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ABSTRACT solution [4]. When working with maps of PASL data, the

. . _— spatial structure of the values of each parameter can also be
Maps of perfusion and Arterial Transit Time (ATT) can b? incorporated as additional information, describing thiebe

measured quantitatively using non-invasive Pulsed Aateri éhat the value of the parameter in a voxel is correlated in

Spin Labeling (PASL) techniques. This can be achieve : . . L .
by fitting a kinetic model to magnetization difference datasome way with that in its neighbors. Considering a Bayesian

) ) S T approach, this spatial prior can be defined in different ways

images acquired at multiple inversion tim@d)( Here, spa- [5][6]. For example, Grovest al implemented a combined

tial information is incorporated into a Bayesian estimatio h i. logical and ' tial G ian or nd d the Eu-

method, based on maximum a posterioffMAP) criterion pnysiological and spatial >aussian process and used e Eu
: T o ) ' clidean distance between voxels to describe the spatia pri

which also incorporates priori knowledge regarding the

model physiological parameters. Two tvpes of spatial riorinformation [5]. Commonly used Euclidean distance pri-
pny 9 P ' yp P PHIOT 15 are usually useful for images with slow transitions [7].

were tested. Monte Carlo simulations showed reduced pa; . L .
owever, more drastic transitions in the parameter values

rameter estimation errors when including spatial infoiorat are expected to occur at the boarders between different tis-

using a Total Variation prior. Furthermore, the feasibilit ; L S .
ue types or arterial territories and also in discrete fesio
of the method proposed here was demonstrated through the, . =" )
exhibiting pathological values of the parameters. In other

application to empirical data. contexts, a Total Variation (TV) regularization [7][8] has

Index Terms— PASL, MRI, spatial prior, Bayesian. been used, which is an edge preserving prior and is therefore
more indicated in such cases.
1. INTRODUCTION In this work, we propose to investigate the performance

of a spatial prior in a Bayesian framework for the estimation

Arterial Spin Labeling (ASL) magnetic resonance imaging®f Perfusion and ATT maps based on theximum a posteri-
(MRI) technigues offer a non-invasive way of obtain perfu-°n (MAP) crltgrlqn. This BayeS|a}n method ac_co_unts for the
sion measurements which are potentially quantitative.yThe@mount of noise in the data and incorporadgsriori knowl-
consist on magnetically labeling the water molecules in th&dge of the physiological distributions of the multiple rebd

blood and then measuring the magnetization of the tissues dfarameters. Here, we additionally introduce a spatialrprio
ter a certain time interval, the inversion tiniél). The mag- taking into account the correlation between adjacent #oxel

netization difference A M, between a labeled image and a!n the parameter maps. We test two different types of spa-

control image, as a function i, can be described by a ki- tial correlation, by considering a Total Variation (TV) teg

netic model [1]. Perfusion information can be estimated byarization [7][8] and a common squared Euclidean distance

fitting the model to the data, acquired at multiflepoints. ~ Petween voxels. Both perfusion and ATT are estimated us-
In order to cope with the intrinsically low signal-to-noise "9 both simulated and empirical data. With the simulated

ratio (SNR) of PASL data, averaging over large regions-of.data. the proposed estimation approach is compared with a

interest (ROI) is often performed, yielding a single valoe f Bayesian method that does not account for the spatial regu-

each physiological parameter [2]. However, spatial maps dftfization. In empirical data, we show the applicabilitytioé

the parameters are more informative from a clinical poimmethod in the estimation of perfusion and ATT maps with real

of view. Extraction of information regarding the parameter PASL data.

can be accompllshed_wnh |mprov§:d perf(_)rma_mce on a voxel- > PROBLEM EORMULATION

by-voxel basis by using a Bayesian estimation method [3].

This procedure has the advantage of incorporating knowledd—et us consider th_e following Additive White Gaussian Noise
about the physiological distributions of the parameteetph AWGN) observation model,
ing guide the estimation to a more consistent and realistic

99 yolty) = AM(ty,0,) +1 (1)
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N(0,07) is the noise with variance; (independent in time
and space).

Here, we use a two-compartment kinetic model that de-
scribesA M as a function of the model parameters of interest
0 = [f, At], wheref is the perfusion and\¢ is the arterial
transit time (ATT) [9].

The MAP criterion fo_r mode! para_meter estimation can berig. 1. lllustration of the the physiological priofp), given
formulated as the following optimzation task by a constant value, and the spatial priBkj obtained using
. a four-element neighborhood.

6 = argminE(y,t.0) , 2
where the energy functioB (y, ¢, 8) is given by The second type dafpatial prior termconsidered is a TV
prior described by the energy function
Es(0) = = v Oko —Oron)” - (8
The distribution functionp(y|t, ) models the acquisi- 5(60) 2;;@6’ ;( " k) ®)

tion process and the observations are assumed to be sta-

tistically independent along time and space. The distri- The complexity and the computational cost of determin-
bution functionp(@) represents the a priori knowledge of ing the first and second derivatives required for the task
the parameters to be estimated. Here, both physiologicaf optimizing the energy function (8) are extremely high.

and spatial priors are considered. The paramefeme Therefore, a variation of the TV method, called Iteratively

defined with a multivariate Normal distribution' (9, C),  Reweighted Norm (IRN) [10], is used. The IRN approach

whereC' = diag({0%,03,...,0% ,}) is a diagonal covari- consists of an iterative process whereby, at each iteration
ance matrix [ is the number of unknown parameters). Thea weighted form of the QFED is taken as the spatial prior
uncertainty associated with the parameters is assumed to beergy function. An automatic hyper-parameter is also con-

known. sidered to guarantee the correct imposition on the stresfgth
The energy function (3) can be rewritten as the sum ofhe spatial prior.
three distinct terms, In the estimation procedure, the optimization is accom-

plished by the Levenberg-Marquardt algorithm. Both the Ja-
E(y,t,0) = Ey(y,t,0) + Ep(0) + Es(0) . (4) cobian and Hessian matrix are determined at each iteration o

o o o the algorithm which allows the determination of the parame-
The firstis called thelata fidelity termand is given by the  tes simultaneously on all voxels.

posterior function;- log[p(y|t, 8)], which can be written as

1 1 3. EXPERIMENTAL RESULTS
EY(y»t7 0) = §Zﬁz (yp,v - A]\/[p,v(tpv 01}))2 )

v Yov P
5)
The second and the third terms describe the prior physi-
ological and spatial knowledge of the parameters (see &igur
1). Thephysiological prior termis given by

Here, results with synthetic and real data are presented.

Monte Carlo Simulations
To test the performance of our proposed method, Monte
Carlo simulations were performed. A 2D test object with a
] (0o — O, )2 realistic brain mask of 700 voxels was considered: a segmen-
Ep(0) = §ZZ+ , (6) tation into gray matter and white matter was considered for
vk Thew the perfusion maps and three arterial territories (arteme-
dial and posterior) were considered for the ATT maps. For

The first type ofspatial prior term considered is the o5ch condition tested, 15 synthetic datasets were gedette
quadratic form of the euclidean distance (QFED) between thg, -1, yoxel yielding a total of 10500 runs.

parameter values in neighboring voxels

ES(O) = %ZZﬁk,vZ (ek,v - ek,v,n)2 ’ (7)
v ok n

where (3, is a normalization spatial prior parameter andand three different levels of noise were considergd=(10,
0rv.n is the value of the parametdr of voxel v, in n 100 and 150%).

horizontal and vertical adjacent neighbors. We consider Forthe estimation of the model parameters, three different
n = 1,2, 3,4, known as four-element neighborhood [7]. types of prior information were used: i) physiological prio

Noise was added as a fraction of the maximum signal gen-
erated by the mean values of the parameters of all voxels:

oy =y x max[AM(t,0g)] . 9)



White Matter Gray Matter

0.4 0.4 at the perfusion maps, we observe that the TV does not have
5% a strong effect in their visual aspect relative to the maps ob
§ {5 0.05 0.0§ tained with the physiological prior only. Moreover, we ob-
=2 serve very smooth maps when obtained with the QFED prior
0—=0% 100%  150% 0%  100%  150% relative to when they were obtained with the other two pri-
gX10° Anterior gx10° Medial gx10° Posterior ors, probably because the relatively abrubt transitiowben
2 3 6 o ég&ygg"wiw' ont gray and white matter is not well suported by the QFED prior.
Sw 4 4 4 Real Data
=2 2 2 2 In order to demonstrate the applicability of the proposed
0= 0% 100% 150% © 109 100% 150% © 10% 100% 150% Bayesian method, the maps of the physiological parameters

perfusion and ATT were estimated from real multi-inversion
Fig. 2 Normalized mean square errors pf(top) and At time PASL data. The PASL _data was collected from seven
(bottom) estimation (mea# SE), for 3 levels of noise and 3 healthy volunteers on a 3T Siemens system. The acquisition
different estimation methods. slab contained nine contiguous axial slices, positioned pa

allel to the AC-PC line, with a resolution ¢f.5 x 3.5 x

TrueMap  Physiological only  QFED v " 5.0mm3. The magnetization difference (tag-control pairs)

15 was sampled at a uniform set of inversion time points in the
interval [0.2; 2.4]s, in steps of 2s, with 8 repetitions for each
inversion time (total of 96 points). For eachd map, the
noise was measured as the standard deviation of data inside a
TrueMap  Physiological only  QFED v 0 background region with a reasonable number of voxels.

! The estimated maps of perfusion and ATT obtained with
the three types of priors are presented in Figures 4 and 5, re-

05 spectively. In general, all the estimation methods usedwer

o able to identify the expected brain regions on the perfusion

and ATT maps. However, the absence of a spatial prior in
the estimation procedure produced noisier maps than in the

obtained using the 3 types of priors in one synthetic datase ther two cases, which may impair a clear identification of

with 100% noise level. The true maps of the parameters ard® rel_evant regions. As expe(_:ted from the simulated dam t
shown on the first column. perfusion maps estimated using the QFED based prior were

smoother than the maps obtained with the physiological prio
only and the TV based prior.

At (s)

Fig. 3. Maps of estimated parametegi$top) andAt¢ (bottom)

only; ii) physiological and spatial QFED prior; and iii) péy
iological and spatial TV regularization prior. 4. CONCLUSIONS

In Figure 2, the mean values of the normalized meany, this work, a Bayesian framework was implemented in or-
square errors (MSE) obtained in the estimation of both pefge (g gbtain quantitative brain maps of perfusion and iter
fusion and ATT are shown, for the three levels of noise anginsit time from a time series of label-control image pairs

the three types of priors tested. For the estimatiorf,dhe  pas) data. In order to improve the parameter estimation from
TV spatial prior always provided the most accurate results, yinetic model, spatial prior information was incorpothite

both compared with using the QFED spatial prior or the,ygition to physiological prior information, and two diféet
physiological prior only. The benefit of using the TV in the

S L X '* types of spatial priors were compared.

estlmatlon of the_ perfus_lon n the W,h'te mattgr was _partlcu- Monte Carlo simulations showed that using a Total Varia-
larly important, since this region typlgally .exh|.b|ts acally tion based spatial prior generally produces more accueate r

low SNR. In general, the use of a spatial prior yielded reduce 15 than 4 Euclidean distance based spatial prior or the us

errors r_elatlve to using phy5|ol_og|ca| information onlytive . of no spatial information. The proposed method was also ap-
estimation ofA¢, and the TV prior was advantageous relative

h . h | . h , Iplied to empirical PASL data to show the applicability of the
to t, € QFED prior. The only exception was the posterio algorithm. The results showed a good performance of the spa-
region, which exhibits extremely long transit times anddeen

! tial prior in the identification of the expected perfusiordan
relatively poorer SNR.

. , __arterial brain regions.
An example of the perfusion and ATT maps obtained with

thetic dataset witt00% noise level. using the th In this work, the prior map of the paramet&t was con-
one synthetic dataset wi o NOISE 'eVel, using the tree  giqered to be homogeneous for all the voxels at each slice.

d|ffer|ent ;[yﬁ)es of pl’lOI’ShIS Sh;’t"m 'ndF'%ﬁrag'TU'e ATT Maps|n order to improve the estimation of the ATT maps, a priori
are ciearly 'ess noisy when obtained wi e tvpriorin Co_m'knowledge of the arterial regions in the brain could be incor
parison with the other two priors. On the other hand, IOOk'ngporated into the spatial prior
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