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ABSTRACT

Fluorescence confocal microscopy images are affected by fading ef-
fects, such as photblinking and photobleaching, that leads to image
intensity decreasing along the time, preventing long exposure time
experiments. These fading effects increase with the amount of radia-
tion that illuminates the speciem. Additionally, these type of images
present a low signal to noise ratio and are corrupted by a type of
multiplicative noise with Poisson distribution due to the strong am-
plification needed to observe the small fluorescent radiation emitted
by the fluorosphore. Therefore a trade-off exists between the needs
of increasing the incident radiation to improve the signal to noise ra-
tio and the needs of decreasing that radiation to minimize the fading
effects.

The main goal of this paper is to obtain an intensity decay law
to describe the photoblinking/photobleaching effect based on a the-
oretical model derived from the quantic phenomena described in the
literature, involved in the process. The decay law, derived here from
the theoretical model, matches the intensity decay law that is usu-
ally referred in the literature, obtained from experimental data. The
model is plugged in a Bayesian denoising algorithm that takes into
account the temporal correlation among consecutive images to im-
prove its visualization, mainly in the last ones where the intensity is
very small.

Results with real data is presented to illustrate the validity of the
model.

Index Terms— Photobleaching, photoblinking, differential
model, denoising, Poisson

1. INTRODUCTION

Fluorescence confocal microscopy (FCM) is a powerful biological
image modality [1] used to observe in-vivo dynamic process oc-
curring inside the cells. In this technique, tagging proteins, e.g.
Green Fluorescent Protein (GFP), fluoresce when radiated with a
specific wavelength laser making it possible to track single or groups
of molecules involved in very specific biochemical processes to be
studied.

The radiation emitted by the fluorescent proteins is very weak
and must be highly amplified. By this, the corresponding images are
usually corrupted by a type of multiplicative noise with Poisson dis-
tribution and simultaneously its overall intensity decays along time.
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This fading effect consists on a reversible, photoblinking, or per-
manent, photobleaching, ability loss of the fluorophore to fluoresce
along the time that prevents long time experiments. The correspond-
ing decay rate depends mainly on the amount of energy radiated over
the specimen. Therefore a trade-off exists between the needs of in-
creasing the incident radiation to improve the signal to noise ratio of
the image and the needs of decreasing that radiation to minimize the
fading effects.

An accurate model for this intensity decay is important in the
definition of the right observation model in order to obtain effective
denoising algorithms for this type of images. In this work a contin-
uous second order differential equation (2DE) dynamic model de-
scribing the photoblinking/photobleaching (PBB) effect is proposed
in section 2. The 2DE model is built by taking into account the
known quantic phenomena involved in the process that are described
in the literature.

The main novelty of this paper is the intensity decay law de-
scribing the PBB effect, derived from the proposed 2DE model, that
matches the one that is usually used in the literature, obtained from
experimental data [2, 3].

The proposed intensity decay law is included in a denoising al-
gorithm, designed in a Bayesian framework with the maximum a
posteriori (MAP) criterion, where the temporal correlation of con-
secutive images in the sequence is taken into account. With this ap-
proach it is possible to strongly attenuate the noise and enhance the
images, even in the last ones within the sequence where the informa-
tion is highly corrupted by noise and hidden due the PBB effect.

Tests with real data are presented to illustrate the validity of the
model and a denoising example with real FCM images is also shown.

The paper is organized as follows. Section 2 derives the dynamic
model that describes the photoblinking/photobleaching effect based
on the quantum effects involved and in information obtained from
the literature. Section 3 describes the Bayesian denoising algorithm
where the photoblinking/photobleaching effect is taken into account.
Section 4 present experimental results with real data and section 5
concludes the paper.

2. MODEL

From a fluorescence point of view, fluorescent tagging molecules
can be in three main states (see Fig.1), i) ON-state, where they are
able to fluoresce and be observed, ii) OFF-state, where they are
not able to fluoresce and therefore are not visible and finally at the
iii) BLEACHED-state where they become permanently OFF. The
molecules stay at each OFF-state and ON-state, called active states,
according to a power distribution [4] and they can commute between
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Fig. 1. Photoblinking and photobleaching electronic state transition di-
agram. S denotes excited singlet states and T and D denotes the ex-
cited triplet and anion states respectively. Blue arrows denote transitions
for higher energy levels, Green ones stay for transitions for lower levels
with fluorescence emission of radiation, orange and magenta transitions for
non BLEACCHED states and red ones denotes permanently transitions for
BLEACHED-states.

these two states, but are not able to recover from the BLEACHED-
state state. The mean intensity of an image at a given time instant is
assumed to be proportional to the number of fluorescent molecules
in the ON-state. In this section, a continuous time differential equa-
tion dynamic model is proposed to describe the number of molecules
in the ON-state and OFF-states along the time.

Let n be the total number of active fluorescent molecules where
nON of them are in the ON state and the remaining nOFF are in
the OFF state. The time intervals at each state are governed by Levy
statistics [4] following a power distribution [5], p(τr) = crτ

−ar
r ,

where r ∈ {ON,OFF}. The power law distribution associated
with these time intervals is related with the so called effect of statis-
tical aging that leads to a constant increasing on the time intervals
at each state along the time [4]. Additionally, it was experimentally
confirmed that aON > aOFF [5] which means that the fluorescent
molecules spend more time in the OFF-state than in the ON-state,
or equivalently, the relative number of transitions from the ON-state
to the OFF-state is larger than the relative number of reverse transi-
tions. Therefore, since the molecules spend more and more time in
the OFF-state [5], the probability of transitions decreases with time
and is always higher from the ON-state to the OFF-state than the re-
verse. This non stationary reversible process of transitions between
the ON and OFF states leads to a constant image fading along the
time called photoblinking.

The photobleaching, on the contrary, is a non-reversible process
where the fluorescent molecules loose its ability to fluoresce. As
noted in [6] the transitions to the permanent dark states occur only
from the excited states. Here, however, the model proposed in [7] is
adopted, where the photobleaching from the ON-state is discarded.
In this model, displayed in Fig.1, it is assumed that no photobleach-
ing occurs form the excited singlet state, S1 but only from the OFF-
states, composed by the triplet, T1−n, and anion, D1−n, states. The
transitions to the permanent dark state are represented in Fig.1 by
the red arrows.

The Jablonski diagram displayed in Fig.1 suggests the following
set of differential equations to describe the dynamics of the photo-

blinking/photobleaching effect

n(t) = nON (t) + nOFF (t) (1)
dnON

dt
(t) = βOFFnOFF (t)− βONnON (t) (2)

dn

dt
(t) = −ξnOFF (t) (3)

where n(t) is the total number of active molecules at instant t and
nON (t) and nOFF (t) are the number of active molecules in the ON-
state and OFF-state respectively, at the same time. ξ = I + τ is
the decay rate of the active molecules associated with the transitions
to the permanent BLEACHED-state where I is proportional to the
amount of incident radiation and τ is associated with other factors
not related with illumination. This means that even when no radia-
tion illuminates the specimen, I = 0, the number of active molecules
decreases. However, since the main factor for intensity decay is the
incident radiation it is expected that I >> τ .

Equation (2) models the photoblinking effect where it is assumed
that the variation of the number of molecules in the ON-state is pro-
portional, with constant βOFF , to the number of molecules at the
OFF-state and negatively proportional, with constant βON , to the
number of molecules in the ON-state. The magnitudes of βON and
βOFF are related with the previously referred statistical aging ef-
fect [4] that leads to an increasing number of active molecules in the
OFF-state and a correspondent decreasing number in the ON-state.
Therefore, the transition rate from the OFF-state to the ON-state is
smaller than the inverse transition, which means that βON > βOFF

The equation (3) models the photobleaching effect where it is
assumed that the total variation on the number of active molecules
is proportional, with constants τ and I , to the number of molecules
in the OFF-state, because only transitions from the OFF-state to the
BLEACHED-state are admissible in the model used in this paper (see
red arrows in Fig.1).

According to [6], the main cause of the photobleaching is the “il-
lumination history”. However in [7] the authors refer other important
factors to the photobleaching, such as the moist and the temperature.
The overall effect of theses factors is modeled in equation (3) by the
constant τ < I .

From the set of equations (1-3) the following second order
differential equation describes the dynamics of the number of
molecules in the ON-state, that is directly related with the inten-
sity of the image,

d2nON (t)

dt2
+ (α+ ξ)

dnON (t)

dt
+ βONξnON (t) = 0 (4)

where α = βON + βOFF . The Laplace transform of nON (t) when
the initial conditions are nON (0) = n0

ON and dnON

dt
(0) = ṅ0

ON , is

NON (s) =
as+ b

(s+ λ1)(s+ λ2)
(5)

where a = n0
ON , b = (α+ ξ)n0

ON + ṅ0
ON and

λ1,2 =
α+ ξ

2
∓

√
Δ(ξ)

2
(6)

with the discriminant

Δ(ξ) = ξ
2 − 2 (βON − βOFF )︸ ︷︷ ︸

>0

ξ + α
2 (7)

The roots of (7), ξ1,2 = βON−βOFF±2
√−βONβOFF , are always

complex because βON , βOFF > 0. Therefore the discriminant (7)
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is always positive, Δ(ξ) > 0, which means that the poles λ1,2 are
always real.

The inverse Laplace transform of (5) is

nON (t) = γe
−λ1t + (a− γ)e−λ2t, t ≥ 0 (8)

where

γ =
aλ1 − b

λ1 − λ2
(9)

The intensity decay law described by (8) and derived from (1-3),
matches the experimentally based model referred in the literature
where the photoblinking/photobleaching effect is expressed in terms
of two decaying exponentials.

3. SEQUENCE DENOISING

In this section the denoising algorithm for Poisson FCM images with
the Photoblinking/Photobleaching model included, is described.
The denoising algorithm described here is an improvement of the
algorithm described in [8] where the photoblinking/photobleaching
model described here was incorporated in the data observation
model.

Each data sequence of FCM images is denoted by a 3D tensor,
Y = {yi,j,t}, with 0 ≤ i, j, t ≤ N − 1,M − 1, L − 1. Each data
point, yi,j,t, is corrupted with Poisson noise and the time intensity
decrease due to the photobleaching effect is modeled by a weighted
sum of two decaying exponentials with constant rates, λ1 and λ2 as
derived in section 2. Each pixel of the noiseless sequence, X, can
then be written as xi,j,t = fi,j,tη(t) where

η(t) = e
−λ1t + γe

−λ2t (10)

and F = {fi,j,t}, with 0 ≤ i, j, t ≤ N −1,M −1, L−1 stands for
the underlying morphology of the cell nucleus. γ, λ1 and λ2 are con-
stants estimated in the fitting process of the model to the mean image
intensities along the sequence y(t) = Γη(t,Θ)+r(t)where r(t) are
the residues, Γ is a constant that is discarded and Θ = {λ̂1, λ̂2, γ̂}.

The ultimate goal of the proposed algorithms is to estimate the
cell nucleus underlying morphology, F, from the noisy data, Y, ex-
hibiting a low signal to noise ratio (SNR). A Bayesian approach
using the maximum a posteriori (MAP) criterion is adopted to esti-
mate F. This problem may be formulated as the following energy
optimization task

(F̂) = argmin
F

E(F,Θ,Y) (11)

where the energy function E(F,Θ,Y) = EY (F,Θ,Y) + EF (F)
is a sum of two terms, EY (F,Θ,Y) = − log(p(Y,F,Θ)) called
the data fidelity term and EF (F) = − log(p(F)) called the prior
term for F. The first term pushes the solution toward the observa-
tions according to the type of noise corrupting the images and the a
prior energy term penalizes the solution according with some pre-
vious knowledge about F, in this case a stepwise function [9]. As-
suming the independence of the observations, the data fidelity term,
which is the negative of the log-likelihood function, is defined as

EY (F,Θ,Y) = − log

[
N−1,M−1,L−1∏

i,j,t=0

p(yi,j,t|fi,j,t,Θ)

]
, (12)

where p(yi,j,t|fi,j,t,Θ) =
(fi,j,tη̂(t))

yi,j,t

yi,j,t!
e−(fi,j,tη̂(t)) is the Pois-

son distribution and η̂(t) is given by (10).

By assuming F as a Markov Random Field (MRF), p(F) can
be written as a Gibbs distribution, p(F) = 1

T
exp[−∑

c∈C Vc(F)],
where T is the normalizing constant and Vc(.) are the clique poten-
tials [10]. The negative of the argument of the exponential functions
in p(f) is called energy and will be denoted by EF (F). In this paper
log-Euclidean [11] based potential functions are used since they pro-
duce edge-preserving priors which are the most convenient to keep
the cell nucleus morphology and simultaneously to remove the noise
in the homogeneous regions. Therefore the overall problem consists
on the minimization of the following function

E(F,Θ,Y) =
∑
i,j,t

[fi,j,tη̂(t)− yi,j,t(log(fi,j,t) + log η̂(t))]

+ α
∑
i,j,t

√
log2

(
fi,j,t

fi−1,j,t

)
+log2

(
fi,j,t

fi,j−1,t

)

+ β
∑
i,j,t

√
log2

(
fi,j,t

fi,j,t−1

)
. (13)

where α and β are tunning parameters to reduce or increase the
strength of the regularization in the space and time dimensions re-
spectively.

4. EXPERIMENTAL RESULTS

Five sequences of real FCM images of the nucleus of a HeLa cell
[12], denoted by G26, G100, FLIP0, FLIP1 and FLIP2 were
tested for denoising using the proposed photobleaching model. G26
consists of 26 registered images of a cell nucleus, acquired with con-
stant low intensity laser illumination, at a rate of 23s. G100 is a se-
quence of 100 images of a cell nucleus, acquired in the same experi-
mental conditions as G26. FLIP0, FLIP1 and FLIP2 sequences
are the result of using the fluorescence loss in photobleaching (FLIP)
technique during the acquisition process with the purpose of induc-
ing intense diffusion and transport activities inside the nucleus. The
sampling rate is 3.6s in these three sequences.

The mean per image was computed for all the sequences and
the resulting curves were fitted with the described two-exponentials
model using a non linear least squares procedure. The original
curves (dotted blues line) and the fit results (continuous red lines)
are shown in Figs. 2. The root mean square error (RMSE), dis-
played in table 1, evince the adequacy of the theoretically derived
model to describe the global photobleaching effect in this imaging
modality even in the presence of diffusion and transport phenomena.
The denoising results for sequence G26 are presented in Fig. 3
and show the suitability of proposed model to cope with both the
photobleaching effect and the Poisson noise on what concerns to
the reconstruction of the cell morphology. Also the edge preserving
abilities of the adopted prior potential functions are noticeable in
this figure.

5. CONCLUSIONS

In this paper a continuous second order differential equation dy-
namic model for the fluorescence confocal image intensity decay is
presented. This model is based on the quantic mechanisms involved
in the photobleaching process that are summarized in a Jablonski di-
agram displayed in Fig.1. The solution of the model for a given set
of initial conditions leads to the same intensity decay law that several
authors have adopted, based only on experimental data. Denoising
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Fig. 2. Mean intensity per image (blue dotted line) and respective curve fittings by a two negative exponential model (red continuous line).
γ1 = γ and γ2 = a− γ.

Seq. γ a− γ λ1 × 10−4 λ2 × 10−4 RMSE
s−1 s−1

G26 22.61 6.69 2.00 41.00 0.17
G100 19.96 23.26 0.96 26.61 0.36
FLIP0 6.36 5.34 2.60 32.00 0.043
FLIP1 6.85 20.56 2.95 40.00 0.086
FLIP2 3.82 4.39 1.32 27.00 0.043

Table 1. Model parameters and root mean square error (RMSE) for se-
quences G26, G100, FLIP0, FLIP1 and FLIP2. Model: y(t) =
γe−λ1t + (a− γ)e−λ2t.

results using the proposed model show its adequacy to describe the
global photoblinking/photobleaching effects.
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