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ABSTRACT

fMRI is a widely used method to detect the activated brain regions
due to a stimulus application. Commonly, it employs the BOLD con-
trast, which is based on the correlation between physiological func-
tion, energy metabolism and haemodynamics. However, the BOLD
signal is weak and noisy, so that, an accurate mathematical model to
describe theHaemodynamic Response Function (HRF) to activation
is needed.

In this paper, a physiologically-based model relating energy
metabolism with the corresponding neuronal electrical activity
(NEA) is proposed. This model is an extension of a previous
one that couples ATP consumption with the NEA. Decreased ATP
levels inside the neuron increase the metabolic rate. Here, the mito-
chondria play a central role. It is modeled as a classical regulator to
maintain ATPhomeostasis.

The main transfer function, a second-order linear system, is able
to describe the physiological mechanisms involved in the neuronal
activity and is useful to model the overall HRF.

Index Terms— Neuro-Metabolic Model, BOLD, fMRI

1. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) has being used
worldwide as a powerful neuroscientific research technique to study
the neural basis of human cognition. fMRI measurements can be
accomplished by different techniques, but theBlood-Oxygenation-
Level-Dependent (BOLD) technique is the most frequently used.
Without making direct measurements on the neuronal activity, these
approaches take advantage of neuro-metabolic and neuro-vascular
physiological events, accompanying brain activation, that locally
change the diamagnetic oxygen (O2), namelyCerebral Metabolic
Rate of Oxygen (CMRO2), Cerebral Blood Flow (CBF) andCere-
bral Blood Volume (CBV). This set of physiological responses are
referred as theHaemodynamic Response Function (HRF). Never-
theless, retrieval of this information is a challenging problem, not
only because BOLD signal changes are very small, but also due to
the corrupting noise in fMRI data, which affects the brain activity
detection sensitivity. Thus, an accurate model that predicts the HRF
evoked by a given stimuli is needed.

Fig.1 displays the main components involved in the relation
of the neuronal electrical activity (NEA),r(t), with the measured
HbO2/Hb. The majority of the energy expended in the brain is spent
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on signaling and most of that energy is employed by neurons, par-
ticularly by thesodium/potassium pump (Na/K-ATPase), to reverse
the ionic fluxes caused by NEA. Therefore, the ATP consumption,
ATPr(t), is mainly due to the Na/K-ATPase activity. Decreased
ATP levels inside the neuron stimulates the metabolic pathways
that restores it [1]. ATP is regenerated mainly via the oxidative
metabolism of glucose (Glc), which is accomplished via glycolysis
(Gly) and mitochondrial respiration. This last pathway is responsible
for almost the entire O2 consumption (i.e. CMRO2) [2] in the central
nervous system [3], thus, it represents a critical determinant of the
BOLD signal. O2 and Glc diffuse from the vasculature into the cell.
Moreover, ATP consumption and energy metabolism stimulate the
release of vasodilators, for instance Adenosine (A) and Nitric Oxide
(NO), leading to increased blood flow and venous dilatation [4].
The signal measured by BOLD fMRI experiments, i.e. HbO2/Hb, is
derived from the combination of the dynamic changes ofCBF (t),
CBV (t) andCMRO2(t) in local capillary and venous blood.

Fig. 1. A physiologically-based model design for the HRF.

In this paper, it is proposed a linear model for the coupling be-
tween the NEA and energy metabolism, aNeuro-Metabolic Model
(NMM). The NMM is an extension of a previous model that links
ATP consumption rate with the NEA [5]. TheNa/K-ATPase is an
important element because its ATP consumption directly links elec-
trophysiological features to energy metabolism. The ATP synthesis
is here assumed to be solely made by themitochondria, which act as
a regulator in a Control Theory perspective.

Fig. 2. Neuro-Metabolic Model overview.



2. MODEL DESCRIPTION

The NMM is composed by two major dynamic systems, as shown
in Fig.2. The first, presented in [5], relates the NA with the ATP
consumption and the second, proposed here, describes the ATP syn-
thesis by themitochondria (the main energy plant of the cell). In this
model the intracellular ATP concentration, denoted byATP , is a re-
source that is expended mostly to restore Na+ and K+ homeostasis
(that were degraded due to the electrophysiological processes associ-
ated with the NEA), and is restored mainly via mitochondrial respi-
ration. Themitochondria act as a regulator, according with the Con-
trol Theory [6], continuously sensing the ATP concentration inside
the neuron, while adjusting its activity in order to restoreATP into
a biological predefined reference level, i.e. maintain ATPhomeosta-
sis. The dynamic evolution of the intracellular ATP concentration
along the time,ATP (t), results from the contribution of these two
processes. The mathematical formulation of both processes, which
is presented in the next sections, is based on linear ordinary differ-
ential equations with constant coefficients which corresponds, from
a System Theory point of view, to aLinear Time-Invariant (LTI)
system [6].

The Laplace Transform (LT) [6] of the ATP consumption along
the time (see Fig.2), is given by the following expression

ATPd(s) =
1

s
ATPr(s) =

ρ

s
Na(s), (1)

whereATPr(s) is theLT of the ATP consumption rate andNa(s)
is theLT of the intracellular concentration of sodium,Na, whose
expression is [5]

Na(s) = GN (s)Nae +GK(s)Ke +Gr(s)R(s), . (2)

Nae andKe are the extracellular concentrations of Na+ and K+,
respectively, andR(s) is the LT of the NEA, r(t). The Transfer
Functions (TFs)GN (s),GK(s) andGr(s)are second-order systems
(two poles) with a zero

GN (s) =
η1s+ η2

s2 + ψ1s+ ψ2

, (3)

GK(s) =
η3s+ η4

s2 + ψ1s+ ψ2

, (4)

Gr(s) =
η5s+ η6

s2 + ψ1s+ ψ2

, (5)

(6)

The mitochondrial activity, represented at the right side of Fig.2,
is modeled by a classical regulator according the Control Theory, as
shown in Fig.3. In this perspective, themitochondria act as a regula-

Fig. 3. The Simulink model of the mitochondria: a type-1 regulator
that maintains the intracellular concentration of ATP (ATP (t)).

tor [7], continuously sensing the ATP concentration and maintaining
it at a predefined biological reference level,Ref , against external
disturbances, such as the ATP consumed by theNa/K-ATPase, i.e.
ATPd. In particular, themitochondria are modeled as a second or-
der linear system with the pole at the origin. The system with this
pole, obtained with an output integrator, is atype-I system [6] where
the steady-state error to the step is zero and finite to the ramp.

By taking into account (1), the TF of the overall ATP inside the
neuron is

ATP (s) =
ϕ

s2 + τs+ ϕ
Ref − (s+ τ)ζρ

s2 + τs+ ϕ
Na(s). (7)

By applying equation (1) and (2) to equation (7), and after some
straightforward manipulations, the TF relatingATP (t) with the cor-
respondingRef ,Nae,Ke andr(t) is given by

ATP (s) = LR(s)Ref(s) + LN (s)Nae(s) +

LK(s)Ke(s) + Lr(s)R(s), (8)

where the functionsLR(s), LN (s), LK(s) andLr(s) are the fol-
lowing fourth-order systems (four poles) with two zeros

LR(s) = (λ1s
2 + λ2s+ λ3)/D(s), (9)

LN (s) = (λ4s
2 + λ5s+ λ6)/D(s), (10)

LK(s) = (λ7s
2 + λ8s+ λ9)/D(s), (11)

Lr(s) = (λ10s
2 + λ11s+ λ12)/D(s). (12)

whereD(s) = (s2 + ψ1s+ ψ2)(s
2 + ψ3s+ ψ4). The coefficients

are defined in Table 1.

Table 1. Coefficients ofATP (s)

Parameters

λ1 = ϕ
λ2 = ϕ.ψ1

λ3 = ϕ.ψ2

λ4 = −ρ.ζ.η1
λ5 = −ρ.ζ.(τ.η1 + η2)

λ6 = −ρ.ζ.τ.η2
λ7 = −ρ.ζ.η3
λ8 = −ρ.ζ.τ.η3

λ9 = 0
λ10 = −ρ.ζ.η5

λ11 = −ρ.ζ.(τ.η5 + η6)
λ12 = −ρ.ζ.τ.η6

ψ3 = τ
ψ4 = ϕ

2.1. Mitochondria Parameters

The poles of the second order regulator that models the mitochon-
drial activity are the roots of the characteristic equation of themito-
chondria

s2 + τ.s+ ϕ = 0 ↔ s =
−τ ±

√

τ2 − 4ϕ

2
. (13)

where the lowest frequency pole (the one closest to the origin) is the
reciprocal of themitochondria time constant, reported in the litera-



ture [8] as being30s. Therefore,

p1 =
−τ +

√

τ2 − 4ϕ

2
= −1/30 ↔ τ = 30ϕ+ 1/30. (14)

The predefined biological reference value,Ref , is obtained
from the steady state solution of equation (7) by using the final
value theorem [6] and the previously referred equilibrium values: i)
Na = 15 mM, and ii)ATP = 2.2 mM [9,10],

Ref = ATP +
ρ.ζ.τ

ϕ
Na. (15)

The selection of the parametersϕ andζ were performed in a trial
and error basis in order to obtain the simulation results that better
fits the experimental data [10]. Furthermore, it was observed a low
sensitivity of the result to theϕ parameter. The selected values for
these parameters areζ = 0.12 andϕ = 1. Hence, from equation
(14),τ ≃ 30s−1 and from equation (15),Ref ≃ 2.7748mM.

Table 2 lists the TF coefficients defined in equations (2) and (8).

Table 2. Coefficients of the Transfer Functions
Coefficients

η1 = 0.26 s−1 λ6 = -7.62×10−5 s−4

η2 = 0.002 s−2 λ7 = -3.33×10−4 s−1

η3 = 0.26 s−1 λ8 = -0.01 s−3

η4 = 0 λ9 = 0
η5 = 23 mMs−1V−1 λ10 = -0.03 mMs−2V−1

η6 = 14.92 mMs−2V−1 λ11 = -0.90 mMs−3V−1

λ1 = 1 λ12 = -0.57 mMs−4V−1

λ2 = 0.68 s−1 ψ1 = 0.68 s−1

λ3 = 0.02 s−2 ψ2 = 0.02 s−2

λ4 = -3.37×10−4 s−2 ψ3 = 30 s−1

λ5 = -0.01 s−3 ψ4 = 1

3. RESULTS

In this section, the NMM model, displayed in Fig.2 and described
by equation (8), is simulated with typical stimuli and the results are
compared with the ones described in the literature [10].

(a) (b)

Fig. 4. ATP dynamics for a sustained activation (a) and a repeti-
tive activation (b). The results obtained with the NMM (in red) are
compared with [10] (in blue).

Fig.4 displays the time course ofATP in the case of a sustained
activation (see Fig.4(a)), wherer(t) is a given sequence of pulses
(A = 0.1V, b = 1ms, f = 100Hz) for 0 ≤ t ≤ 360, and in
the case of a repetitive activation (see Fig.4(b)), wherer(t) consists
of six cycles of stimulation with a sequence of pulses (A = 0.1V,
b = 1ms,f = 230Hz) for a time duration of20s, followed by40s

without stimuli. There is some discrepancy between the results ob-
tained with the NMM (in red) and those obtained by [10] (in blue),
specially at the beginning of the simulation. The HRF model pro-
posed by [10] is based on fourteen nonlinear differential equations,
whereas the model proposed here is a second order linear model. In
particular, the balance equation forATP dynamics derived by [10]
is affected by several processes, depending on several parameters
and variables. Since the NMM is linear and it is modelled focusing
the most relevant processes, according to the literature, such differ-
ences between these responses are expected. However, at the end
of the simulation, the rate constant forATP recovery has a good
agreement with [10].

Despite theATP (s) (see Eqn. (8)) is a fourth-order system,
the curves of Fig.4 (in red) resemble a typical response of a second-
order system. The pole-zero map of the TF relatingATP (t) with
r(t), Lr(s), is displayed in Fig.5 and supports this observation. The

Fig. 5. Pole-zero map ofLr(s). The orange arrows indicate the
poles and zeros from the Na/K-ATPase and the green ones indicate
those from the mitochondria.

zeros arez1 = −0.65 rads−1 andz2 = −30.03 rads−1, whereas the
poles arep1 = −0.031 rads−1, p2 = −0.653 rads−1, p3 = −0.033
rads−1 andp4 = −30.00 rads−1. Hence,z1 cancels the effect of
p2 andz2 cancels the effect ofp4. Therefore, there is a dominant
pole condition, performed by the polesp1 andp3, andLr(s) can be
simplified to a second-order system with two poles (p1 andp3) and
no zeros

Lr(s) ≈
Ψ0

(s− p1)(s− p3)
, (16)

whereΨ0 = λ12p1p3
ψ2ψ4

and p1 and p3 are given by the following
expressions

p1 =
−ψ1 +

√

ψ2
1 − 4ψ2

2
, (17)

p3 =
−τ +

√

τ2 − 4ϕ

2
, (18)

and whereψ1 = αN +γK +3ρ−βN − δK andψ2 = (αN −βN +
3ρ).(γK + δK)− βN .(δK + 2ρ).

By taking into account thatψ2
1 >> −4ψ2 andτ2 >> −4ϕ,

Eqn. (17) and (18) can be simplified if theTaylor Series Expansion
is applied as follows

√

ψ2
1 − 4ψ2 ≈

√

ψ2
1 +

(ψ2
1)

−1/2

2
(−4ψ2) = ψ1 −

2ψ2

ψ1

,

√

τ2 − 4ϕ ≈
√
τ2 +

(τ2)−1/2

2
(−4ϕ) = τ − 2ϕ

τ
. (19)



Therefore,p1 ≈ −ψ2

ψ1
andp3 ≈ −ϕ

τ
. Moreover,ψ1 andψ2 de-

pend on several constants, whose values areαN = 0.0026s−1,
βN = −0.2612s−1, γK = 0.0038s−1, δK = −0.3835s−1, 3ρ =
0.0319s−1 and2ρ = 0.0213s−1. Since some of these terms are
much smaller than others, after some simplifications and straightfor-
ward arrangements, the first pole is

p1 ≈ −3ρ+ ξ, (20)

where ξ = βNρ−αN δK−βNγK
βN+δN

= 0.0012. This means thatp1
mainly depends onρ, theNa/K-ATPase activity time constant.

The similarity betweenp1 andp3 allows to simplify the TF in
equation (16) by using the following second-order system with a
double pole

Lr(s) ≈
Ψ

(s− p)2
, (21)

whereΨ = λ12p
2

ψ2ψ4
and p = (p1 + p3)/2 = −0.0320rads−1,

which corresponds to the mean value of the simplifiedp1 ≈
−0.0307rads−1 andp3 ≈ −0.0333rads−1.

Finally, after the overall approximations,ATP (s) is given by
the following expression

ATP (s) =
λ3

ψ2ψ4

Ref(s) +
λ6

ψ2ψ4

Nae(s) +

λ9

ψ2ψ4

Ke(s) +
λ12p

2

ψ2ψ4

1

(s− p)2
R(s). (22)

(a) (b)

Fig. 6. Comparison between the fourth orderATP (s) (in blue) with
second orderATP (s) (in red) for a sustained activation (a) and a
repetitive activation (b).

Fig.6 displays a comparison between the fourth-order system
presented in equation (8) (in blue) and the second-order system (with
double poles) of equation (22) (in red) for a sustained activation
(Fig.6(a)) and a repetitive activation (Fig.6(b)). The superposition
of the curves shows the feasibility of this approximation.

The Bode diagram ofLr(s), defined in Eqn. (21), is displayed
in Fig.7. In this diagram it is also represented the harmonic com-
ponents of the neuronal activity, modeled as a comb of Diracs with
a typical frequency off = 100Hz. As it can be seen, the final
TF, which is dominated by the largeNa/K-ATPase andmitochondria
time constants, is a low-pass filter (ωc = 0.032rads−1), removing
all components of the NA except the DC one (0 Hz). This means
that the exact shape of the AP, defined by its high order harmonics,
is not relevant for the computation of the ATP dynamics, so that, the
ATP dynamics is essentially related with the mean value of the NA,
rather than its specific shape, as referred in [11].

Thus, the input is essentially characterized by the pulse density,
or equivalently, by its frequency and the shape of action potentials

Fig. 7. Bode diagram.

are meaningless.
4. CONCLUSIONS

In this paper, a new physiologically-based mathematical model de-
scribing the neuronal electrical activity,r(t), and the intracellular
ATP dynamics,ATP (t), is presented. The results obtained with
the proposed Neuro-Metabolic Model (NMM) are compared with
those obtained from other state of the art model, described in the
literature. The time constants forNa andATP recovery after the
stimulus show a good agreement with [10]. Differences to the other
model are justified by the simplifications adopted in the design of the
proposed model in order in order to make it possible its inclusion in
an larger model describing theHaeomodynamic Response Function
(HRF) generation process used infunctional Resonance Magnetic
Imaging (fMRI).
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