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Abstract—Fluorescence confocal microscopy (FCM) is now
one of the most important tools in biomedicine research. In fact,
it makes it possible to accurately study the dynamic processes
occurring inside the cell and its nucleus by following the motion
of fluorescent molecules over time. Due to the small amount of
acquired radiation and the huge optical and electronics amplifi-
cation, the FCM images are usually corrupted by a severe type of
Poisson noise. This noise may be even more damaging when very
low intensity incident radiation is used to avoid phototoxicity. In
this paper, a Bayesian algorithm is proposed to remove the Poisson
intensity dependent noise corrupting the FCM image sequences.
The observations are organized in a 3-D tensor where each plane
is one of the images acquired along the time of a cell nucleus
using the fluorescence loss in photobleaching (FLIP) technique.
The method removes simultaneously the noise by considering
different spatial and temporal correlations. This is accomplished
by using an anisotropic 3-D filter that may be separately tuned in
space and in time dimensions. Tests using synthetic and real data
are described and presented to illustrate the application of the
algorithm. A comparison with several state-of-the-art algorithms
is also presented.

Index Terms—Bayesian, convex optimization, denoising, laser
scanning confocal fluorescence microscopy (LSCFM), Poisson.

I. INTRODUCTION

F LUORESCENCE confocal microscopy is nowadays one
of the most important tools in biomedicine research. Be-

cause living tissues are very sensitive to wavelengths in the vis-
ible range causing damage in the microscopic living specimens,
for a long time biomedical scientists conducted their research
based upon dehydrated and chemically fixed specimens to guess
on how living cells could function. In the second half of last
century, microscopy methodologies experienced an extraordi-
nary evolution due to the combination of the use of the physical
phenomenon of fluorescence with the invention of the confocal
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microscope (CM). These new tools opened a new perspective in
the research of the dynamics of living cells.

The phenomenon of fluorescence, first reported in 1852 by
Stokes, consists of the emission of light by excited fluorophore
molecules within nanoseconds after the absorption of photons
with a shorter wavelength, in order to reach the ground state.
Nevertheless, the emission of fluorescence is not the only avail-
able mechanism fluorophore excited molecules make use for en-
ergy disposal. Fluorophores possess the ability to maintain for
a relatively long time triplet excited states that favor the oc-
currence of photochemical reactions that irreversibly destroy
their fluorescence. This phenomenon, called photobleaching,
is in general an undesirable effect. Since all the fluorophores
will eventually photobleach upon extended excitation, the image
acquisition becomes more and more problematic as exposure
time increases. However, some techniques such as fluorescence
recovery after photobleaching (FRAP) and fluorescence loss
in photobleaching (FLIP), take advantage of this not always
merely damaging effect, to study some dynamic processes oc-
curring inside the cells [1].

The first of the fluorescent proteins to be discovered was the
green fluorescent protein (GFP) from Jellyfish Aequorea Vic-
toria. The GFP can be incorporated as protein marker in the cell
by a process of fusion of its coding sequence with the gene en-
coding the protein of interest, followed by stable or transient
transfection into the cell with the purpose of inducing the pro-
duction of a fusion protein to be used as an in situ fluorescent tag
[2]. The tagged proteins can then be visualized in living cells in
an almost noninvasive manner, without requiring prior fixation.
The important role fluorescence techniques play in microscopy
cause significant advances to occur since the last decade in this
field with the development of synthetic probes and proteins.

The invention of the CM 50 years ago by M. Minsky was
the other main ingredient that triggered the beginning of a new
era in the research on the localization and dynamics of cellular
proteins.

Confocal microscopy is an imaging technique that became
a standard tool in biomedical sciences. The CM is designed to
improve on the performance of the conventional optical micro-
scope. A laser beam is reflected by a dichroic mirror and then
highly focused by the objective lens to illuminate the point at
focus inside the specimen, leaving the out-of-focus points much
less illuminated. Before being collected, the emitted light typi-
cally with a longer wavelength than the incident radiation, goes
through several optical filters and is refocused by the objective
lens in an aperture, also called the pinhole, placed in front of
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the detector. This aperture, the optical filters and a beam-splitter,
prevent the light emanating from the out-of-focus points, as well
as the reflected radiation, from reaching the detector. The ability
to select between in-focus and out-of-focus emitted light en-
ables the acquisition of images of thin slices within the spec-
imen volume. The laser scanning fluorescence confocal micro-
scope (LSFCM) [3] is a more recent version of the CM that may
include a wide spectrum of laser light sources coupled to highly
accurate optoelectronic controlled filters. This microscope is
also equipped with a scanner device to allow the acquisition of
2-D images, by scanning the focal point in the lateral direction.

Since the advent of the confocal microscopy methodologies,
studies have been revealing a highly dynamic cellular environ-
ment [4]. Although the movement of the cellular structures can
be tracked and quantified over time by means of the GFP-tagged
proteins, the study of the dynamics of the individual component
molecules inside the cell requires more sophisticated fluores-
cent imaging methods than simple time-lapse microscopy [5].
Techniques, such as FLIP and FRAP, make use of high inten-
sity incident radiation as a perturbing agent of the distribution
of fluorescent molecules in a sample. The occurrence of the pho-
tobleaching effect allows the analysis of the redistribution of the
tagged particles of interest. In a FLIP experiment, during a cer-
tain time interval, a small defined region in the cell nucleus ex-
pressing fluorescently tagged proteins is illuminated with repet-
itive bleach pulses of a high intensity focused laser beam, to
force the occurrence of the photobleaching effect. Remote re-
gions of the nucleus are then monitored for the decrease in the
fluorescence level. Any fraction of the cell nucleus connected to
the area being bleached will gradually fade owing to the move-
ment of the bleached molecules into the region. Thus, the rate of
fluorescence loss and recovery is related to the mobility of the
molecules inside the cell nucleus and can be the result of diffu-
sion processes, chemical reactions and association or transport
processes [3]. The resulting information from the experiment
can then be used to determine the kinetic properties, including
diffusion coefficients, mobile fraction and transport rate of the
fluorescently labelled molecules.

Due to the small amount of detected radiation and the huge
optical and electronics amplification, the LSFCM images
may be considered as photon-limited, since the relatively
small number of detected photons is the main factor limiting
the signal-to-noise ratio (SNR). The data collected by these
imaging systems exhibit a severe type of signal-dependent
noise, usually assumed to obey a Poisson distribution, that
must be attenuated before use by the biomedical researcher.
In fact, an important task in image processing is denoising
since the data measured by imaging instruments always contain
noise and blur. Although it is unattainable to build devices that
produce data with arbitrary fidelity, it is possible to mathemat-
ically reconstruct the underlying images from the corrupted
data obtained from real-world instruments, so that information
present but hidden in the data can be revealed with less blur
and noise [6], [7].

Many image denoising algorithms are developed under the
assumption of additive white Gaussian noise (AWGN), never-
theless the noise corrupting LSFCM images is assumed to be of
Poisson type, whose main characteristic is its dependency upon

the image intensity. The denoising of such images is in general
an ill-conditioned problem [8], requiring some sort of regu-
larization that in that Bayesian framework is expressed in the
form of a priori distribution function. Several state-of-the-art
approaches involve time consuming nonquadratic and nonneg-
atively constrained optimization algorithms, not suitable for
large-scale real time applications.

Taking advantage of all the knowledge on AWGN denoising,
some authors opt for modifying the Poisson statistics of the
noisy observations by using a variance stabilizing transform
(VST), such as the Anscombe1 (Anscombe 1948) or the Fisz
transforms [9], [10]. Most authors apply the Anscombe trans-
form followed by a denoising/deconvolution methodology,
giving rise to an AWGN linear algorithm whose solution is
transformed back by using the inverse Anscombe transform.
The drawback of this scheme is that the AWGN assumption
is accurate when photon counts are larger than thirty [11] but
inappropriate when counts drop to less than ten [12]. In a very
recent work [13], the authors propose a deconvolution algo-
rithm for blurred data contaminated by Poisson noise, where
the Anscombe transform is included explicitly in the model,
leading to a nonlinear formulation with additive Gaussian noise
in the Bayesian maximum a posteriori (MAP) framework, with
a nonsmooth regularizing term forcing sparsity over the repre-
sentation coefficients of the image in a dictionary that includes
wavelets, curvelets and their translation-invariant versions. A
conjunction of a VST with wavelet, curvelet, ridgelet and other
transforms is also used for Poisson noise removal in [14] and
[15]. The resulting VST multiscale (MS) denoising approach
achieves a good performance even in very low-count image
situations.

The solution to these constrained image recovery problems,
nested algorithms involving proximity operators [13], [16] seem
to be very effective.

In the seventies, W.H. Richardson and L. Lucy, in separate
works, developed a methodology specifically for data following
a Poisson distribution. The Richardson–Lucy (R–L) algorithm
can be viewed as an expectation-maximization (EM) algorithm
including a Poisson statistical noise model. This algorithm
presents several weaknesses, among them the noise amplifi-
cation after a few iterations. However, this drawback can be
avoided by introducing a regularization term. The (R-L) algo-
rithm with total variation (TV) regularization was proposed in
[17] for confocal microscopy imaging deconvolution. In [18],
a prefiltering procedure to reduce noise before applying the
R-L algorithm is presented. The use of the TV regularization
in the presence of Poisson noise applied to astronomical image
deconvolution is also examined in [19].

In this paper, we are dealing with the denoising problem of
LSFCM images of human cell nucleus with the goal of esti-
mating its morphology. The denoising problem is formulated in
the Bayesian framework and conceived as an optimization task
with the MAP criterion. Due to the resolution characteristics of
the LSFCM, although blur is always present in the acquired im-

1If � is a Poisson random variable with intensity� , the Anscombe transform
of � , denoted by � , is defined as � � ��� � � � � � �����. It can be
shown that � converges in distribution to a normal random variable with mean
�
�
� and unit variance as � increases.
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ages, it is assumed here that blur can be neglected when com-
pared to the exhibited noise. The morphology to be estimated
is expected to consist of sets of homogeneous regions separated
by well defined boundaries. In fact, if is the variable to be es-
timated using this framework, the knowledge of the main char-
acteristics of the cell nucleus morphology is crucial to select the
a priori distribution function , since it formalizes the ex-
pected joint behavior of the elements of . Due to the specific
nature of the images under analysis, the local Markovianity of

seems to be a reasonable assumption. The local Morkovianity
can be expressed as , where is the
value of at the th node2 and is the neighborhood of
node . According to the Hammersley–Clifford theorem [20] if
the field has the local Markovianity property, then can
be written as a Gibbs distribution

(1)

where is the partition function or normalizing constant,
are the clique potentials [21] and is an energy that
will be denoted by .

Once is the type of a priori distribution function selected,
the second step consists on the choice of the most convenient
clique potential functions to the problem. The literature on that
subject is vast. Quadratic potentials have been by far the most
commonly used. However, denoising with an a priori distribu-
tion based upon these potentials produces an over-smoothing of
the discontinuities in the images. To overcome this difficulty, in
the decades of 1980 and 1990 authors like Blake and Zisserman
[22], Hebert and Leahy [23], Green [24], Geman, McClure and
Geman [25], Geman and Reynolds [26], and Rudin, Osher,
and Fatemi [27], proposed several convex and nonconvex
discontinuity-preserving potentials.

In this paper, two denoising algorithms are proposed for
LSFCM images where the FLIP technique is used. The goal
is to provide biologists with better quality images to study the
process of RNA molecule synthesis inside the cell nucleus,
namely, their flow along time.

The denoising algorithms are formulated in the Bayesian
framework where a Poisson distribution models the observation
noise and a Gibbs distribution, with log-quadratic potential
functions [28] in the first model and log-total variation( -log)
and log-quadratic potential functions in the second model, reg-
ularizes the solution, thus, defining the field to be estimated as
a Markov random field (MRF). These potential functions have
shown to be more appropriated to deal with this type of opti-
mization problems in [28]. The regularization is performed
simultaneously in the image space and in time (time courses)
but using different a priori distributions. The denoising iterative
algorithm involves an anisotropic 3-D filtering process to cope
with the different smoothing effects performed in the space
and time dimensions. Tests using synthetic and real data are
presented to illustrate the application of the algorithm.

The paper is organized as follows. In Section II, the problem
is formulated from a mathematical point of view, Section III

2The lattice where the sequence of images lies is regarded as a graph where
each variable is assigned to a node.

Fig. 1. LSFCM. (a) Low SNR LSFCM image corrupted with pixel dependent
noise. (b) Temporal image sequence. (c) FLIP technique.

gives a brief review of the Graph-Cuts labelling methodology
and Section IV presents the experimental results using synthetic
and real data. A comparison with five state-of-the-art algorithms
is also presented. Section V concludes the paper.

II. PROBLEM FORMULATION

Each sequence of LSFCM images under analysis, , corre-
sponds to observations of a cell nucleus acquired along the
imaging time [Fig. 1(b)] by using the FLIP technique [Fig. 1(c)].
Data can be represented as a 3-D tensor, , with

. Each data point, , is
corrupted with Poisson noise which means that each image at
the discrete time , and each time course
are corrupted with Poisson noise. The ultimate goal of the pro-
posed algorithms is to estimate the underlying cell nucleus mor-
phology, , from these noisy data, , exhibiting a very low
SNR. Fig. 1(a) shows a low SNR LSFCM image from a real
sequence.

A Bayesian approach using the MAP criterion is adopted to
estimate . This problem may be formulated as the following
energy optimization task:

(2)

where the energy function
is a sum of two terms, called the data fidelity term
and called the energy associated to the a priori distribu-
tion. The first term pushes the solution toward the observations
according to the type of noise corrupting the images and the
second term penalizes the solution according to some previous
knowledge about [29], [30]. This prior term regularizes the
solution and helps to remove the noise.
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If independence of the observations is assumed, the data fi-
delity term, which is the anti-logarithm of the likelihood func-
tion, is defined as follows:

(3)

where is the Poisson distribution, leading
to

(4)

where is a constant term.
In the proposed algorithms, anisotropic a priori terms are

used, in the sense that correlations in the spatial and temporal
dimensions are different.

Assuming as MRF, is given by (1). One of the
most popular potential functions is the quadratic, mainly for
the sake of mathematic simplicity. However, these functions
over-smooth the solution attenuating relevant details. To over-
come this difficulty, edge preserving a priori potentials are
more convenient and have been described in the literature, as
referred in Section I. The TV based Gibbs energy has been used
successfully in several problems [8], [27], [31]–[37].

Recently, a new type of potential functions was proposed in
[28]. This new class of functions, instead of using differences
between neighbors, uses logarithms of ratios which means dif-
ferences of logarithms, allowing the interpretation of differences
between neighbors in terms of the order of magnitude. This new
approach was chosen because it simplifies the calculus and also
because it is suitable to be used when the unknowns to be esti-
mated are all positive [28].

In this paper, emphasis to the choice of the a priori distribu-
tion functions in the space and in the time dimensions, is given.
For comparison purposes, four potential functions [(5) to (8)]
are plotted in Fig. 2. These plots help to understand which po-
tentials are more suitable to each dimension. Functions (5) and
(6) are based upon the well known and norms that are
extensively used in the literature. The other two, (7) and (8), are
used in this paper. is to be interpreted as a difference of
intensities between neighboring pixels. was set constant and
positive, equal to one in all the equations for simplicity

(5)

(6)

(7)

(8)

As can be noticed in Fig. 2, the function, associated with
the quadratic potential, imposes a large penalization to large
values of , which corresponds to a severe smoothing of sig-
nificant transitions. That is the reason why the quadratic po-
tential function is appropriated for use in the time dimension,

Fig. 2. � , � , � ��� and �� ��� a priori potentials.

Fig. 3. Neighboring system.

where no abrupt transitions are expected but, when used in the
space dimension, it leads to a loss of morphological details, as
will be analyzed later. The is less severe when considering
large values of and presents almost the same behavior as
for small values of . The imposes even less smoothing
to high values of , but for small values of it is much more
severe than the previous ones, which leads to an efficient high
frequency noise removal in homogeneous regions. For large
values of the functions assume smaller values than the

, which means less penalization of the sharp transitions.
This seems an interesting feature to take into account when con-
sidering the regularization on the space dimensions.

In this paper, a novel potential function to model the spatial
correlation, called , is presented

(9)

where are nodes belonging to a 2-D second-order clique
as displayed in Fig. 3.

Two denoising algorithms are proposed for LSFCM images
where the FLIP technique is used. The algorithms that will be
denoted by ( in the equations) and ( in
the equations), are formulated in the Bayesian framework. A
Poisson distribution models the observation noise and Gibbs
distributions ((1)) with log-quadratic potential functions in
space and in time for the model, and -log poten-
tial functions in space and log-quadratic potential functions in
time for the model. Edge preserving priors in the
time domain are not needed because abrupt changes in the
time courses are not supposed to occur. In fact, the expected
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evolution of each time course is like an exponential decay that
results from the photobleaching and diffusion effects.

The energy functions related to the a priori distributions are
given by

(10)

for the model and

(11)

for the model, where and are strictly positive
prior parameters to tune the level of smoothing across the im-
ages and across the time courses, respectively.

Therefore, the overall problem consists on the minimization
of the following functions:

(12)

for the model and

(13)

for the model.
Both minimization tasks (12), (13) lead to nonconvex prob-

lems [38] and their optimization using gradient descendent or
Newton’s [39] based methods is difficult. The nonconvexity of
these functions comes from the fact that they are sums of convex

functions with nonconvex ones, e.g., .
However, by performing an appropriate change of variable it

is possible to turn them into convex. Let us consider the fol-
lowing variable changing , which leads
to or . The function

is monotonic and, therefore, the minimizers of and
are related by .

The new objective functions for the models are

(14)

(15)

The minimization of (14) and (15) is performed by finding
their stationary points according to the condition

(16)

Here, the optimization of is performed by using
the iterated conditional modes (ICM) method [20], where the
multivariate energy function is optimized in an ele-
ment-wise basis. In this method, the optimization of
is iteratively performed with respect to each component at
a time, considering all other components as constants in each
iteration.

A. Model

For the model the stationary point condition leads
to

(17)

with and where

(18)

and and are the spatial and
temporal neighbors of , respectively.

The elements are organized in the tensor
which may be computed by

(19)
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where denotes the 3-D convolution and is the following
3-D mask:

(20)

The solution of (16) is obtained by solving the convex
equation

(21)

using straightforward the Newton method

(22)

where , ,
stands for the iteration number and is the notation for the
Hadamard element-wise division. Reversing the change of vari-
able, the final solution is

(23)

B. Model

The minimization of (15) is difficult from a numerical point
of view due the nonquadratic terms and the reweighted least
squares (RWLS) [29], [40] method used.

The convergence analysis of this method is long, out of the
scope of this paper and it is treated in detail in [41]. However, in
general terms, the convergence of this algorithm depends upon
the choice of the prior parameters and . The smaller the
parameters, the more unstable the iterative algorithm becomes
from a numerical point of view. Here the prior parameters are
chosen by the user to obtain the desired regularization effect and
lead to convergence.

Let us consider the terms of the energy function (15) in-
volving a given node

(24)

where are the spatial neighbors of and and
are neighbors of and , respectively; and are the

causal and anti-causal temporal neighbors of , respectively (see
Fig. 3); is a term that does not depend upon .

The minimizer of the convex energy function (24), , is also
the minimizer of the following energy function with quadratic
terms associated with the spatial interaction:

(25)

where

(26)

(27)

(28)

The weights , and needed to compute
(25) are not known because they depend upon the minimizer

, to be computed. Thus, an iterative strategy is used where in
each th iteration the previous estimation of , , is used
to compute the weights , and . The
minimization of (24) is iteratively performed as follows:

(29)

This minimization task with respect to is accomplished
by finding the stationary point of

(30)

which is equivalent to compute the zero of the following
function:

(31)

where

(32)

are the temporal neighbors of and
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In matrix notation the whole set of (31) can be written as
follows:

(33)

where the tensor may be computed by

(34)

The dimensional tensor is a spatiotemporal varying
3-D mask defined as follows:

(35)

where .
Notice that in this model the 3-D mask, varies

along the time and the space, contrary to what occurs in the
model where is constant.

Using again the Newton’s method the solution of (33) is at-
tained by

(36)

where with

(37)

Reversing the change of variable, the final solution is

(38)

A straightforward extension of these models to cope with
blur is feasible but is mathematically and computationally de-
manding. In this case, it seems that a 2-step iterative method-
ology could be an interesting alternative, where in each iteration
the first step consists of applying a deconvolution algorithm to
the data and in the second step the denoising of the deblurred
data is performed until some stopping criteria is met.

III. LABELLING

The FLIP technique [see Fig. 1(c)] adopted to generate the
data used in this paper is appropriated to study the flow dy-
namics inside the cell nucleus. By strongly bleaching a small
spot at a given location in the nucleus, the GFP molecules en-
tering in the spot region are turned off by losing their ability to
fluoresce due the photobleaching effect [3]. The average inten-
sity of the image decreases and the bleached spot is the source
of this decrease. The evolution of the intensity decreasing across
the cell nucleus allows the analysis of the diffusion process in-
volved, as well as the inference of the dynamics and mobility of

Fig. 4. Labels.

the GFP molecules which are usually bonded to other biologi-
cally relevant molecules, e.g., RNA molecules.

In this section, the diffusion process is visualized by thresh-
olding the images according to its intensity along the time
courses in order to observe the propagation process of intensity
decreasing across the cell nucleus that started at the bleached
region.

In this approach, the evolution of the boundaries on the bi-
nary image for a given threshold gives the information about
the propagation process. To observe this process at several loca-
tions different thresholds are used simultaneously by extending
the previous binary strategy to a multilabel methodology.

This segmentation methodology produces a labelling field
where the label, , associated with each de-

noised pixel is computed as

(39)

where is the number of labels and

(40)

is the center of the th interval, as shown in Fig. 4. and
are the maximum and the minimum values of ,
respectively, and is the index of each pixel at the
th instant.

This labelling scheme produces clusters made of pixels with
intensities in given ranges that evolve along the time courses,
providing information about the diffusion process. However,
this method does not favor piecewise constant clusters because
it does not take into account spatial interactions between neigh-
boring pixels. Therefore, a segmentation process is proposed
based upon the following optimization task

(41)

where

(42)

and are the labels associated with the vertical and
horizontal causal neighboring pixels of and is
a function that penalizes different labels in neighboring nodes.
The first term of pushes the solution toward the thresh-
olding result given by (39) while the second, called regular-
ization term, promotes the homogeneity of the labelled regions
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by eliminating outliers and small regions out of context. The
penalty function is defined as follows:

if
otherwise

(43)

where is the normalized gradient of
at the th pixel and is a small number to avoid di-
vision by zero. This penalization function is used to penalize
different neighboring labels and promote piecewise constant la-
belled regions.

The gradient of at the th pixel is
where

and are the vertical and horizontal causal neighboring
pixels of . In homogeneous regions of , the normalized
gradient is close to zero and the penalization term is large to
force labeling homogeneity. On the contrary, when the gradient
is large the penalization decreases in order to preserve the
transitions. The parameter , manually tuned, is used to control
the strength of spatial correlation. When the solutions of
(39) and (41) coincide.

The minimization of (42), formulated in (41), is performed
in an image by image basis and is a huge optimization task
performed in the high-dimensional space where

is the set of labels and and are the di-
mensions of the images.

In [42] the authors have shown that several high-dimensional
combinatorial optimization problems can be efficiently solved
by using graph-cuts (GraphC) based algorithms. The authors
have designed a very fast and efficient algorithm based upon
the max-flow min-cut theorem [43] to compute the optimal so-
lution of the energy function, that is, the global minimum. How-
ever, the algorithm is not completely general which means that
some energy functions cannot be minimized with the proposed
method. In [44], the authors present a wide class of energy func-
tions that may be minimized with the GraphC method and the
function (42) belongs to that class. In this paper, the minimiza-
tion of (43) is performed by using the graph cut based method
proposed in [42].

IV. EXPERIMENTAL RESULTS

In this section, results using synthetic and real data are
presented. The synthetic data are used to characterize the
performance of the proposed algorithms. The model
is compared to five state-of-the-art algorithms. Real image
sequences are used to illustrate the application of the presented
algorithms. The denoised images are segmented using the
labelling algorithm to represent the diffusion process involved
in the FLIP technique of fluorescence image acquisition.

A. Synthetic Data

In order to assess the performance of the proposed denoising
methodologies described previously, synthetic data were gener-
ated and processed. Three 64 64 pixels initial images with
a cell nucleus shape were formed, each exhibiting three inten-
sity levels in three different regions corresponding to the back-
ground of the image, to the cell nucleus and to the bleached area,
according to Table I, with the aim of studying the behavior of

TABLE I
SYNTHETIC DATA. SEQUENCES �����, ����� AND �����. INTENSITY VALUES

USED TO GENERATE THE INITIAL IMAGES, UPON WHICH EXPONENTIAL

DECAYS ALONG THE TIME COURSES ARE APPLIED TO SIMULATE THE

PHOTOBLEACHING EFFECT, FOR EACH OF THE THREE SYNTHETIC SEQUENCES

Fig. 5. Synthetic data: (a) and (b) true; (c) and (d) noisy, for � � � and � � ��

(image time).

the proposed algorithms in different 2-D signal-to-noise ratio
(2-D-SNR) situations. The 2-D-SNR is SNR computed for each
image in the sequence. The values in Table I were set to simulate
the orders of magnitude of the intensity ratios among the back-
ground, the nucleus and the bleached area in a true FLIP experi-
ment. Since Poisson noise is pixel intensity dependent, different
intensity ranges allow the generation of data sets with dissimilar
SNR values. In this experiment, three data sets where generated
making use of the intensity values presented in Table I. To each
pixel of the initial images, an exponential decay along the time
courses was applied to simulate the intensity
decrease due to the photobleaching effect in a FLIP experiment,
with rates equal to 0.07 for every pixel in the range of 10 (in pixel
units) from the center coordinates of the dark circle and equal to
0.02 for the rest of the image. The obtained true sequences were
then corrupted with Poisson noise. The resulting three synthetic
sequences, named , and exhibit, respectively,
the following SNR ranges: 5 dB to 3 dB, 3 dB to 13 dB, and
14 dB to 23 dB.

Fig. 5 shows an example of two original noiseless images and
their noisy versions in two different time instants, from one of
the synthetic sequences.

The sequences were processed using both denoising algo-
rithms described in this paper, the and the .

The prior parameters and were tuned to take into account
the intensity ranges in each sequence and image according to
the empirical formulæ

(44)
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TABLE II
� , � , CPU TIME (S) TO PROCESS THE COMPLETE SEQUENCE, NUMBER OF

ITERATIONS USED IN DENOISING PROCEDURE OF THE SYNTHETIC SEQUENCES

WITH THE STOPPING CRITERION: ���� ����� � �� ��

Fig. 6. Synthetic data ����� with low initial 2-D-SNR: �5 dB to 3 dB.
(a) Noisy. (b) �	 
 ���. (c) 
 
 ��� with � 	 �, � 	 
. (e) 
 
 ��� with
� 	 ��, � 	 
�. (d) and (f) Horizontal profiles along the yellow line in (a).
The cyan line stands for the raw data, the red line for the 
 
 ��� model, the
black line for �	 
 ��� model, and the blue line corresponds to the original
true data.

and

(45)

where and are the average intensity and standard
deviation of the th image in sequence, respectively. and
are constants manually adjusted in a trial and error basis.

The stopping criterion was based upon a measure of the rela-
tive error between iterations, computed as

.
The values of the tuning parameters , , the number of

iterations and the CPU time (in a Centrino Duo 2.00 GHz,
1.99 GB RAM processor) required to process each sequence
according to the stopping criterion are displayed in Table II.

Figs. 6 and 7 show noisy (a) and denoised images from se-
quences and at the same time instant, using the

Fig. 7. Synthetic data ����� with high initial 2-D-SNR: 14 dB to 23 dB.
(a) Noisy. (b) �	 
 ���. (c) 
 
 ��� with � 	 �, � 	 ��. (e) 
 
 ���

with � 	 ��, � 	 ���. (d) and (f) Horizontal profiles along the yellow dotted
line in (a). The cyan line stands for the raw data, the red line for the 
 
 ���
model, the black line for �	 
 ��� model, and the dark blue line corresponds
to the original true data.

model (b), and the model (c) and (e); (d)
and (f) show the respective profiles taken along the yellow line
in (a), where the cyan line stands for the raw data, the red line
for the model, the black line for model and
the blue line corresponds to the original true data. In these fig-
ures, two versions of denoised images with model are
presented (c and (e). In (c) and in profile (d), the prior parame-
ters ( and in (14)) were selected in order to achieve results at
the transitions similar to the ones obtained with the
model. As it can be observed, the results in (c) and (d)
(red line) are noisier than the ones obtained with the
model in (b) and (d) (black line). On the other hand, in version
(e) and profile (f) the prior parameters of the model
were increased to reduce the noise to a level comparable to the
one attained with model , which leads to a deteriora-
tion of the sharpness of the transitions and consequently a loss
of details in the images.

The observation of the profile plots (d) and (f) makes evident
the edge preserving ability of model when compared
to model , particularly in the case of strong space reg-
ularization (high values of in model —images (e)
in Figs. 6 and 7), which confirms the initial assumption that an
edge preserving prior in the space domain is needed to keep tran-
sitions. Also in the profile plots, blue and black lines are almost
indistinguishable, result of the good denoising quality attained
by the model.

Fig. 8 shows plots of the 2-D-SNR versus image time for each
sequence before and after the sequences denoising. As seen in
the figure, for all intensity ranges the 2-D-SNR values obtained
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Fig. 8. 2-D-SNR before and after denoising sequences �����, ����� and �����
with models � � ��� and �� � ��� versus image time plots. Synthetic data:
(a) ����� with low 2-D-SNR; (b) ����� with medium 2-D-SNR; and (c) �����
with high 2-D-SNR. The horizontal axis represents the image time in the se-
quence. Blue lines stand for the initial 2-D-SNR per image, green lines stand
for the 2-D-SNR after denoising with � � ��� model, and red lines stand for
the 2-D-SNR after denoising with �� � ��� model.

TABLE III
SYNTHETIC DATA. THE 2-D+TIME SEQUENCES ARE TAKEN AS 3-D ENTITIES

AND THE 3-D-SNR IS COMPUTED BEFORE AND AFTER APPLYING THE

PROPOSED DENOISING ALGORITHMS

with the model are higher than the ones attained with
the model, which corroborates the assumption that
edge preserving a priori potentials are more appropriate to keep
discontinuities in the space domain.

Taking each 2-D+image time sequence as a 3-D entity,
the 3-D-SNR was computed and the results are presented in
Table III. As before, the 3-D-SNR results confirm the better
performance of the when compared to the
model.

B. Model Validation

The was compared to five state-of-the-art models:
the NaiveGauss Proximal Iteration (Prox-it-Gauss) [13], the
Anscombe Proximal Iteration (Prox-it-Ans) [13], the NonLocal
Means (NLM) [45], the Bivariate-Shrinkage for Wavelet-based
denoising (BiShrink) [46] and the Bilateral Filtering (BLF)
[47].

Now we give a short description of these algorithms.
The Prox-it-Ans is a deconvolution algorithm for data that

is blurred and degraded by Poisson noise. The Anscombe
transform used explicitly in the problem formulation, results
in a nonlinear convex, AWGN deconvolution problem in the
Bayesian framework, with a nonsmooth sparsity-promoting
penalty over the representation coefficients in a dictionary of
transforms (curvelets, wavelets) of the image to be restored. The
solution is obtained by using a fast proximal backward-forward

splitting iteration algorithm. The prior parameter is selected
using the generalized cross validation (GCV) criterion.

The Prox-it-Gauss is a naive version of the Prox-it-Ans where
the Anscombe transform is performed first. The data are then
processed using a model similar to the previous one but where
the nonlinearity of the Anscombe transform is not taken into
account.

The Nonlocal Means algorithm (NLM) [45] is a nonlocal av-
eraging technique, operating on all pixels in the image with the
same characteristic. The NLM can be regarded as an evolution
of the Yaroslavski filter [48], where the average is performed
among similar pixels in the image and the measure of similarity
is based upon the local intensity. The main difference between
this filter and the NLM is the way the similarity is measured;
the latter is more robust, since it not only compares the gray
intensity level in a single point, but also the geometric con-
figuration in a whole neighborhood. The authors also proved
that the NLM is asymptotically optimal under a generic statis-
tical image model. For this comparison purpose we have im-
plemented the algorithm in a 3-D version programmed in C++
running in Matlab.

The BLF [47] is a 2-D algorithm that smooths images but
preserves edges by means of a nonlinear combination of nearby
image values. The method is noniterative, local, simple, and
fast. It combines gray levels based upon their geometric close-
ness and their photometric similarity; it gives preference to near
values in both domain and range.

The BiShrink is a locally adaptive 3-D image denoising al-
gorithm using dual-tree complex wavelet transforms with the
bivariate shrinkage thresholding function improved by taking
into account the statistical dependencies among the representa-
tion coefficients. In the present case, the algorithm was employ
under the naive Gaussian hypothesis.

The synthetic sequence was processed with the pro-
posed algorithm and with the five algorithms de-
scribed previously. Since the proposed algorithm does not com-
prise deconvolution, the image sequence is processed without
any blur.

In model , the regularization parameters and
were made to vary from image to image according to (44) and
(45). For comparison purposes and whenever possible, the pa-
rameters of the models were also adjusted from image to image
to take into account the decreasing of intensity along the se-
quence, in order to obtain the best results.

We use the Csiszáér I-divergence [49] (I-div) and the SNR as
figures-of-merit computed for each image for the comparison
purposes and the results are shown in Figs. 11 and 12. It is ev-
ident in these plots the superior performance of the proposed

algorithm concerning the SNR and the I-divergence.
The SNR curve presents higher values than the other algorithms.
As expected, the I-divergence measure, which is very appro-
priate in the case of the Poisson denoising, is lower than the one
computed for the comparison models. Another relevant feature
that can be observed in these figures is the smoothness of the
curves corresponding to algorithm implemented in 3-D.

Taking the 2-D+time sequence as a 3-D entity, the
3-D-SNR and the 3-D-I-div per image pixel were computed
after denoising with the six algorithms with the results presented
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TABLE IV
SYNTHETIC SEQUENCE �����. DIMENSIONALITY OF THE ALGORITHM,

CPU TIME TO PROCESS THE 64 IMAGES OF THE SEQUENCE,
3-D-SNR AND 3-D-I-DIV per PIXEL

Fig. 9. Image 5 from sequence �����: true, noisy, denoised with the BLF,
NML, Prox-it-Ans, Prox-it-Gauss, BiShrink, and �� � ��� algorithms.

in Table IV. As before, the algorithm attains the best
results with to the adopted denoising quality measures.

A plot of the relative error based measure described previ-
ously and used as stopping criteria is shown in Fig. 10. As can
be noticed the proposed algorithm presents good convergence
characteristics.

The proposed algorithm has low computational draw. All the
algorithms were executed under the same hardware conditions
and the is the second fastest as can be seen in
Table IV.

One of the images of the sequence is displayed in Fig. 9
in its true, noisy and denoised versions with the and
the other five comparison algorithms. The observation of this
figure reinforces the assertions on the ability of the
to remove noise.

Fig. 10. Synthetic data: �����. Convergence curve of the iterative �� � ���
algorithm using the relative error ���� ����� � �	 � 	 �
�	 �.

Fig. 11. Synthetic data: �����. 2-D-Csiszáér I-divergence of all the algorithms
per pixel versus image time (t).

Fig. 12. Synthetic data: �����. 2-D-SNR of all the algorithms versus image
time (t).

C. Real Data

In human cells, the messenger ribonucleoproteins (mRNP)
after being released from the transcription sites and distributed
throughout the nucleoplasm, must reach the nuclear pore com-
plexes (NPC), in order to be translocated to the cytoplasm. To
study the nature of this transport, quantitative photobleaching
methods can be used in order to investigate the mobility of
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TABLE V
REAL IMAGE SEQUENCES. NAME, NUMBER OF IMAGES (N.IM.), AND

IMAGE SIZE FOR EACH REAL SEQUENCE. THE CPU TIME per ITERATION,
THE NUMBER OF ITERATIONS AND THE RELATIVE ERROR BOUND

(STOPPING CRITERION) TO PROCESS THE SEQUENCES USING �� � ���
ALGORITHM ARE ALSO DISPLAYED

Fig. 13. Time courses. Raw and denoised data with � � ��� and �� � ���
algorithms of HeLa immortal cell nucleus image sequences: (a) FLIP1.
(b) LSM2. (c) noDrug.

mRNP’s within the nucleus of the human living cells. FLIP can
be an appropriate choice to accomplish this assignment.

In this experiment, RNP complexes were made fluorescent
by transient expression of GFP fused to two distinct mRNA-
binding proteins: PABPN1 and TAP [50], [51]. The HeLa cell
[52] was used.

Cells were repeatedly bleached at intervals of 3.64 s and
imaged between pulses. Bleaching was performed by 279 ms

Fig. 14. Real sequence: FLIP1. Raw data (Noisy), denoised data and
profile plots of HeLa immortal cell nucleus for images 32, 80, 150
������ �	
����
��� ��
� � ���� ��. In the profile plots taken along
the yellow dashed line, the cyan line stands for the raw data, the red line for the
� � ��� model results, and the black line for �� � ��� model.

bleach pulses on a spot of 1.065 radius (30 pixels diam-
eter). Three cell nucleus image sequences, identified as LSM2,
noDrug and FLIP1 are used to illustrate the application of the
proposed algorithms. The number of images and the image size
in the respective sequence are displayed in Table V.

Each sequence of real data is represented by a 3-D tensor ,
as described in Section II. No preprocessing was performed on
these images but a simple alignment procedure to correct for
cell nucleus displacement during the acquisition process. The
alignment consists in a set of rigid body transformations driven
by the maximization of the correlation between images, using a
wavelet based strategy.

In order to estimate , the aligned images were then pro-
cessed using the described denoising methodologies. The mean
and the standard deviation per image of each sequence were
computed. For all the three sequences of images several appar-
ently anomalous jumps were detected in the standard deviation
plots ultimately due to the refocusing manoeuvres during the
acquisition process. This fact is accounted for the regularization
parameters and as explained in Section IV-A of this section.

The CPU time for both algorithms ( and )
was approximately the same. The CPU time per iteration on
a Centrino Duo 2.00 GHz, 1.99 GB RAM processor and the
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Fig. 15. Real sequence: LSM2: raw data (noisy), denoised data, and
profile plots of HeLa immortal cell nucleus for images 32, 110, 180
������ ���	�
����
 ���� � ���� 
�. In the profile plots taken along the
yellow dashed line, the cyan line stands for the raw data, the red line for the
� � ��� model results, and the black line for �� � ���.

number of iterations required to achieve convergence according
to the stopping criterion based upon the relative error bound are
displayed in Table V.

The results for three images of each sequence are displayed
in Figs. 14–16. From left to right, the first column represents
the raw data, the second column represents results with the

model and third column shows results with the
model. The second, fourth, and sixth rows show

cross-section plots of the nucleus at the same time instant as
the images in the row above. The observation of these plots,
in conjunction with the images, reinforces the conviction that
the assumption of an edge preserving a priori distribution in
the space domain is wise and acceptable. In fact, as can be
seen in these figures there is a great deal of improvement in
the quality of the representation when using . The
blur present in the denoised images in the second column

results from the log-quadratic regularization used
in the space dimension. This undesirable effect is attenuated by
using the -log instead, which is an a priori distribution that
presents the ability to preserve the edges.

The denoising performance can also be noticed in the third
dimension (time). Results of the denoising with and

Fig. 16. Real sequence: noDrug: raw data (noisy), denoised data and
profile plots of HeLa immortal cell nucleus for images 32, 110, 200
������ ���	�
����
 ���� � ���� 
�. In the profile plots taken along the
yellow dashed line, the cyan line stands for the raw data, the red line for the
� � ��� model results, and the black line for �� � ���.

Fig. 17. Real sequence: FLIP1. Segmentation result showing the photo-
bleaching propagation across the nucleus from the bleached area in a FLIP
experiment. The pink contours represent label level lines. The image acquisition
rate is 3.64 s.

for one time course of each of the nucleus are shown
in Fig. 13.

The graph-cuts segmentation procedure described in
Section III was performed on the denoised data, using only five
labels, in order to display the propagation of the fluorescence
loss that occurs inside the nucleus with time in a FLIP experi-
ment. Each gray level represents a range of intensities assigned
to a label. The darkest gray region in each image represents
the target area hit by the high energy laser pulses. The pink
contours represent label level lines and can be regarded as
wave fronts to study the diffusion processes that occur inside
the nucleus. In addition, this representation gives information
on what compartments in the nucleus communicate with each
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Fig. 18. Real sequence: LSM2. Segmentation result showing the photo-
bleaching propagation across the nucleus from the bleached area in a FLIP
experiment. The pink contours represent label level lines. The image acquisition
rate is 3.64 s.

Fig. 19. Real sequence: noDrug. Segmentation result showing the photo-
bleaching propagation across the nucleus from the bleached area. The pink
contours represent label level lines. The image acquisition rate is 3.64 s.

other. The segmentation results for some of the denoised im-
ages of each cell nucleus are shown in Figs. 17–19. As shown
in the figure, the fluorescence loss spreads inside the nucleus
from a region around the bleached area toward the edges of the
nucleus according to the available connections among nucleus
compartments.

V. CONCLUSION

In this paper, two new denoising algorithms are proposed
to LSFCM imaging with photobleaching. The sequences of
LSFCM images taken along the time courses, in this mi-
croscopy genre, are corrupted by a type of pixel dependent
noise described by a Poisson distribution. Furthermore, the
global intensity of the images decreases along the time courses
due to permanent loss of fluorophore ability to fluoresce, caused
by chemical reactions induced via the incident laser and by
other surrounding molecules. The decreasing image intensity
leads to a decrease on the signal to noise ratio of the images,
making the biological information recovery a difficult task.

In this paper, two Bayesian algorithms are proposed to
perform a simultaneous denoising procedure in the space (im-
ages) and in time (time courses) dimensions. This approach,
conceived as an optimization task with the MAP criterion,
leads to filtering formulations involving 3-D (2-D+time)
anisotropic filtering procedures. The energy functions are
designed to be convex and their minimizers are computed by
using the Newton’s method with the algorithm and
a reweighted least squares based Newton’s method with the

algorithm, which allows continuous convergence
toward the global minimum, in a small number of iterations.

The significant performance of the approach described in this
paper is mainly due to the adoption of a temporal a priori distri-
bution with appropriate potential functions that allows to extract
relevant information even from small SNR ending images of the
sequence that, otherwise, would be useless.

Tests using synthetic and real data have shown the ability of
the presented methodology to reduce the pixel dependent noise
corrupting the image sequences. Furthermore it is shown that the
model outperforms the one because of its
edge preserving properties. Comparison tests of the
with five other state-of-the-art algorithms confirm its superior
performance because, once again, it outperforms all the other
methods, according to the denoising quality measures adopted
in this work.
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