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Abstract. In this work liver contour is semi-automatically segmented
and quantified in order to help the identification and diagnosis of diffuse
liver disease. The features extracted from the liver contour are jointly
used with clinical and laboratorial data in the staging process. The clas-
sification results of a support vector machine, a Bayesian and a k-nearest

neighbor classifier are compared. A population of 88 patients at five dif-
ferent stages of diffuse liver disease and a leave-one-out cross-validation
strategy are used in the classification process. The best results are ob-
tained using the k-nearest neighbor classifier, with an overall accuracy of
80.68%. The good performance of the proposed method shows a reliable
indicator that can improve the information in the staging of diffuse liver
disease.
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1 Introduction

Staging of liver disease is needed because it is progressive, most of the time
asymptomatic and potentially fatal. An accurate characterization of this disease
is difficult but crucial to prevent its evolution and avoid irreversible pathologies
such as the hepatocellular carcinoma.

Fatty liver infiltration (steatosis) is the earliest stage of the liver disease.
It is asymptomatic and the progress of the hepatic injury to other conditions,
more severe, is common. e.g., fibrosis. Pathologically, fibrosis appears during the
course of organ damage and its progression rate strongly depends on the cause
of liver disease, such as chronic hepatitis [1].

Cirrhosis is the end-stage of every chronic liver disease. It is characterized by
an asymptomatic stage, known as compensated cirrhosis, followed by a rapidly
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progressive phase where liver dysfunction occurs, called decompensated cirrho-

sis. The most severe evolution condition of the cirrhosis is the hepatocelllular

carcinoma (HCC), also called, primary liver cancer [1].

Liver biopsy is the most accurate method for diagnosis. Due to its highly in-
vasive nature, medical image modalities have been valuable alternative methods
to detect and quantify this disease [1]. The non-ionizing and non-invasive nature
of ultrasound (US) imaging and its widespread presence at almost all medical
facilities makes it the preferred method for assessing diffuse liver diseases such
as cirrhosis.

Using US, cirrhosis is suggested by liver surface nodularity, portal vein mean
flow velocity and the enlargement of the caudate lobe [1]. The study in [2] re-
fer that nodular liver surface is a reliable sign in the detection of liver cirrhosis
and can have a diagnostic accuracy of 70% or more. The authors in [3] showed
that the observed liver contour irregularities directly correlated with the gross
appearance of the cirrhotic liver as seen at laparoscopy. Liver surface nodularity
in US sign can be appreciated when ascites is present or when a high-frequency
transducer (7.5 - 12 MHz) is used [3]. In [2] the results, using a low-frequency
transducer (3.5 -5 MHz), also showed that liver surface is a significantly param-
eter associated with the histopathological diagnosis of liver cirrhosis.

Nevertheless, as reported by [4], the validity of the different methods to detect
changes in the liver surface are very subjective, since the segmentation and
contour of such surface is operator-dependent. These fact leads to a subjective
and non reproducible method to study the liver surface and consequently to a
poor aid of an accurate liver diagnosis.

In this sense, it is proposed a semi-automatic method for the liver surface
detection, based on an image processing procedure that decomposes the US im-
ages of the liver parenchyma into two fields: the speckle image containing textural
information and the de-speckled image containing intensity and anatomical in-
formation of the liver. Features extracted from the liver contour detected in the
de-speckled field, as well as clinical and laboratorial features, are used to train
supervised classifiers to detect the disease.

Diffuse liver disease stages are considered and several classifiers are used
to assess the discriminative power of the selected features: (i) the support vec-

tor machine (SVM), (ii) the Bayesian classifier and (iii) the k-nearest neighbor

(kNN).

Several figures of merit (FOM) were computed to assess and compare the
performance of each classifier.

This paper is organized as follows. Section 2 formulates the problem and
describes the pre-processing procedures, the extraction and selection of features
and classifiers. Section 3 presents the experimental tests, by reporting and com-
paring the classification results obtained with the features extracted from the
liver contour, with the clinical and laboratorial features and with the total set
of features. Section 4 concludes the paper.
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2 Problem Formulation
In the practice of US the perceived liver capsule and the adjacent overlying
membranous structures (peritoneum, transverse fascia, pre-peritoneal fat) are
not always clear and irregularities due to subfascial or sub-peritoneal pathology
may be falsely described as abnormalities of the liver surface [3].

The decomposition procedure described in [5] to separate the textural and
intensity information within US images is here adopted. In this approach an es-
timation of the radio frequency (RF) raw data is firstly done based on physical
considerations about the data generation process, namely, by taking into ac-
count the dynamic range compression performed by the US equipment over the
signal generated by the US probe. The observation model, in this approach, also
considers the brightness and contrast parameters tuned by the medical doctor
during the exam which changes from patient to patient.

The estimated RF image is decomposed in de-speckled and speckle fields
according to the following model [6]

y(i, j) = x(i, j)η(i, j), (1)

where η(i, j) are considered independent and identically distributed (i.i.d.)
random variables with Rayleigh distribution. This image describes the noise
and textural information and is called speckle field. In this model, the noise
is multiplicative in the sense that its variance, observed in the original image,
depends on the underlying signal, x(i, j). Fig.1 illustrates an example of the
decomposition methodology.

(a) (b) (c) (d)

Fig. 1. Decomposition procedure of US liver parenchyma. a) Observed B-mode US
image. Estimated b) envelope RF image, c) de-despeckled and d) speckle image fields.

In the estimation of both images, RF envelope and de-speckled information,
the use of total variation techniques allows the preservation of major transitions,
as seen in the case of liver capsule and overlying structures.

Using the de-despeckled image, the liver surface contour is obtain using a
snake technique, proposed by [7], which computes one iteration of the energy-
minimization of active contour models. To initialize the snake, the operator needs
to select four points of the liver surface.

Based on the detected liver contour, the following features were extracted:

1. root mean square of the different angles produced by the points that charac-
terize the contour, rmsα, where the first point was assumed as the reference
point,
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2. root mean square of the variation of the points of the contour in the y axis,
rmsy ,

3. the mean and variance of the referred angles, mα and vα,
4. the variance of the y axis coordinates at each point, vy, and
5. the correlation coefficient of the y axis coordinates, R.

Besides image based features, several other clinical data and biochemical tests
are useful for evaluating and managing patients with hepatic dysfunction. The
clinical study of the disease, conducted in [1], reported the following meaningful
clinical information to be used:

1. Cause of disease (diagnose), which include none (0), alcohol (1), hepatitis B
(2), hepatitis C (3), alcoholic hepatitis B (4) and C (5) and others (6), and
the following binary indicators:

2. Tumor (T ),
3. Ascites (A) which is the presence of free fluid within the peritoneal cavity,

encephalopathy (Ence),
4. Gastro-Intestinal bleeding (GIB), infection (Inf) and alcoholic habits (Alc).

The laboratorial features related with the liver function [1] are: i) total biliru-
bin (Bil), ii) prothrombin time (INR), iii) albumin (Al), iv) creatinine (Crea),
v) aspartate transaminase (AST ), vi) alanine transaminase (ALT ), vii) gamma
glutamyl transpeptidase (gGT ), viii) glycemia (Gly), ix) sodium (Na) and x)
lactate dehydrogenase (LDH).

All these features, organized in a 23 length vector, are used in a forward
selection method with the criterion of 1 - Nearest Neighbor leave-one-out cross-

validation (LOOCV) performance in order to select the most significant features
and increase the discriminative power of the classifier. Three different classifiers
were implement and tested: i) the SVM, ii) Bayesian classifier and iii) kNN. A
short description of each one is provided.

The aim of SVM is to find a decision plane that has a maximum distance
(margin) from the nearest training pattern [8]. Given the training data {(xi, ωi)|ωi =
1 or −1, i = 1, ..., N} for a two-class classification (where xi is the input feature;
ωi is the class label and N is the number of training sample), the SVM maps
the features to a higher-dimensional space. Then, SVM finds a hyperplane to
separate the two classes with the decision boundary set by the support vectors
[8]. In this paper, a multiclass SVM classifier was adopted, using a Gaussian
radial-basis kernel function and a polynomial kernel.

In the Bayes classifier the feature set, X , is assumed multivariate normal
distributed [9] with means, µτ and covariances matrices, Στ , according to each
class. The linear discriminant functions are

gτ (X) = −
1

2
(X − µτ )T Σ−1

τ (X − µτ ) −
1

2
log |Στ | (2)

where τ ∈ {N, CHC, CC, DC, HCC} and the a priori probability, P (ωτ ), of the
classes were calculated based on their frequencies.

The non-parametric kNN classifier is also tested in this paper. It classifies
a test sample to a class according to the majority of the training neighbors in
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the feature space by using the minimum Euclidean distance criterion [10]. All
classifiers were implemented using the algorithm proposed by [11].

3 Experimental Results

Eighty eight data samples were obtained from 88 patients. The patients were
selected from the Department of Gastroenterology and Hepatology of the Santa
Maria Hospital, in Lisbon, with known diagnosis. The samples were labeled in
five classes; Normal, ωN , Chronic Hepatitis without cirrhosis, ωCHC , Compen-

sated Cirrhosis, ωCC , Decompensated Cirrhosis, ωDC , and Hepatocelular Carci-

noma, ωHCC . Among them, 36 belong to ωN , 7 to ωCHC , 8 to ωCC , 32 to ωDC

and 5 patients to ωHCC .
From figure 2 we can appreciate the results obtained from the de-speckled and

contour steps. To standardize the proceedings, and as reported in the literature,
we focused the study in the anterior liver surface, using a low-frequency trans-
ducer. The results showed that in the de-speckled US image the liver boundary
was clearly defined in the cases reported (for example, normal liver (first row),
cirrhotic liver without ascites (second row) and cirrhotic liver with ascites (third
row)). The detected contour was plotted in the original US image, so that the
physician could evaluate the liver contour.

Original US image De−speckled US image Detected Contour

Fig. 2. Method used to detect the anterior liver surface contour. First row corresponds
to a normal liver; second row to a compensated cirrhotic liver and the last row to a
decompensated cirrhotic liver.

According to the criterions established for feature selection the results, re-
ported in Table 1, showed 5 optimal features using only the contour features
(optimal contour set), 8 optimal features using the clinical and laboratorial fea-
tures (optimal clinical set) and 10 optimal features using the set of features
(optimal feature set). In this last result, it is important to emphasize that the
feature set selected is composed of five clinical features (A, Ence, T , diagnose,
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GIB), four laboratory features (AST , INR, Na, Crea) and one US contour
feature (R). Thus, the combination of features from different sources (US image,
clinical, etc) integrates, in a quantitative and objective way, the information used
in medical practice. This result is in accordance with [3, 12].

Feature Selection results for
Contour features mα, R, rmsα, vy , vα.

Clinical/Lab. features AST, A, Ence, T, diagnose, INR, LDH, GIB

All features AST, A, Ence, T, diagnose, INR, R, Na, GIB, Crea.

Table 1. Feature selection results from the evaluation of the feature set, using only
the contour features, only the clinical and laboratorial features and all features.

The classification technique significantly affects the final diagnosis [10]. Using
the LOOCV method, the same data set was tested with different types of clas-
sifiers, namely a kNN, a Bayes classifier and a SVM classifier with polynomial
(SVMP ) and radial-basis (SVMR) kernels.

To determine the optimal parameters for the classifiers the following proce-
dures were done. The kNN algorithm was implemented for values of k=1,2,3,5,7
and 9. The SVMP was trained with a degree range of [1 : 5] and the SVMR

was implemented with a radius close to 1 ([0.1,0.2,...,2]). The best performance
of the kNN classifier was achieved with k = 1 for the optimal contour, clinical
and feature set, which resulted in an error rate of 40.90%, 21.59% and 19.32%,
respectively.

Considering the SVM classifiers, using the proposed sets, the best result of
the SVMP corresponds to a degree of 1, attaining an error rate of 45.45% for
the optimal contour set, 25.0% for the optimal clinical set and 23.86% for the
feature set. With the SVMR the best performance for the optimal contour set
was obtained with a radius of 1 showing an error of 48.86%, an error rate of
21.59% for the optimal clinical set with a radius of 1.9, and a radius of 1.8, for
the case of the optimal feature set, with an error of 27.27%.

In the case of the Bayesian classifier, for each class, the mean and covariance
were estimated using the LOOCV method.

Optimal Contour Set

ωN ωCHC ωCC ωDC ωHCC Overall

Bayes 27.78 28.57 0.00 37.50 80.00 31.82
kNN (k=1) 88.89 28.57 0.00 56.25 0.00 59.10

SVMP 83.33 0.00 0.00 56.25 0.00 54.55
SVMR 69.44 0.00 0.00 62.50 0.00 51.14

Optimal Clinical Set

Bayes 0.00 28.57 0.00 0.00 100.00 7.95
kNN (k=1) 94.44 14.29 37.50 87.50 60.00 78.41

SVMP 91.67 0.00 0.00 90.63 40.00 72.73
SVMR 94.44 0.00 37.50 93.75 40.00 78.41

Table 2. Overall and individual class accuracies (%) obtained with different classifiers,
using the optimal contour and clinical set.
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Table 2 resumes the classification results obtained using the optimal contour
and clinical set. The best overall accuracy, using the optimal contour set, of
59.10% was achieved with the kNN classifier, followed by the SVMP , 54.55%,
the SVMR, 51.14% and the Bayesian classifier, with the worst result of the
tested classifiers, achieving an overall accuracy of 31.82%. The diagnostic yield
was improved from 59.10% to 78.41% when using the optimal clinical set, for
kNN and SVMR classifier. The accuracy results were greatly improved with this
feature set for the individual class classification. By means of SVMR it was
obtained an accuracy of 94.44%, 93.75% and 37.50% for ωN , ωDC and ωCC ,
respectively. For ωHCC and ωCHC , the best results were 100.0% and 28.27%,
respectively, with the Bayes classifier.

ωN ωCHC ωCC ωDC ωHCC Overall

Bayes 0.00 28.57 12.50 0.0 100.00 9.10
kNN (k=1) 91.67 71.43 25.00 87.50 60.00 80.68

SVMP 91.67 28.57 0.00 87.50 80.00 76.14
SVMR 88.88 0.00 0.00 93.75 40.00 72.73

Table 3. Overall and individual class accuracies (%) obtained with different classifiers,
using the optimal feature set.

Combining features further improves the classifiers performance, as summa-
rized in Table 3. With the optimal feature set, the best overall result was obtained
with the kNN classifier. This result outperformed the best result obtained with
the previous feature sets, which reinforce the idea of feature combination from
different sources.

In terms of individual class accuracy, the best result for ωN was obtained us-
ing the kNN and SVMP classifiers, both with an accuracy of 91.67%. The best
outcome in differentiating chronic hepatitis without cirrhosis samples (ωCHC)
and compensated cirrhosis (ωCC), from the other classes was achieved by means
of the kNN classifier with an accuracy of 71.43% and 25.00%, respectively. Re-
garding the classification of ωDC , the best individual accuracy result was reached
with the SVMR classifier, yielding 93.75%. The detection of ωHCC was 100.0%
using the Bayes classifier.

4 Conclusions

In this work a semi-automatic detection of liver surface is proposed to help in
the diagnosis of diffuse liver disease. The results shown in this paper suggest the
usefulness of combining US liver contour features with laboratorial and clinical
parameters for accurately identifying different stages of diffuse liver disease.

The pre-classification steps showed good results, since the de-speckled image
field aided the detection of liver surface contour.

The optimal feature set outperformed the optimal contour and clinical set. In
the classification procedure, using the optimal feature set, the kNN outperformed
the rest of the classifiers in terms of overall accuracy. The low accuracy results in
ωCC , maybe due to the small sample size of the class. Another interesting result
was the classification accuracy improvement in ωN using the optimal clinical set.
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This finding demonstrated the problem of the semi-automatic detection of the
contour, since it has an operator-dependent component, the initialization step.

Promising results were obtained, which showed the discriminant power of the
features as well as of the classifier, specially in terms of individual class accuracy.
These results promote the development of more robust classification techniques,
particularly classification combiners.

In the future the authors intend to (i) expand the data set in order to obtain
an equitable number of samples in each class, (ii) include other features to in-
crease diagnostic accuracy, (iii) perform a more exhaustive analysis in terms of
classifiers, such as using a combination of classifiers and (iv) use state-of-the-art
automatic snakes, in order to create a fully automatic detection method.
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