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Abstract— The diagnosis of Sleep disorders, highly preva-
lent in the western countries, typically involves sophisticated
procedures and equipments that are intrusive to the patient.
Wrist actigraphy, on the contrary, is a non-invasive and low cost
solution to gather data which can provide valuable information
in the diagnosis of these disorders. The acquired data may be
used to infer the Sleep/Wakefulness (SW) state of the patient
during the circadian cycle and detect abnormal behavioral pat-
terns associated with these disorders . In this paper a classifier
based on Autoregressive (AR) model coefficients, among other
features, is proposed to estimate the SW state. The real data,
acquired from 23 healthy subjects during fourteen days each,
was segmented by expert medical personal with the help of
complementary information such as light intensity and Sleep
e-Diary information.

Monte Carlo tests with a Leave-One-Out Cross Validation
(LOOCV) strategy were used to assess the performance of the
classifier which achieves an accuracy of 96%.

I. INTRODUCTION

Normal sleep circadian patterns are fundamental for regu-
lar and healthy conditions [1]. Sleep disorders affect both
adult and young population and can be associated with
diabetes, obesity, depression and cardiovascular diseases.
An accurate diagnosis of this type of disorders is usually
performed with polysomnography (PSG) which involves
complex hardware, is uncomfortable to the patient and is
usually done in clinical facilities. These highly constrained
conditions prevent its use in a non intrusive way in normal
daily life conditions.

The actigraphy data, obtained with non invasive and highly
portable actigraph sensors, which reflect the motor activity of
the subjects, has become a popular method in sleep studies
[2], [3], [4], [5], [6] due to its ability to register behavioral
data under normal life conditions.

Although some of the proposed methods to infer the
SW state from actigraphy report accuracy performances
ranging from 80% to 90% in certain conditions [2], [5], [4],
robustness and reproductibility improvements are possible
and desired [7]. The accuracy of actigraphy based methods
is highly subject dependent. It was shown that in cases of
young and children populations the actigraph is quite acurate
[7] but in cases of adult insomnia the actigraph is prone to
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detect false sleep states mainly because adult people tend to
remain still while awake [8].

The main weakness of actigraphy method, strongly related
with its dependence on the movement of the patient, is
more severe on populations that present fragmented sleep
periods [9], [10]. Although actigraphy measurements may
occasionally report false wakefulness states, e.g. in periodic
limb movement disorders [11], the false sleep detections rise
the major concerns [9].

In this paper auto-regressive (AR) coefficients, among
other features, estimated from the actigraphy data, are used
to discriminate the sleep and wakefulness states and auto-
matically identify the corresponding periods of the circadian
cycle of the sleep. The real data, acquired from 23 healthy
subjects during fourteen days each, was segmented by trained
medical staff with help of complementary information such
as light intensity and Sleep e-Diary information. Monte
Carlo tests with a Leave-One-Out Cross Validation (LOOCV)
strategy were used to assess the performance of the classifier
which achieves an accuracy of 96%.

A. State of the art

Actigraphy is a well established technique used in different
scopes and approaches. In [5], four different scoring algo-
rithms, two based on thresholding and the other two based
on regression analysis are used to detect wakefulness states
in three different conditions. In [4], actigraphy was used
to study sleep in pregnant women and in [3] a statistical
characterization of wrist actigraphy is proposed by using
events detection. In this method the time between successive
groups of movements and the number of movements at each
fixed time measurement epoch are registered and used to
detect abnormal movement patterns during the sleep state.
In order to overcome the limitations of actigraphy based
methods, mixed techniques are combined, such as the one
described in [12] where video is combined with actigraphy
to detect wakening episodes in children.

B. Paper organization

The paper is organized as follows: Section I introduces
and motivates the problem and the state of the art is revised.
The problem is formulated in Section II, where the used data
is described and the mathematical tools and algorithms are
presented. In Section III the numerical results are presented
along with it’s discussion. Finally, conclusions are drawn in
Section IV.
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II. PROBLEM FORMULATION

Visual inspection of the actigraphy data, displayed in
Fig. 2, clearly shows differences between the day and night
periods. The goal of this paper is to discriminate these
periods based on the characterization of the actigraphy data
mainly based on the coefficients of AR models fitted to the
data.

A. Experimental data

The data used in this paper was collected from 23 healthy
subjects, data from non-healthy subjects was also available.
The patients wore an actigraph from Somnomed on the
non dominant wrist for a period of approximately 14 days.
The actigraph sensor is mainly composed by a a 3D axis
accelerometer and the output signal is the mean magnitude
of the acceleration in each epoch, set to 1 minute in these
experiments.
The data obtained from the 23 healthy patients was manually
segmented into wakefulness and sleep periods by medical
trained personal through visual inspection, in approximately
350 segments. The segmentation of data from healthy pa-
tients is easier and may be done by using simple criteria to
identify the sleep/wakefulness (SW) binary state, because it
is much more predictable than in subjects with sleep dis-
orders. Periods corresponding to day time, with the obvious
exceptions of naps during the day, and continued movements
during the night longer than one minute were classified in
the wakefulness class, SW (t) = 0. All other periods, with
the exception of small transition intervals, were classified in
the sleep class, SW (t) = 1, where t is the sample index. The
extra information such as light intensity and sleep e-Diary
(SeD) data was used as a complement in the classification
process.

B. Auto-regressive model

In order to extract statistical properties of the data, AR
models [13] were fitted to limited segments of the actigraphy
data. A p-order AR model assumes that a given sample
may be expressed as a linear combination of the previous
p samples plus a residue

x(n) =

p∑
k=1

akx(n− k) + ε[n] (1)

From each segment, containing only wakefulness or sleep
data, W overlapped windows were extracted. The size of
each window (window-length), N , and the shift between
them (window-step) were initially set to 150 and 60 minutes
respectively but these values were later adjusted in order to
achieve optimal results. A p-order AR model was fitted to
each one of these windows, leading to a p×W sized matrix
of coefficients per segment.

The order of the model, p, was calculated using the
Akaike’s Information Criterion (AIC) [14]

AIC(p) = Nln(σ2) + 2p (2)

where N is the size of the window, p the order of the model
and σ2 the prediction error variance associated with p. The

optimal model order is the value of p that minimizes (2).
The value of p given by AIC was also optimized to obtain
an optimal compromise between error and computation time.

The set of all p estimated AR coefficients, akτ with τ ∈
{s, w} (where s and w refer to Sleep and Wakefulness
respectively), obtained from all windows from all segments
from each class/state are used to estimate the corresponding
mean, {µs, µw} and covariance matrices, {Cs,Cw}, of the
sleep, ωs and wakefulness, ωw, classes.

C. Bayesian Estimator

The obtained p × W matrices were combined into two
single matrices, containing the coefficients of the estimated
AR models obtained for wakefulness and sleep periods
respectively. The clouds of points of each class are described
by the following multivariate Gaussian distribution functions,

p(a|SW = 0) ∼ N (µs,Cs) (3)
p(a|SW = 1) ∼ N (µw,Cw) (4)

where a = {a1, a2, ..., ap} is a vector of coefficients, Cw

and Cs are p × p covariances matrices and µw and µs are
the centroid locations associated with the wakefulness and
sleep states respectively, computed in the training step.

Given an actigraphy sample, y(n) and its p previous
samples, Y (n) = {y(n− 1), y(n− 2), ..., y(n− p)}T , the p
coefficients of a p-order AR model are estimated as follows,

a(n) = (Y (n)Y T (n))−1Y (n)y(n) (5)

where a(n) = {a1(n), a2(n), ..., ap(n)}.
The discriminative functions to classify a, the logarithm

of the joint probability of a and ωτ , where ωτ ∈ {ωs, ωw}
are the sleep and wakefulness classes respectively, are

gτ (n) = log p(a(n), ωτ ) = log p(a(n)|ωτ ) + log p(ωτ ) (6)

where

log p(a(n), ωτ ) = −1

2
(a(n)− µτ )TC−1

τ (a(n)− µτ )

−1

2
log |Cτ |+ Cte (7)

and p(ωs) = p(ωw) in this paper.
The classification of each sample is based on the Bayes

factor, γ(n) = gs(n)− gw(n) according to

SW (n) =

{
1 if γ(n) ≥ 0

0 otherwise
(8)

D. Validation

The performance assessment of the estimator was tested
using a leave-one-out cross validation (LOOCV) approach.
The LOOCV approach consists in selecting one single seg-
ment of the segmented data and use it as the validation data
while the remaining segments are used as the training data.
This process is repeated such that each segment is used once
as validation data. The total estimation error is obtained as
follows

Total error =
FP + FN

N
(9)
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where FP and FN are the false positives and false negatives
respectively and N the total number of segments classified.
The Sensitivity and Specificity of the classifier were calcu-
lated as

Sensitivity =
TP

TP + FN
(10)

Specificity =
TN

FP + TN
(11)

where TP and TN are the true positives (SW = 0) and
true negatives (SW = 1) respectively. The error returned by
the LOOCV approach was also used to find the optimal
AR model order and the optimal window-length/window-step
combination. These optimal values were found by running
the LOOCV for several combinations of the parameter and
selecting the ones that lead to higher classification rates.

Finally, the estimator was trained with all the segmented
healthy data and tested with several non-segmented healthy
and non-healthy patients.

III. RESULTS

Due to the large size of the data sets and the high number
of iterations in some of the methods, namely the LOOCV,
the tests involve a heavy computational load. The code was
implemented in MATLAB@R2009 running on a 4× 2GHz
quad-core computer, with 4GB Ram, making use of Matlab’s
parallel processing functionalities.

The discriminative power of the classifier can be clearly
observed in Fig.1 where the coefficients of the second order
AR models associated with the data from both classes are
displayed.

Fig. 1. Plot of α1 vs α2 (2nd order AR model) for both Sleep and
Wakefulness data segments.

The cloud of coefficients obtained for wakefulness data
exhibits lower variance than the coefficients for sleep state
and a small overlap between both clouds is observed. The
obtained result confirms that the two states can be well
represented by a multivariate normal distribution.

TABLE I
ERROR OBTAINED FROM THE LOOCV TO SEVERAL MODEL ORDERS

Model Order Error (%)
3 3.69
4 3.67
5 3.82

10 3.86
20 4.47

TABLE II
PERCENTAGE OF ERROR OBTAINED FOR SEVERAL COMBINATIONS OF

WINDOW-LENGTH, N , AND WINDOW-STEP, M , WITH A 4th ORDER AR
MODEL.

N M
1 10 30 50

60 5.2 5.22 5.0 5.1
80 4.34 4.27 4.21 4.14

100 3.77 3.74 3.77 3.59
200 2.69 2.62 2.51 2.43
500 2.23 2.22 2.17 2.18
1000 2.36 2.25 3.45 5.88

The Akaike’s Information Criterion was used to determine
a first guess of the optimal AR model order. Several sim-
ulations, for different window-length/window-step combina-
tions, were tested, resulting in an optimal order of 20. Due
to the high number of iterations of the algorithms, a model
of a lower order is more convenient. To infer the effect of
the model order on the final error of the Bayesian estimator,
LOOCV was used to test several orders.

Table I shows the obtained error for the tested orders, it can
be seen that the optimal model order obtained from AIC does
not directly translates into a better result in the LOOCV. It
is important to note that, while the error obtained for p = 20
is not the minimum error, the differences between this result
and the ones with other orders are minimal. Through the rest
of the tests a model order of 4 is assumed.

In order to check the influence of window-length
and window-step, tests were run with different com-
binations of these values. Window-lengths of N =
{60, 80, 100, 200, 500} samples were tested with 1, 10, 20
and 50 samples for window-step.

Table II shows that the minimum error value returned by
LOOCV method corresponds to a window-size of 500 and a
window-step of 30.
The sensitivity of the classifier is 98% and the specificity
74%. Although wakefulness state is more prone to false sleep
detections this result reflects the different sizes of the two
groups of data.

The algorithm was finally tested with non-segmented
data. The Bayesian estimator was trained with healthy seg-
mented data using 4th order AR models to fit the data
and window-size/window-step were set to 500/30. Since
the non-segmented data to be classified has alternate sleep
and wakefulness states, a window size of 500 minutes,
approximately 8 hours, was too large, resulting into slow
transitions from sleep to wakefulness state and vice-versa.
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Thus, while the Bayesian estimator was trained with 500
minute data windows, the data to be estimated was seg-
mented into windows of 100 minutes, maintaining a window-
step of 30 minutes. Figure 2 shows a segment of ap-

Fig. 2. Plot of Actigraphy data and Bayes factor for approximately 2
nights/days. The light green line marks the value zero, to better evaluate
the Bayes factor.

proximately 2 nights and days of actigraphy data and the
correspondent Bayes factor. It can be seen that the value
of the Bayes factor is consistent with the actigraphy data
although the wakefulness state is more prone to estimation
errors than the sleep state.

Fig. 3. Plot of Actigraphy data and Bayes factor for approximately 2
nights/days.

Figure 3 plots a segment of data from a patient with sleep
disorders. The segment from the figure shows the detection
of a wakening episode, that was confirmed from the SeD
and actigraphy data. It can also be seen the detection of a
sleep period during the theoretical wakefulness period, this
detection can be either an error or a true episode.

This preliminary results suggest that a more complex
analysis of the Bayes factor along the circadian cycle may
provide more useful and complex information about the
stages of the sleep. The method proposed in this paper
is uniquely based on movement which imposes an upper
bound on the accuracy for sleep/wakefulness segmentation

purposes. In the future other physiological measures will
be incorporated such as the Heart Rate Variability (HRV),
body temperature, Sleep Diary, respiration and skin electrical
conductivity.

IV. CONCLUSIONS

This paper describes a classification procedure for actigra-
phy data for SW state estimation and detection of abnormal
temporal patterns associated with some of the most common
sleep disorders. The tests performed using real data form
23 healthy subjects resulted in an overall classification rate
of 96% using segmented data. The data used in this paper
for testing and training was manually classified by experts
with help of complementary information obtained from sleep
diary and light intensity. While it is expected that the error
increases for continuous data the ability of the method
to accurately estimate the SW state with minimum error
seems promissing. Especially when taking into account the
possibility of adding extra physiological or external features
to the classification procedure. These results are a step toward
an alternative method in the diagnosis of some specific sleep
disorders involving long term monitoring and normal day
life conditions, mainly when movement abnormalities are
present.
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