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Abstract. Steatosis, also known as fatty liver, corresponds to an abnor-
mal retention of lipids within the hepatic cells and reflects an impairment
of the normal processes of synthesis and elimination of fat. Several causes
may lead to this condition, namely obesity, diabetes, or alcoholism.

In this paper an automatic classification algorithm is proposed for the
diagnosis of the liver steatosis from ultrasound images. The features are
selected in order to catch the same characteristics used by the physi-
cians in the diagnosis of the disease based on visual inspection of the
ultrasound images.

The algorithm, designed in a Bayesian framework, computes two im-
ages: i)a despeckled one, containing the anatomic and echogenic infor-
mation of the liver, and ii) an image containing only the speckle used to
compute the textural features. These images are computed from the esti-
mated RF signal generated by the ultrasound probe where the dynamic
range compression performed by the equipment is taken into account.

A Bayes classifier, trained with data manually classified by expert
clinicians and used as ground truth, reaches an overall accuracy of 95%
and a 100% of sensitivity.

The main novelties of the method are the estimations of the RF and
speckle images which make it possible to accurately compute textural
features of the liver parenchyma relevant for the diagnosis.
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1 Introduction

Fatty infiltration of the liver (steatosis), occurs when the fat content of the
hepatocytes increases [II2]. Patients with fatty liver are usually symptom free
and the disease is typically detected by chance [II3]. It is estimate that the
prevalence of this disease in the United States and Europe ranges from 14 —20%
and it is related directly with the obesity, diabetes, or alcoholism [3].

Liver biopsy is the more accurate method to diagnose a fatty liver. However,
since it is invasive it is only used when the other non invasive methods fail. Within
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the non invasive methods, the imaging methods as ultrasound (US), computarized
tomography (CT) and nuclear magnetic resonance (MRI) plays a great part in
diagnosing and quantifying fatty liver [4]. Diagnosis based on ultrasound images
is, among the non invasive methods, the preferred one because it is non-ionizing,
non-invasive and is available in most of the medical and clinical facilities.

In general, the diffuse liver diseases appear in the US images with increased
echogenicity of the parenchyma and some times, in the pre-cirrhotic stages, with
textural changes [2]. In the case of the fatty liver this effect are accompanied by
an acoustic penetration decreasing and a reduction on the blood vessels and di-
aphragm definition [5]. However, a simple human visual inspection of the images
is not enough to get an accurate diagnosis of the disease stage [6] and highly
experimented operators are needed to detect subtle changes on the hepatic tex-
ture [5]. In fact, the criteria used to assess this disease by visual inspection are
not well defined and the diagnosis is in general highly subjective and operator-
dependent [7] (Figll). Additionally, the poor quality of the images, the speckle
that corrupt them and differences on the tunning parameters of the US scanner
prevent the adoption of an unified standard diagnosis procedure [8].

Fig. 1. Liver tissues samples: Steatosis (two left columns) and Normal (two right
columns)

Quantitative tissue characterization technique (QTCT) [7], could increase the
usefulness of US for the evaluation of diffuse liver disease. QTCT is based on
extraction of features from the US images for classification and identification pur-
poses and therefore for diagnosis purposes. The most common features described
in the literature are based on the first order statistics [6I5I7], co-occurrence ma-
trix [709], wavelet transform [10l9], attenuation and backscattering parameters [7]
and backscattering coefficient [7]. [11] proposes a tissue characterization from US
images of the thyroid based on features extracted from the Radon transform in
order to discriminate pattern directionality characteristics.

In this paper a classifier is proposed for automatic diagnosis of the steatotic
disease from ultrasound images of the liver parenchyma. The algorithm is based
on the usual criteria used by the physicians in the diagnostic process through
visual inspection of the ultrasound images (see Fig. 1). The method uses a Bayes
classifier that combines intensity features extracted from the estimated despeck-
led image and textural features extracted from the estimated speckle image after
compensation of the log compression performed by the ultrasound equipment.
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(c) Despeckled (d) Speckle

Fig. 2. Original ultrasound image a), the estimated RF signal b) and the two images
from which intensity c) and texture d) features are extracted

The paper is organized as follows: section 2l formulates the problem and char-
acterize the data. In section [3] the classification algorithm is described and in
section M examples using real data are shown. Section Bl concludes the paper.

2 Problem Formulation

In this paper an objective method is proposed where the observed ultrasound im-
ages are pre-processed and the original RF signal generated by the ultrasound probe
is estimated, as shown in Fig2lb). The RF image is used to estimate two images: a
despeckled one (see Fig[2lc)) containing the anatomic details from which intensity
features are extracted and a second image containing only the speckle (see Fig[2d))
from which the textural information is obtained. The estimation of the RF signal
makes it possible to attenuate the dependence on the the specific tunning param-
eters of the scanner, such as brightness and contrast, and therefore to reduce the
subjective nature of the traditional diagnosis based on visual inspection.

The estimation of the RF and of despeckled anatomic images is performed
using the Bayesian methods proposed in [12] and [13] respectively. In these meth-
ods the compression operation performed by the ultrasound scanner is modeled
by the following logarithmic function

Z=alog(Y+1)+b (1)

where Z is the observed US image and Y is the RF image to be estimated. The
RF image, corrupted by speckle, is described by a Rayleigh distribution



Fatty Liver Characterization and Classification by Ultrasound 357

Sy
ply:) = Fe 3 (2)
fi
where F = {f;} is the despeckled image and f; and y; are the i*" despeckled and
speckle pixels respectively.

In this paper the estimated noise field is used to extract the textural features
needed for the automatic diagnosis of the steatosis. The speckle corrupting the
ultrasound images is multiplicative in the sense that its variance depends on the
underlying signal F. The image formation model may be formulated as follows:

y=n/f (3)

where f is a pixel intensity of the despeckled image and 7 is the corresponding
noisy intensity. In this model, the noise field, 7, is independent of the signal as
occurs in the common additive white Gaussian noise (AWGN) model where the
noisy pixels, y = f + 1, are the sum of two independent terms, f and 5. In
the case of the multiplicative noise the corruption operation is not additive but
multiplicative as shown in (B]). The distribution of 7 is

p(n) = |j—f, p(y) = e >0 )

which is a unit parameter Rayleigh distribution independent of f.

3 Classifier

Visual classification of diffuse fatty infiltration disease from US images is usually
based on two main features: i) increase in liver parenchyma echogenicity and ii)
decreasing on the acoustic penetration with a corresponding visualization loss
of the diaphragm and hepatic vessels [2]. In this condition the pixel intensities
strongly decay with image depth (y axis).

The feature associated with the intensity decay is obtained by a linear re-
gression computed over the mean values of each line, h(i) = 5 Zj\il fi,; of the
despeckled image F where the following cost function is minimized

J = (mi+b-— h(i))? (5)

=0

with N and M being the number of lines and columns respectively and m the
slope that is used to quantify the depth decay as displayed in Fig3l

The textural features are obtained from the speckle image, 1, ; = y; ;/ m
by computing its first Haar wavelet decomposition vertical and horizontal de-
tails. The energies of these two images, EdV and FdH respectively, are used as
textural discriminant features of healthy and steatotic livers.

A Bayes classifier based on these three features, x = {m, EdV,EdH}, is
trained with data classified by expert clinicians in two classes, Normal, wy,
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Fig. 3. a) despeckled ultrasound image of a normal liver, b) despeckled ultrasound
image of a fatty liver and the c) represents two straight lines with slopes obtained by
averaging the m slopes of each set, normal (NLPD) and fatty livers (FLPD), obtained

from (&)

and Fatty, wr. It is assumed that the vector of features are multivariate nor-
mal distributed [I0J9] with different means, {uy, 1ur} and covariance, { ¥y, Xr},
matrices. The linear discriminant functions are

9-(0) = — 5 (x — ) T (x — ) — log | 57| +logP(w) ©)

2
where 7 € {N, F'}. The classification of a given vector of features x is performed
according with

Fatty if grp(x) > gn(x)
Normal otherwise

4 Experimental Results

The US images used in this paper were obtained by a common US equipment
in a hospital facility and all images were stored in DICOM format. The US
equipment settings were not standardize since we estimate the original RF signal
and despeckled image.

Two sets of images were stored: normal hepatic parenchyma (10 images) from 5
subjects and fatty hepatic parenchyma (10 images) from 5 subjects. The classifi-
cation was made manually by the operators and confirmed by indicators obtained
from laboratorial analysis.

The training process of the recognition system is operated in two modes:
training (learning) and classification (testing) [14]. For each class,w;=fatty and
we=normal, the textural features, mean and covariance, were estimated using
10 images with the leave-one—out cross—validation method.

Cross—validation is often used to estimate the generalization ability of a sta-
tistical classifier [15]. This method was used due to the lack of enough data for
the training and testing procedures.
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The classification accuracy were obtained by
Ca =1 — (false-negative rate + false-positive rate), (8)

where the false-negative rate is defined as the probability that the classification
result indicates a normal liver while the true diagnosis is indeed a liver disease
and the false-positive is defined as the probability that the classification result
indicates a liver disease while the true diagnosis is indeed a normal liver.

Complementary laboratory analysis of the fatty livers are nonspecific but in-
clude modest elevations of the aspartate aminotransferase (AST), alanine amino-
transferase (ALT), and -glutamyl transpeptidase (GGTP), accompanied by hy-
pertriglyceridemia, hypercholesterolemia [3].

From each image, one ROI of 128 by 128 pixels along the center line have
been selected.

The overall accuracy of the Bayesian classifier using the proposed algorithm
and combining the features selected was 95%, which is a promising result. In
this type of studies one of the most important characteristics is to optimize the
sensitivity (conditional probability of detecting a disease while there is in fact
a liver disease) and specificity (conditional probability of detecting a normal
liver while the liver is indeed normal), in order to reduce the false-negative and
the false-positive rate. The false-negative rate, in a first instance, should be
completely avoided since it represents a danger to the patient. In this sense,
the sensitivity parameter was optimal, since we obtain 100% in the classification
process and in terms of specificity of 95%.

The results illustrate a high sensitivity of detecting this type of disease. Also
the algorithm proposed apparently is not depending on the place of scanning and
on the operator technique, since the results were not influenced by the presence
of blood vessel and bile ducts within the liver parenchyma chosen for each ROI,
and also by the changes in US image parameters.

As it can be observed in Fig. M, the results have shown the usefulness of the
features in the detection of pathological cases because almost no overlapping is
observed between both statistical clouds. The mean cloud parameters for the
healthy livers are: Slope (1=0.8014; 02=0.0113); EdH (u— 0.1997; 02— 0.0021);
EdV (1=0.0466; 02=2.6068¢-04) and for the Fatty livers are: Slope (u=0.4796;
02=0.0337); EAH (1—0.0979; 02 =7.1793e-04); EAV (1—0.0678; 02— 2.6477¢-04).

As [16] propose, we assume that the physics of US scanning and the speckle is
separable into factors arising from orthogonal directions. The z direction will be
the transverse (lateral) direction. The z direction will be the range (longitudinal)
direction, or the direction of insonification. The physics in the transverse direc-
tion is governed by diffraction and interference effects of the coherent pressure
(scalar) fields. The physics in the range direction is governed by the shape of the
RF pulse that is sent and received. From the analysis of the results obtain by the
EdH and EdV it seems that the US images of the liver have different behavior
when it is normal or with fatty deposits. Characteristically the normal liver has
higher horizontal and lower vertical energy details when compared to the fatty
liver. So when the fat content in the liver increases the predominant direction
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Fig. 4. Distribution of fatty vs normal livers according to the selected features

is z, and in normal livers the predominant direction, according to the textural
information of the US image, is x, which is related with the histologic findings
in the case of fatty livers (macrovesicular fat).

5 Conclusions

The proposed algorithm, based on the quantification of the visual diagnostic
criteria, produces an objective analysis of the liver condition, which could be
helpful to aid the diagnosis in this type of diffuse liver disease. The results are
very promising in terms of sensitivity and specificity, which could aid in the
detection in early stages of this disease, in asymptomatic patients, in order to
prevent the progression to major lesions (steato-hepatitis or even cirrhosis). The
features used in this paper are mathematical and objective formulations of the
criteria used in the subjective and operator dependent traditional procedure
based on manual visual inspection.

The RF signal compensation and the separation of the despeckled component
from the original one is the key issue for the success of the proposed method.

Further studies in this area are needed. To develop a more robust algorithm,
we need to increase the number of patients. Perform the feature extraction meth-
ods in the original US images, prior to machine processing. Other classifica-
tion methods, such as neural network and the support vector machine classifiers
should be tested, to optimize the process.

References

1. Sherlock, S., Dooley, J.: Diseases of the liver and Biliary System, 11th edn. Black-
well Science Ltd., Malden (2002)

2. Droga, V., Rubens, D.: Ultrasound Secrets. Hanley and Belfus (2004)

3. Fauci, A., et al.: Harrison’s Principles of Internal Medicine, 17th edn. McGraw—
Hill’s, New York (2008)



10.

11.

12.

13.

14.

15.

16.

Fatty Liver Characterization and Classification by Ultrasound 361

Lupsor, M., Badea, R., Nedevschi, S., Mitrea, D., Florea, M.: Ultrasonography con-
tribution to hepatic steatosis quantification. possibilities of improving this method
through computerized analysis of ultrasonic image. In: IEEE International Con-
ference on Automation, Quality and Testing, Robotics, vol. 2, pp. 478-483 (May
2006)

Lee, C.H., et al.: Usefulness of standard deviation on the histogram of ultrasound
as a quantitative value for hepatic parenchymal echo texture; preliminary study.
Ultrasound in Med. & Biol. 32, 1817-1826 (2006)

Maeda, K., et al.: Quantification of sonographic echogenicity with grey-level his-
togram width: a clinical tissue characterization. Ultrasound in Med. & Biol. 24,
225-234 (1998)

Kadah, Y.M., et al.: Classification algorithms for quantitative tissue characteriza-
tion of diffuse liver disease from ultrasound images. IEEE Trans. Med. Imaging 15,
466478 (1996)

Li, G., et al.: Computer aided diagnosis of fatty liver ultrasonic images based on
support vector machine. In: 30th Annual International Conference of the IEEE,
Engineering in Medicine and Biology Society (EMBS 2008), pp. 4768-4771 (2008)
Yeh, W.-C., et al.: Liver fibrosis grade classification with b-mode ultrasound. Ul-
trasound in Med. & Biol. 29, 1229-1235 (2003)

Mojsilovic, A., et al.: Characterization of visually diffuse diseases from b-scan liver
images using non-separable wavelet transform. IEEE Trans. Med. Imaging 17, 541—
549 (1998)

Savelonas, M.A., et al.: Computational characterization of thyroid tissue in the
radon domain. In: Twentieth IEEE International Symposium on Computer-Based
Medical Systems (2007)

Seabra, J., Sanches, J.: Modeling log-compressed ultrasound images for radio fre-
quency signal recovery. In: 30th Annual International Conference of the IEEE,
Engineering in Medicine and Biology Society (EMBS 2008) (2008)

Seabra, J., Xavier, J., Sanches, J.: Convex ultrasound image reconstruction with
log-euclidean priors. In: 30th Annual International Counference of the IEEE, Engi-
neering in Medicine and Biology Society (EMBS 2008) (2008)

Jain, A., et al.: Statical pattern recognition: A review. IEEE Transactions on pat-
tern analysis and machine intelligence 22, 4-37 (2000)

Cawley, G., Talbot, N.: Efficient leave-one-out cross-validation of kernel fisher dis-
criminant classifiers. Pattern Recognition 36, 2585-2592 (2003)

Wagner, R., et al.: Statistics of speckle in ultrasound b-scans. IEEE Transactions
on Sonics and Ultrasonics 30, 156-163 (1983)



	Fatty Liver Characterization and Classification by Ultrasound
	Introduction
	Problem Formulation
	Classifier
	Experimental Results
	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


