
ON ESTIMATING DE-SPECKLED AND SPECKLE COMPONENTS FROM B-MODE
ULTRASOUND IMAGES

José C. Seabra and João M. Sanches

Instituto de Sistemas e Robótica / Instituto Superior Técnico
Av. Rovisco Pais, Torre Norte
1049-001 Lisboa, Portugal

ABSTRACT

The information encoded in ultrasound speckle is often dis-
carded but it is widely recognized that this phenomenon is
dependent of the intrinsic acoustic properties of tissues. In
this paper we propose a robust method to estimate the de-
speckled and speckle components from the ultrasound data
with the purpose of tissue characterization. A de-speckling
method, which can conveniently work with either Radio Fre-
quency (RF) or B-mode data, contributes to an improvement
on the visualization of anatomical details, while providing
useful fields from where echogenicity and texture features can
be extracted. The adequacy of the RF image retrieval and de-
speckling methods are tackled using both synthetic and real
ultrasonic data.

Index Terms— Ultrasound Speckle, Rayleigh, RF Image
Retrieval, De-speckling, Tissue Characterization

1. INTRODUCTION

Ultrasound speckle [1] arises from the coherent accumula-
tion of random scatterers within a resolution cell when a
certain anatomical region is scanned. The common model
for speckle formation assumes a large number of scatterers
whose signals sum with a geometry resembling a random
walk of component phasors. This condition, known as fully
developed speckle, determines Rayleigh statistics for the en-
velope of the backscattered signal [2]. Regarding image
appearance, the Rayleigh distribution is appropriated in ho-
mogeneous tissue areas, while other distributions such as K-
[3], Nakagami [4], and Rician Inverse Gaussian [2] are more
convenient when the imaging region presents strong isolated
scatterers, which happens near edges/transitions. Many re-
search work has been developed aiming at providing clearer
images for visualization [5]. However, very few publica-
tions take into account the pre-processing operations of most
scanners which significantly affect the signal properties [3].
Moreover, several authors explore exclusively the extraction
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Fig. 1. Architecture of the proposed speckle decomposition
method.

of echo-morphology and texture features for tissue diagnosis
[6]. This paper proposes a joint method comprising RF image
retrieval, de-speckling and speckle isolation (see Fig.1). This
method provides useful de-speckled and speckle components
(images) from which echogenicity1 and texture features for
tissue characterization can be extracted.

2. METHODS

In this section we describe the methods to estimate the enve-
lope RF image from its B-mode version and subsequently we
estimate the de-speckle and speckle components.

2.1. RF image retrieval
De-speckling is employed in RF images, which correspond to
the envelope of the RF data after polar to cartesian coordinate
transformation. The process of RF image retrieval starts with
images displayed by the scanner (B-mode images, see Fig. 1).
This preliminary procedure is of extreme importance because

1Echogenicity is the characteristic ability of a tissue to reflect sound
waves and produce echoes.
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Fig. 2. Block diagram of a generic ultrasound imaging sys-
tem.

of the significant variability in the appearance of images ob-
tained with different scanners or acquired under different con-
ditions.

A realistic model of the ultrasound image formation
process is here proposed (Fig. 2) featuring the most signifi-
cant operations which affect the signal properties, specifically
the logarithmic compression, contrast and brightness tuning.
The model, represented in Fig. 2 and designated as Log-
Compression law, allows to simulate the generic processing
operations of the equipment and it is used in the envelope RF
image estimation.

Given the assumption of fully developed speckle, the en-
velope RF image, Y = {yi,j}, is modelled by Rayleigh sta-
tistics, where the probability density function (PDF) is given
by:

p(yi,j) =
yi,j
σ2
i,j

e
− y2

i,j

2σ2
i,j . (1)

The underlying parameter of the Rayleigh distribution, Σ =
{σi,j}, associated with each pixel intensity of the RF image,
yi,j , is related to the acoustic properties at the corresponding
location (i, j), in particular, the so-called echogenicity. Let
Z = {zi,j} be a N ×M B-mode image corrupted by speckle
where each pixel is generated according to the following Log-
Compression law:

zi,j = a log(yi,j + 1) + b, (2)

where (a, b) are unknown parameters which account for the
contrast and brightness respectively. Given (1), the distribu-

tion of the observed pixels z, p(z) =
∣∣∣dydz ∣∣∣ p(y) is:

p(zi,j) =
yi,j(yi,j + 1)

aσ2
i,j

e
− y2

i,j

2σ2
i,j , (3)

where y = e
z−b

a − 1. As pointed out in [7], (3) defines a
double exponential distribution with known standard devia-
tion (SD) analytical expression [8], yielding an estimate for
a:

âi,j =
√

24
σz(i, j)

π
, (4)

where σz(i, j) is the SD of the observations inside the win-
dow w, centered at the (i, j)th pixel.

To estimate the parameter b, we first consider the mini-
mum of the observed pixels zi,j given by:

s=min{zi,j} = a log(min{yi,j}+1)+b (5)

= a log(t+1)+b,

which means that:

b = s(Z) − a log(t(σ, L) + 1), (6)

with Z = {zi,j}. The distribution of b, derived in [9], is:

p(b|s(Z), σ) =
L

aσ2
t(t + 1)e−

L
2σ2 t

2
, (7)

where t = e
s−b

a −1. An estimator of b is found by computing
the expected value of bi,j using a numerical approach, such
that:

b̂i,j =
L∑
k=1

bi,j(k)p(bi,j(k)|s, σ0i,j), (8)

where bi,j(k) = k s/(L − 1) and k = 0, 1, ..., L − 1 are L
uniformly distributed values in the interval [0, s], since b ≥ 0

and from (6), b ≤ s. In (8), σ0i,j =
√

1
2nm

∑
k,l y02

k,l is the

Maximum Likelihood (ML) estimation of σi,j from the pixels
inside the window w, y0k,l.

The estimators of a and b, considered constant across the
image, are obtained by averaging the estimates âi,j and b̂i,j ,
such that: â = 1

NM

∑N,M
i,j=1 âi,j and b̂ = 1

NM

∑N,M
i,j=1 b̂i,j .

These parameters (â, b̂) are used to retrieve the envelope RF
image according to:

yi,j = e
zi,j−b̂

â − 1. (9)

2.2. De-speckling
In this section we describe the procedure to estimate the de-
speckled image Σ = {σi,j} from the estimated envelope RF
image, Y = {yi,j}. A Bayesian framework with the Maxi-
mum a Posteriori criterion (MAP) is adopted to deal with the
ill poseness nature of the problem. Hence, the de-speckled
image is obtained by minimizing an energy function:

Σ̂ = arg min
Σ

E(Y,Σ), (10)
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Fig. 3. Speckle decomposition validation using a B-mode
IVUS image (a) and corresponding RF0 image (obtained
from original RF signal). PDFs computed in a marked re-
gion extracted from B-mode, RF0 and R̂F images. (c) SNR
(μ(η)/σ(η)) map computed over the speckle field η̂.

where E(Y,Σ) = Ed(Y,Σ) + Ep(Σ). Ed(Y,Σ), called
data fidelity term, pushes the solution toward the data and
Ep(Σ), called prior term, regularizes the solution by intro-
ducing prior knowledge about Σ. The data fidelity term is the
log-likelihood function, Ed(Y,Σ) = − log(p(Y|Σ)) where
p(Y|Σ) =

∏N,M
i,j=1 p(yi,j |σi,j) and p(yi,j |σi,j) is given in

(1). The overall energy function obtained after considering
the variable change x = log(σ2) is:

E(Y,X) =
∑
i,j

[
y2
i,j

2
e−xi,j + xi,j

]
+ αTV (X) (11)

where the prior term,

TV (X) =
∑
i,j

√
(xi,j−xi−1,j)2 + (xi,j−xi,j−1)2, (12)

is the so called Total Variation (TV) of X = {xi,j}.
This energy function is convex because all of its terms are

convex (second derivative is positive) which means that its
solution is unique and the global minimum is reachable.

2.3. Speckle isolation
The speckle corrupting the ultrasonic data is multiplicative in
the sense that its variance depends on the underlying signal
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Fig. 4. (a-c) De-speckling example using a phantom image.
(d) Diagonal profiles of (a-c). (e) PDFs and data histograms.

Σ. Hence, the image formation model may be formulated as
follows:

yi,j = ηi,jσi,j , (13)

where σi,j is the intensity of pixel (i, j) of the de-speckled
image, while yi,j and ηi,j are the corresponding pixel intensi-
ties in the envelope RF image and speckle field, respectively.
The distribution of η is given by:

p(ηi,j) =
∣∣∣∣dy

dη

∣∣∣∣ p(y) = ηi,je
−η2i,j/2, η ≥ 0, (14)

which is an unit parameter Rayleigh distribution independent
of σ. The computation of the speckle field, N = {ηi,j},
is performed from the estimated envelope RF image, Y =
{yi,j} and from the de-speckled one, Σ = {σi,j} by using
(13), yielding:

ηi,j =
yi,j
σi,j

. (15)

3. EXPERIMENTAL RESULTS

The speckle decomposition method produces a de-speckled
image, carrying information about the local tissue echogenic-
ity, and a speckle field, related to the structure and the char-
acteristic pattern of the tissue.

We first investigate the validity of the proposed decompo-
sition method. Hence, we have used an intravascular ultra-
sound (IVUS) B-mode image corresponding to a cut of the
coronary artery (Fig. 3(a)) together with the RF image ob-
tained from raw RF data. The RF image retrieval method
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Fig. 5. Illustrative results of the ultrasound speckle decompo-
sition method applied to different tissue types.

is applied to the B-mode image to obtain an estimated R̂F
image. As shown in Fig. 3(b), the statistical properties of
the original RF image are closely similar to the ones of the
R̂F image. Moreover, using the R̂F image we obtain the de-
speckled and speckle components and compute the mean to
SD ratio (SNR) across the speckle field η (Fig. 3(c)), whose
values, when originated from Rayleigh distribution, should be
in the range of 1.5 to 2.5 [1]. Given this, it is observed that the
speckle field has statistical properties identical to a Rayleigh
distributed signal, which strongly suggests the adequacy of
the Log-Compression law used for RF image retrieval as well
as the Rayleigh observation model for de-speckling.

Secondly, the performance of the de-speckling method is
evaluated by use of a phantom image (w) depicted in Fig. 4(a).
This image, regarded as containing the true Rayleigh para-
meters, is corrupted with Rayleigh noise and transformed
according to the Log-Compression law (2) to obtain a B-
mode image Fig. 4(b). After application of the RF image
retrieval (providing y) and de-speckling methods, a clean,
edge-preserved image is obtained in Fig. 4(c), together with
image diagonal profiles of w, y and σ in Fig. 4(d). More-
over, the Rayleigh PDFs obtained with averaged parameters
computed in σ(W1), σ(W2), σ(W3) are overlapped with data
histograms in y(W1), y(W2) and y(W3).

Fig. 5 exhibits illustrative results of the application of the
proposed speckle decomposition method for different tissues,

including thyroid (a), carotid plaque (b) and liver (c). Results
obtained with synthetic (Fig. 4) and real (Fig. 5) data illustrate
the effectiveness and robustness of the de-speckling method
to remove speckle while preserving important edges, in im-
ages having different properties. Additionally, the adequacy
of the algorithm to correctly estimate the Rayleigh local para-
meters was also established in (Fig. 4(e)).

Although beyond the scope of this paper, we point out
two recent studies where ultrasonic tissue characterization
was performed using features extracted from de-speckled and
speckle components: (i) ultrasonic liver steatosis classifica-
tion [10] and (ii) subject identification based on ultrasonic
thyroid tissue [11].

4. CONCLUSIONS
In this paper, a decomposition procedure is proposed which
is able to estimate the de-speckled and speckle components
of an ultrasound image, providing additional sources of infor-
mation, referring to echogenicity and texture. The inclusion
of this information in distinct studies here presented showed
to be favorable for tissue characterization.
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