed for speckle redusmiting at provid-
ing clearer images for visualization [6]. However, very fapproaches either focus-
ing on speckle reduction or tissue classification take iotmant the pre-processing
operations used to create the BUS images [7,8]. Studiesl lmssienage processing
from BUS images naturally need to follow a rigorous acqigisifprotocol, other-
wise results will be non-reproducible and non-comparalvieesthey will depend
on the kind of ultrasound equipment and on each specific tpgreonditions. To
avoid these difficulties some researchers [9-11] use thedrRBlextracted directly
from the ultrasound machine. However, this kind of data isuswally available at
the scanners and is only provided for research purposeactiifesides the previous
referred transformations of re-sampling, coordinatesfamation and logarithmic
compression (cf. Fig. 1), the B-mode observed images anethit of other propri-
etary nonlinear mappings specific of each scanner that alyswot known and not
documented .

In this chapter we show that, despite the lack of knowledgmibthe complete
processing operations performed in the scanner, it is Iplest revert the com-
pression operation and compensate for the contrast anatiheigss adjustments per-
formed by the operator during the exam. The interpolatioalse addressed. The
estimated_og-Compression Law (LCL) is able to provide an image more compati-
ble with the physics of the image formation process than tmedBle one that may
be used to design more accurate and effective denoisedthiger

The remainder of this chapter is organized as follows. IrtiSe@ it is made a
review of the most relevant work published about ultrascumatje decompression
and estimation of operating settings over the last yearstid®e3 formulates the
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Log-Compression model and describes the statistics associated with the ressgd
image. In addition, simulations of the most significant @piens affecting the sta-
tistical properties of the original data are shown and solbsevations are drawn
about the way the shape of the distributions are affecteds&uently, Section 4
details the method to estimate the parameters of the cosiprelaw, specifically
the contrastd) and brightnesdh) parameters. Section 5 first tests the effectiveness
of estimating the decompression parameters with the pesposethod using syn-
thetic ultrasound data. To further investigate how realitte proposed model is,
the decompression method is applied to a real BUS image, \irbich the raw data
is known, and comparison between original and estimatealidahade.

The robustness of the decompression method is also evélusitey real images
acquired under different operating conditions and a delaiiterpretation of the ob-
tained results is performed. Final@podness of Fit (GoF) [12] tests are conducted
in estimated ERF images to sustain the hypothesis that mostape RF data can
be well modeled by Rayleigh statistics. Section 6 conclikestudy about decom-
pression and envelope RF estimation from BUS data.

2 Related work

A considerable amount of work dedicated to speckle suploressd tissue charac-
terization relies on accurate statistical models for Rie.datch models albeit being
ideally and robustly tailored to describe the envelope dawifferent conditions
throughout the image, are not feasible and practical becR&sdata is usually not
available. Thus, there is a need to develop realistic obsiervmodels that incor-
porate the most significant nonlinear processing operatidiecting the envelope
data, when only BUS images are provided. In order to compgt®E intensity sig-
nal it becomes crucial to (i) explain the statistics of thenpoessed signal and (ii)
invert the logarithmic compression and other nonlineanaligrocessing performed
by the ultrasound machine. Commercial ultrasound scarp@ferm a set of op-
erations on the RF signal, e.g. log-compression and intaipo [13], that change
the statistical distribution of the complex raw RF signaiethis no longelCircular
Symmetric Complex Gaussian (CSCG) [14] and, therefore, the Rayleigh statistics
of the ERF signal are no longer valid.

Seminal work conducted in [7,15,16] have addressed the/timatudy of log
compressed Rayleigh signals in medical ultrasound imdgesn thereon, several
decompression strategies were developed aiming at estgnsdme of the non-
linear processing parameters [17—19] or providing an edérof the envelope RF
data [8,20,21]. In order to compute the ERF intensity sigtied logarithmic com-
pression and other nonlinear operations must be invertedmmon model for the
compression law used in the literature is the following

Igus = alog(lgrF) +b, 1)
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wherea andb are unknown parameters. The work developed in [20] dematestr
that such mapping is able to approximately invert the cosgioa algorithms em-
ployed by a number of different ultrasound machine manufacs, given that the
parameters are originally known. The additive parambteipes not affect the shape

of th statistics used to speckle because it only shifts teediktribution function
which does not happen with the gain paramatéihe study developed by Crawford

et al. [20] proposed a systematic method to compensate for n@mlamaplification
based on several measurements based on a calibrated phartiberthe study re-
ported by Kaplaret al. [15] requires accessing the data before processing which is
not feasible in most commercial machines.

The work from Prageet al. [8] introduced the fractional moments iterative algo-
rithm for recovering the envelope intensity signal from Bxdé data using speckle
patches. In such patches, where fully developed speckéshtile envelope inten-
sity signal,Y p, can be estimated by inverting the compression mapping,

Yp:exp(ip), (2)

whereZ, is the B-Mode intensity on a given patgh,According to [S],Y , follows
approximately an exponential distribution,

p(Yp) = ZizeXp(;;p) : (3)

where then" order moment is given by [22],
(YB) = (20%)"T (n+1) = (Yp)"T (n+1) (4)
wherel™ (n) is the Gamma function. Therefore, the normalized momeets ar

(Yp)
(Yp)"

This approach [8] compares the measured normalized momektsown speckle
patchesy p, with the theoretical expected values for an exponentstiution. The
optimal value of the contrast parametgrcan then be found by minimizing the dif-
ference between these two set of values. This algorithmymes similar results
to the faster approach proposed in [15] for pure logarithooimpression, but also
works in the presence of nonlinear mapping where the Kadahfprmula does
not apply.

A more recent work presented by Marqueeal. [21] and used in a 3D US recon-
struction problem enables to model the nonlinear comprasinsidering that the
ERF data is Rayleigh distributed. The estimation of the lmgpression parameters
is simultaneously performed with the image reconstructimtedure by optimiz-
ing the same objective function (PDF of the unknown pararsgt8uch parameters
are obtained by considering the theoretical expressionthéomean and standard

= (n+1). (5)
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Fig. 1 Block diagram of the generic processing operations of anadtrad imaging system.

deviation of the Fisher-Tippet distribution [22] early denstrated to be a feasible
model for the compressed data [7].

Although the estimator df has shown to be biased, this work presented promis-
ing results particularly in terms of image reconstructibias been shown that the
reconstruction algorithm performs better when compeaosasi considered. The es-
timated images and profiles obtained by compensating thedogressed images
are sharper, presenting a larger dynamic range, and theraicat details are more
clearly visible when compared with those obtained assumigompression.

3 Log-Compression M odel

Fig. 1 depicts the processing block diagram of a generiastiund imaging system,
including the most significant operations performed on thesinal generated by
the ultrasound probe: (i) interpolation and grid geometmversion, from polar to
rectangular to appropriate image display, (ii) logaritbrodompression, used to re-
duce the dynamic range of the input echo signal to match tladlesndlynamic range
of the display device and to accentuate objects with weakdzatter [13], (i) con-
trast,a and (iv) brightnessh adjustments. Some equipments perform an automatic
adjustment of the parameteasndb which can further be tuned by the operator to
improve image visualization in each specific exam. The mddglayed in Fig. 1,
illustrating theLog-Compressed Law, allows to simulate the generic processing op-
erations of the ultrasound equipment, and to recover, whegrike original raw data
is not available, an estimate of the ERF image.

As shown in the section of experimental results and confirnyatie literature [],
the interpolated data is better described by a Gamma distsibthan by a Rayleigh
one. However, the results displayed also show only a mdrgmmovement of the
Gamma distribution with respect to the Rayleigh model, tyaat the transitions.
Therefore, here, the interpolation is not taken into actduthe designing of the
ERF estimation algorithm.

The Log-Compression model (LCM) described in this section assumes a fully
developed speckle noise formation model to describe theiff&e formation pro-
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Fig. 2 BUS image formation model, starting from a phantom object (a¢.fMkthod for generating
synthetic BUS images includes corruption with Rayleigh nogeifterpolation (c) and applica-
tion of the LCL (d). Probability densities ik, and k'y andk; when the parametees(e) andb (f)
are made variable.

cess. This condition is valid when images are reasonablyogemeous and do not
show high intensity scattering sites. Under these assomgpthe ERF signal inten-
sity can be described by a Rayleigh distribution [23], whoseametersY = {g; j },
associated with each pixel intensity of the ERF image, are related to the tissue
acoustic properties [24] at the corresponding locatiop,

LetZ = {7} be aN x M BUS image corrupted by speckle where each pixel is
generated according to the following LCL,

zj =alog(yi,j +1)+b, (6)

where(a, b) are unknown parameters used to model the contrast and hegghof
the observed image, respectively. In the assumption of fldveloped speckle the
pixels of the ERF imageéy = {y; ;}, are Rayleigh distributed [25]
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- 2.
p(yij) = ﬁ’z’exp<— 5 ) (7

2
i 207

whereq; j is the parameter of the distribution to be estimated. Caneetty, the

distribution of the observed pixels, j, given byp(z) = % p(y) [14] corresponds
to
Yij(¥ij+1) Ve
i) = - ) 8
p(zi-,l) aai?j exp 2051' ( )

Fig. 2(a)-Fig. 2(d) simulate the BUS image formation pracdse pixel inten-
sities of the noisy image, displayed in Fig. 2(b), were gatezt from Rayleigh dis-
tributions with parameters corresponding to the pixelrisiges of the phantom
displayed in Fig. 2(a). To illustrate how the most relevgmrations performed by
the ultrasound scanner affect the statistical propertieh@ ERF signal the fol-
lowing simulations are performed. The noisy image is firs¢ripolated and then
compressed according to (6) and the final result, display&dy. 2(d), represents a
typical image obtained with ultrasound equipment.

Fig. 2(e)-Fig. 2(f) present the shape of the data distritbuthroughout the pro-
cessing operations for different contrast and brightnesarpeters used in (6). In
general, the transformed image is significantly differeatrf the original data from
both statistical (histogram) and visual appearance poinigw.

Only in the case of the interpolation operation the diffeeshare not very rele-
vant. The histogram of the independent Rayleigh distribpizels inside the win-
dow ky (see Fig. 2(b)) is not significantly different from the higtam of pixels
inside the windovxk{, (see Fig. 2(b)). See both histograms displayed in Fig. 2(e).

The effect of the interpolation operation is mainly low péiftering the data
leading to a slight reduction on the intensity variance @& ttansformed image.
Variations on the brightness parameteishift the distribution of the transform data
along the grey-scale axis, as shown in (Fig. 2(e)). Morem®expected, the dy-
namic range parametex, produces the effect of compressing or stretching the dis-
tribution asa decreases or increases, respectively (Fig. 2(f)).

In the next section the estimation procedure to estimat@anemeters andb
form (6) is described in order to decompress the data anchastithe unobserved
ERF imagey; j, from the observed ultrasound B-mode ong, by using the trans-

formation
zj—b
Yii :exp<”é> ~1, 9)

where(4, b) are the estimated contrast and brightness parameters.
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4 Estimation of Decompression Parameters

This method described here to estimate lthg-Compression parameters in (6) is
an improved version of the method described in [21].

The estimation of the compression paramet@$) would be easier if the
Rayleigh parametew; j, was known. However, it is not known and varies across
the image.

Let us approximate (9) by = exp(z%ab), the distribution (8) can be written as
follows

p(2) = % exp(— 0~ exp(-0)). (10

wheref = log(20?) — ZZ;ab. Equation (10) defines tHesher-Tippet distribution
[22], also known as double exponential. The mean and stdrakasiation (SD) of
this distribution are:

e = 3 llog(20%) ~ ] +b, (11)
o, = 1a/\/24, (12)

wherey = 0.5772.. is the Euler-Mascheroni constant.

To overcome the difficulty associated with the lack of knaige ofg; j let now
consider smalh x m windows,w; j, centered at each pixél, j). The distribution
parametersj | within these small windows are assumed constant and eqtfa to
parameter of the corresponding center piggj, to be estimated.

If & j is assumed constant inside the small windaywy it can be easily derived
from (12)

Oy .
aj=V2a—, (13)
whereay ; is the samdard deviation of the observations inside thel sviraow w; |

The parametea which is considered constant across the image, is estinbgte
averaging the parameteas; "

A= S 4. (14)

The estimation process bfis more challenging than the estimationafthus
requiring a more elaborated and complex procedure. Let nsider the set ofi x
m = L unknown non compressed pixgls= {yi, } inside the windoww; j as being
independent and identically Rayleigh distributed withgmaeterg; |

Yk, yﬁ.l
) = = ——= . 15
) O'IJ) O'-2- eXp( 20'2]) ( )

p(
I7J
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As shown in [21], the distribution of the minimum @f t = min(y), is also
Rayleigh distributed with parametefj /L

t t2
p(tlo) = 705]/'_ eXD(—Zaﬁj/L> . (16)

The minimum of the observed pixels inside the winday, z = {z } where
7, = alog(yk +1) +b, is

s=min(z) = alog(min(y)+1)+b 17)
=alog(t+1)+b,
which means
b=s—alog(t+1). (18)

The distribution ofb, computed byp(b|s, g; ;) = |dt/db|p(t|di j), is therefore
given by

L L

bls, g1 ) = —5t(t+1)exp| —=—5t? |, 19
p(bls,aij) aai?j ( ) p( 202 ) (19)
wheret = exp(s%ab) — 1. g j, the distribution parameter associated with thg)
pixel, is not known neither constant across the image. Heweéit is considered
constant inside the small window j a local estimation ob is possible to derive.
Sincey is assumed Rayleigh distributed an appropriated apprdidméor g j is

~ [ 1 .
0i,j = an)@ (20)

i —b
Ji) = exp(zk" A ) -1, (22)

where

and

b = min(z) (22)

Sinceb is not knownb ~ b is used in (21) instead @ As it will be shown in the
section of experimental results this approximation isdzali

Let by ; be the estimated value bf computed from the pixels within the small
window w; j. Its value is nothing more than the expected valub with respect to
the distribution (19) with the parameter computed in (20),
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b= / bi.j p(bi jIs, 6i j)dbi ;. (23)

The closed form solution of (23) is difficult to compute anduaneric approach
is adopted, such that:

. L
bij = kz bi,j (k) p(bi,j (K)[s, Gi. ), (24)
=1

whereb; j(k) = ks/(L—1),k=0,1,...,L — 1 areL uniformly distributed values in
the interval[0, 5], since it is assumed thbt> 0 and from (18)b <'s. A
The global value ob, once again, is obtained by averaging the estimhitgd

b= i & b (25)
T NM ”zzl h

The estimated paramete(d, B) are then used to revert the Log-compression per-
formed by the ultrasound equipment in order to recover tiggr@l RF signal:

b
Vi :exp<z"1é ) -1, (26)

which is assumed, in the remainder of this chapter, to bedRglydistributed.

5 Experimental Results

In this section, different results are presented aimingsgess the performance of
the proposed method. First, the accuracy on the decompreparametersa, b)
estimation procedure is computed by using synthetic wtrad data. The validity
of the decompression method is also assessed by using tealkdeomparison is
made between the original ERF image, obtained from raw daizthe estimated
ERF image, obtained from the BUS image.

In addition, the adequacy and robustness of the ERF imagevatmethod is
investigated in the real case using two sets of experimantkiding the applica-
tion of the decompression method in (i) different BUS imageguired with fixed
brightness and contrast parameters and (ii) static BUSésagquired with variable
operating parameters.

Finally, GoF tests with Rayleigh and Gamma distributiores @nducted in es-
timated ERF images which enables to support the hypothleatsnost envelope
RF data can be well modeled by these two distributions. Ttexpretation of the
obtained results suggest the use of the simpler Rayleigfibdison to decompress
that data.
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(b) Shepp-Logan Phantom Phantom

Fig. 3 Estimation of the decompression parameters using Monte Carlo testsrrRance is as-
sessed by computing the mean and SDapb)(in simulated log compressed images of a noisy
uniform image created with Rayleigh parameters (a) and noispjshogan phantom (b).

The decompression method is initially tested in synthegitady using Monte
Carlo tests. Particularly, in this experiment it is intedde assessed the estimation
accuracy of the decompression parametexrdy), for different images and amounts
of noise. For each pair of decompression parameters 50 Mzarte runs were per-
formed. In each run, two different types of synthetic imagesused to revert the
compression method and estimate the paramééebg, uniform and non uniform
Three uniform synthetic images are corrupted with Rayleigise with parameters
02 = {10%,10°,5- 10°}. The non uniform image is the Shepp-Logan phantom also
corrupted by the same three different amounts of noise ugbdtve uniform phan-
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Fig.4 Application of the RF image retrieval (decompression) method®0& image representing
a coronary artery. PDFs of the BUS, original ERF and estimafRE Enages, extracted from a
given ROI.

toms. In both cases the noisy images are interpolated ancbiogressed according
with (6).

Fig. 3 presents the average and SD of the 50 estimated deessigm parame-
ters,(4,b), obtained for each true paia,b), by using the first phantom (Fig. 3(a))
and the non-uniform Shepp-Logan phantom (Fig. 3(b)).

Similar results are obtained in both cases which suggests$ht decompression
method has similar behavior for uniform and non-uniform g@es, and its perfor-
mance is apparently independent on the severity of spedit® rtontamination.
The later conclusion is confirmed in Fig. 3(a) where the olestrresults do not
depend on the value of the Rayleigh parameteised to generate the noisy image.

In general, the estimatiamis non biased and its SD increase mainly végh(see
Fig. 3(a)-Fig. 3(b), top left). The variability aftends to be less significant bsn-
creases (see Fig. 3(a)-Fig. 3(b), bottom left). The avevalyes of the uncertainties
associated witla,"SD (&) /ap, are: 054%, 060% and 060% for the uniform image
with 02 = 100,1000 and 5000, respectively, ané0% for the non-uniform image.
As far as the rati®D(&) /a is concerned, the uncertainty associated &ihalmost
residual.

The estimation ob, b, is also non biased (see Fig.3(a)-Fig. 3(b), top right). In
particular, the average values of the uncertainties assativithb, SD(b)/b, are:
2.4%, 24% and 24% for the uniform image witlw? = 100, 1000 and 5000, respec-
tively, and 23% for the non-uniform image. The uncertainty associatetth Wie
decompression parameﬁz'rncreases linearly witl. In fact, this behavior is simi-
lar to the one obtained fa; éxcept for very small values af where the uncertainty
aboutb increases witlp (see Fig. 3(a)-Fig.3(b), bottom right).

The method here proposed is able to invert the compressieratipns when
synthetic images are given. Moreover, it is important talgtine feasibility of the
method when raw data is provided by the manufacturer. Nttigethe challenge of
decompression from BUS images is only raised because ranisigenerally not
available in a clinical setting, thus limiting the applicet of algorithms which are
based on statistical modeling of speckle or RF data.
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BUS; BUS,

(b) Thyroid longitudinal

BUS; BUS, BUS3 BUS, BUS; BUSq

(c) Liver

Fig. 5 Application of the decompression method to different sets of imaggquired from different
tissues using fixed operating conditions.

Hence, in this study it was used an IVUS BUS image correspaytdia cut of the
coronary artery (Fig. 4(a)) together with the RF image otgdifrom raw RF data,
obtained with specialized equipment (Galaxy Il IVUS Imag8ystem, Boston Sci-
entific, Natick, MA, United States). The RF image retriedalfompression) method
is applied to the BUS image, resulting in an estimate of thelepe data, thERF
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Fig. 6 (Left side) Data histograms extracted from regions of interette estimated ERF images,
shown in Fig. 5. (Right side) Decompression parameters.

image. As shown in Fig. 4(b), the statistical propertieshefariginal and estimated
ERF images are closely similar. This observation suppbgstiequacy of the pro-
posed method to provide an estimate of the envelope RF dath wdsembles the
original one.

So far the decompression method was validated using an I\hige from
which the raw data was known. Moreover, it is also pertinerihtestigate the ro-
bustness of the method according to different acquisitéitirgys and scenarios. To
this purpose, the RF image retrieval method is tested umaedifferent conditions:
first, by changing the probe position and keeping the opeyatarameters constant,
and second by maintaining the probe steady and varying thteast and brightness
parameters.
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(b) Liver

Fig. 7 Application of the decompression method to sets of images acqumeddifferent tissues,
acquired with a steady probe and variable operating parasneter

Fig. 5(a)-Fig. 5(c) presents results of the application ted tecompression
method proposed in this chapter. In particular, three insege were acquired for
different anatomical structures/tissues by slightly aiag the probe position be-
tween each image acquisition. For each set of RF estimat&ges) a homogeneous
region was selected and its intensity histogram computeshesn in Fig. 6(a)-
Fig. 6(c)(left). These results show that the statisticaperties of the estimated RF
images are comparable, suggesting that the decompresstbndis robust to small
changes in image appearance. The decompression parafmetersach image set
are depicted in Fig. 6(a)-Fig. 6(c) (right). The SDs foaridb are (3.83;297),
(4.26;201) and (1.96;180), respectively for each set of decompressed images,
which shows that the uncertainty about the estimated LClarpaters is low in
different imaging conditions.

As previously mentioned, the second experiment consistedquiring a series
of BUS images by keeping the probe steady and varying theatipgrparameters.
Results of the application of the decompression method indifferent image sets
are shown in Fig. 7. In terms of grey-scale image appearaheegbtained ERF
images present similar dynamic range and brightness. ¢ito analysis of data
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Fig. 8 (Left side) Data histograms extracted from regions of intereshé estimated ERF im-
ages, shown in Fig. 7. (Right side) Decompression parameters estimigtteoroposed method vs.
machine operating settings.

extracted from homogeneous regions in such images (FiiyRéga8(b) on the left)
suggests similar statistical properties among the estidn&BRF images. A com-
parison between the contrast and brightness parametess fivthe US scanner
with the estimated decompression parameters is given ingkag-Fig. 8(b) on the
right. Although a numerical comparison is naturally unfelesbecause the equip-
ment’s settings may not directly correspond to the valusgasd to the operating
parameters being estimated, it is pertinent to investigate the estimated param-
eters change with respect to the original settings of thehinac Considering the
estimated parametesasthiese appear to change approximately in inverse proportion
with respect to the original dynamic range settiag&/oreover, the estimated pa-
rametersh vary roughly in direct proportion according to the origitialear gain
settingsh. These results support the ability of the proposed methedtimate the
decompression parameters, evoking a similarity assooidtetween these values
and the settings defined with the ultrasound equipment.

Results aiming at assessing the adequacy and robustnéssprbposed decom-
pression method in the aforementioned real cases areattiiTable 1. Besides the
decompression parameters obtained for each image of taesegtit is also shown
the Kullback-Leibler distance [26] of each distributionthvrespect to the first dis-
tribution of each set. Observations taken from Table 1 stpfrom a quantitative
point of view, the robustness of the decompression methestimating precisely
the decompression parameters and the ERF images.

It is relevant to investigate whether the assumptions maitially about the ad-
equacy of the Rayleigh distribution to model the pixel isiéies in ERF images are
realistic or not. It is known that the assumption of fully d&ped speckle deter-
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(b) Carotid plaque

Fig. 9 Application of the decompression method to BUS image of the li@ea(d carotid plaque
(b). The plague contour is marked for ease of visualization.

mines Rayleigh statistics for the amplitude of the envelBpedata, although the
Gamma distributions seems to provide a better approxim§2io,28], mainly when
interpolation is involved, which is the case.

Hence, the purpose of the study presented in Fig. 10 is tcfligate whether
the Rayleigh and Gamma distributions are capable of loadlscribing the esti-
mated ERF images (Fig. 9). Given this, thkaximum Likelihood (ML) estimates

Table 1 Decompression paramete(d, E)) and Kullback-Leibler distances computed from ERF
data histograms, as result of the application of the RF imagevatunder two different conditions
(constant and variable operating parameters).

Parameters ID  Thyroid cross-section Thyroid longitudinal Live

a b de(h,hip) & b de(h,hp) & b di(hi,hip)

RF; 3571 7.05 — 24.65 507 — 46.09 391 —
RF, 3564 114 —-161 2404 210 002 4622 498 -0.01
RF; 30.14 113 026 2830 185 001 4212 292 262

Constant pr'3960 108 —0.84 3330022 -028 4704 504 042
RFs 4364 495 172
RFs 4710 102 025
RF, 57.17 318 _ 3400 1022  —
RF, 4420 738 240 2341 1009 011

Variaple RFs 40021032 210 3635 002 328
RF, 1260 028 402 1788 755 081
RFs 3407 1415 501 22231290 102

RFs 30.26 2089 127
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Goodness of Fit Test with...

Gamma vs. Rayleigh,
Rayleigh, avg. ccoeff: 0.695 Gamma, avg. ccoeff: 0.913 avg. ccoeff: 0.835
T

(a) Liver

Gamma vs. Rayleigh,
Gamma, avg. ccoeff: 0.761 avg. ccoeff: 0.765

0.8
0.6
0.4
0.2

(b) Carotid plaque

Fig. 10 Color-scaled maps of the GoF test when the data is locally compeite ML Rayleigh
distribution (left), Gamma distribution (middle). GoF map asseclatith the local comparison
between ML Rayleigh and Gamma local distributions (right).

of the Rayleigh and Gamma distribution were computed lgdalt each image.
This computation is done in 8 8 sliding blocks with 2x 2 overlapping borders,
throughout the images. For each block the probability dgrfishctions (PDFs) are
computed according to the ML-based Rayleigh and Gamma &stinMoreover, a
correlation coefficient measure is computed to compare dattibution with the

data histogram, given by:

- oxoy’

wheredyy is the covariance matrix of the mentioned PDFs apdnd oy are their

standard deviations. When the correlation coefficipg, is 1 it means the distri-
bution under investigation (either Rayleigh or Gamma) gty models the local
data. Fig. 10 consists of color-scaled GoF maps, includiegdcal comparison of
ERF data vs. ML estimated Rayleigh distribution (Fig. 1D(&RF data vs. ML

estimated Gamma distribution (Fig. 10(b)) and finally, Réyth vs. Gamma distri-
bution (Fig. 10(c)).

In both cases, the Gamma distribution is able to better dmstne data when
compared to the Rayleigh distribution. An interesting obagon is that the Rayleigh
distribution provides a good description of the data in ayv@&gnificant part of
the images, essentially where strong scattering phenodwnat occur. Moreover,
when the local comparison between the Gamma and Rayleigfibdifons is car-
ried out, it is observed that in most regions of the studiedges, the Rayleigh
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distribution closely approaches the Gamma distributidre @nly exceptions occur
in regions of substantial echogenicity, where the Gammiaildigion is more suit-

able to describe the data. These results validate the atidptésion of not include
in the proposed decompression method the interpolatioratipe. This operation
is the source of the Gamma distribution, but as it was confirmehis last compar-
ison study, the simpler Rayleigh distribution is able toalib® the data in almost
all regions of the images but at the transitions.

6 Conclusions

Standard ultrasound equipment performs nonlinear comioref the envelope
data thus changing some of its attractive statistical ptase

This chapter proposes a statistical model for log-compi&JS data which
allows to parameterize the most significant operatingregstof ultrasound equip-
ments and revert the nonlinear compression, providing tamate of ERF data. The
estimated envelope intensity can be used by a variety ofidigus that rely on the
statistics of the ultrasound signal. These include segatientand speckle tracking
algorithms, speckle reduction methods (proposed in thect@pter), tissue classi-
fication methods, etc.

The method here presented relies on statistics of the casgulesignal, which
follows a double-exponential distribution and makes usereflistic mapping func-
tion, designated as Log-Compression law, first propose@@h \vhich is able to
provide an estimate of the ERF image given that parametéatedeto dynamic
range and linear gain are known. The decompression methkelswnae of this prior
knowledge to accurately estimate such parameters andeet®/ERF image.

Experiments performed in synthetic and real data show tberacy of the esti-
mates obtained for the decompression parameters. Motehigemethod is robust
because it is able to provide similar outcomes for imagesiiaed) with different
operating settings. On the other hand, similar decommegsrameters were ob-
tained for different images acquired with fixed operatintisgs.

The Rayleigh distribution has shown to correctly descrite ERF estimated
data which has important consequences in the assumptiahs fmiadesigning the
decompression method presented in this chapter.

Finally, a study recently presented in [29] compared the mession parame-
ter estimation of the well-established method proposed 8] [with the approach
described in this chapter, observing that the later pravietter results in terms
of parameter estimation accuracy. As pointed out in [29§ ttould be explained
as the decompression method proposed in this chapter isl loaséhe statistics
for the compressed signal, while the approach presented8h (ises statistics for
the uncompressed signal, and attempts to match theohgteddulated normalized
moments with those determined directly from the image. THoegss of fitting the
moments calculated in the image with theoretical momentaegxponential dis-
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tribution (cf. [8]) is extremely sensitive to the order oétmoment, and this could
create uncertainty on the decompression parameter toineagst.
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