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ABSTRACT

Dynamic-Contrast Enhanced MRI (DCE-MRI) is currently used as
a complementary diagnosis tool to assess the malignancy of the liver
tumor, calledhepatoma, hepatocarcinoma, hepatocellular carci-
nomaor adult primary liver cancer. This paper proposes a set of
features and computation methods to extract them in order to design
a classifier for automatic diagnosis of thehepatoma.

It is shown that theMaximum, WashInand WashOutrates of
the perfusion curves at each voxel obtained from DCE-MRI are ad-
equate discriminative features to automatically classify the tumors
with respect to its malignancy.

A dynamic discrete linear pharmacokinetic (PK) model is used
to estimate the perfusion curves from the noisy observations, based
on the multi-compartment paradigm. The arterial response to the
contrast agent bolus injection, calledarterial input function(AIF),
is also estimated since no arteries are available in the neighborhood
of the tumor.

The compensation of involuntary movements of the patient,
such as the respiratory activity, during the acquisition process is
performed using aMutual Information(MI) based registration al-
gorithm with non-rigid transformations. The tumor is isolated in
a small region of interest in order to speed up the analysis and the
tumor itself is segmented using an active contour algorithm.

The classification of the tumor is based on the mean and variance
values of theMaximum, WashInandWashOutrates of the perfusion
curves inside the tumor.

Tests using real data are used to illustrate the ability of using
these features to classify the tumor with respect to its malignancy.

Index Terms— DCE-MRI, Pharmacokinetic Model, Perfusion
Curve, Registration

1. INTRODUCTION

Theprimary liver canceror hepatomais one of the most lethal forms
of cancer and therefore early detection with non-invasive techniques,
such as MRI or ultrasound, is desirable and very useful from a clini-
cal point of view.

Dynamic-Contrast Enhanced MRI (DCE-MRI) in clinical prac-
tice is used to get information about the malignancy of tumors.
In this technique a bolus injection of a contrast agent, usually
gadolinium-DTPA(Gd), is given to the patient. A set of MRI vol-
umes are acquired, after the injection, and the perfusion of the
contrast agent, at each voxel, is followed along the time.

Malignant tumors are known to have an active angiogenesis
around them. SFor this reasons they are surrounded by wider,
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more permeable and higher number of vessels when compared with
healthy tissue. Therefore, in cancer tissues a rapid and high ampli-
tudeWashInrate followed by relatively rapidWashOutis observed.
Conversely, in the benign tumor or normal tissues slowerWashIn
andWashOutrates are observed. The maximum of the uptake is also
higher in malign tumors than in benign ones and normal tissues.

In this paper a physiological basedpharmokinecticsmodel is
used to estimate the perfusion curves from the noisy observations
and theMaximum, WashInandWashOutrates computed [1]. This
procedure is time consuming and computational demanding. To
speed up the algorithm only smallregions of interest(ROI) contain-
ing the tumor are processed, without decreasing the spatial resolu-
tion as shown in Fig. 1. However, the price paid for this reduction
on the overall processed volume is an increased difficulty on the reg-
istration step because less anatomical details are available to make
the alignment.

The registration of the several acquired volumes is needed to al-
low, as accurately as possible, to follows each intensity voxel along
the time without mixing information from different voxels. The main
causes of geometric distortions, that leads to this mixture, are the
involuntary movements of the patient such as the respiratory activ-
ity, during the acquisition process. The registration is performed
using theMutual Information(MI) criterion with non-rigid transfor-
mations.

Fig. 1. ROI selection.

The exact segmentation of the tumor tissue inside the ROI is
performed by using thegradient vector flow(GVF) active contour
algorithm proposed in [2] after performing edge-detection filtering.
Only the voxels inside the contour are processed and the respective
perfusion curve parameters are estimated. The global parameters
used to characterize the tumor are obtained with statistics computed
over the data inside the contour. This is the reason why is important
to obtain an accurate segmentation of the tumor.

The classification of the tumor is based on the mean and variance
values of theMaximum, WashInandWashOutrates of the estimated
perfusion curves inside the tumor.



2. DATA ACQUISITION AND PROCESSING

The overall characterization of the tumor is performed in five steps

1. Acquisition and ROI selection

A patient underwent DCE-MRI with paramagnetic contrast
agent Gd imaged with a Siemens Sonata scanner using the
”Vibe FS tra BH post iPat” protocol, aT1 weighted imaging
sequence. The quantity of contrast media, intravenously auto-
matically injected in the arm, was around 20-25 ml, during 5-
30s. The large magnetic moment of the Gd enhances the local
fluctuating magnetic field and thus reduces its longitudinal re-
laxation time constant, which leads to signal enhancement on
T1 weighted images. The contrast agent is injected a few sec-
onds before the the first post-contrast image acquisition and
typically six volumes (maximum size 589x413x125) are ac-
quired after the bolus injection at each30 seconds as shown in
Fig. 2. The time delay between the pre-contrast and the first
pos-contrast images is around120 seconds. The voxel size
varies from0.456×0.456×2 mm3 to 0.78×0.78×3 mm3.
Breath-hold is needed to minimize organ motion during the
acquisition process and therefore the patient is asked to hold
its breath between acquisitions. The data used in this paper
was provided by the Department of Radiology at the Erasmus
MC in Rotterdam.

Fig. 2. Acquisition protocol.

From the complete acquired volume a small cubic ROI con-
taining the tumor to be inspected is manually selected by a
specialist. This selected ROI is applied to all volumes of the
sequence. Here, the cropped size is about50 × 40 × 10 for
small tumors and80 × 90 × 16 for larger ones.

2. Registration

A registration procedure is needed to compensate for organ
and tissue displacements and involuntary movements of the
patient mainly caused by the respiratory activity. The main
goal is to make it possible to extract the time course associ-
ated to each voxel without interference of the neighborhood.
Here a registration procedure using the MI criterion and a
non-rigid transformation are used. The interpolation method
is B-splines based [3] and the optimization method is the reg-
ular step gradient descent. Here theMattes MI is used and
the performance of the alignment algorithm strongly depends
on the estimation of the joint intensity density distributions of
both volumes to be aligned. In order to speed up this proce-
dure neither all voxels are used nor all intensity gray levels
are discriminated. However, a minimum amount of data and
number of bins (gray level intervals) is needed to not degrade
the performance of the algorithm [4].

The alignment of all volumes is performed in a pair-wise ba-
sis by computing the following non rigid transformation

T̂ = arg max
T

MI [fp(x), fq(T (x))] (1)

where fp(x) = f(x, tp) and fq(x) = f(x, tq) are two
volumes from the data sequence and MI is defined as
MI(u, v) = h(u)+h(v)−h(u, v) whereh(z) = −Ez(ln p(z))
is the entropy ofz andEz() is the expectation operator.

Several difficulties must be overcome such as the amount of
samples and bins and the strategy of alignment. In fact, dif-
ferent results are obtained if each pair of consecutive volumes
is aligned, all volumes are aligned with a reference volume or
random pairs are selected for alignment. All these problems
were addressed by the authors in the scope of this work (de-
tails in [5]).

3. Segmentation

A segmentation step was needed to separate the tumor voxels
from the background and collect the voxels from the tumor
in order to estimate the perfusion curves. The images were
pre-processed withCannyedge-detector filter and the snake
was manually initialized inside the tumor. The active con-
tour is smoothly attracted to the edges due to the equilibrium
between the internal forces (tension and rigidity) and external
forces (gradient vector flowfield). The segmentation was per-
formed on the first post-contrast images from the time series
and the result was used on the following registered images.

4. Perfusion curves parameters estimation

5. Feature extraction and classification

These last two steps are addressed in the next section.

3. MODEL ESTIMATION AND FEATURES EXTRACTION

The PK model used for DCE-MRI is compartmental based in the
sense that it is derived on assumptions about the dynamics of the
contrast agent perfusion process and the water exchange rates be-
tween tissue compartments. It is assumed that the tissue comprises
two main distinct compartments: theintra-vascular plasma volume
spaceand theextravascular extracelular space(EES) as displayed
in Figure 3.

Fig. 3. PK Model



The generalized kinetic model, describing the evolution of con-
trast agent concentration with time, is defined by the following dif-
ferential equation [6],

dCt(t)/dt = KtransCp(t) − KepCt(t) (2)

whereCt andCp are the concentrations of the contrast agent in EES
and plasma space, respectively.Ktrans andKep are constants that
may be use to classify tumors. However, usually theWashInand
WashOutrates among others are the preferred parameters in clinical
practice for sake of simplicity [7].

The equivalent discrete system is obtained by approximating the
derivative by the differencedC(t)/dt ≈ C(n) − C(n − 1) leading
to the following discrete transfer function (see Fig.4)

D2(z) =
Ct(z)

Cp(z)
=

β

1 − αz−1
(3)

whereβ = Ktrans/(1 − Kep) andα = 1/(1 − Kep).
The input of the PK model is assumed to be the AIF, an approx-

imation toCp, and the output is the observed contrast agent concen-
tration,Ct, inside the tumor. The concentration itself is not usually
available but it can be estimated from the image intensity. In the case
of a low-molecular weight contrast agent such as Gd the relation is
simple,

z(n) = z(0)(1 + gC(n)) (4)

wherez(n) is the signal intensity,C(n) is the correspondent concen-
tration value,z(0) is the baseline intensity before the contrast agent
injection and g is a parameter depending on the tissue and contrast
agent. Since the value of the parameterg is not usually available,
the following signal is usedy(n) = gC(n) = z(n)/z(0)− 1 which
linearly depends on the concentrationC(n) [8].

Fig. 4. Overall transfer function

The input of the PK model, the AIF, is usually estimated in a
visible artery [8]. This strategy is not accurate when the artery is far
way from the tumor region. Furthermore, in this case, no arteries are
available because only a small ROI is being processed. Therefore
the AIF is also estimated by assuming a transport transfer function
from the arm up to the plasma space in the tumor tissue. The early
Tofts and Kermode model assumes an bi-exponential AIF that cor-
responds to a two poles and one zero discretelinear time invariant
(LTI) system.

Therefore, the overall transfer function used in this paper, relat-
ing the bolus signal injection in the arm with the contrast agent in
the tumor tissue [6] is a three poles and one zero LTI system,

H(z) =
K(1 − dz−1)

(1 − az−1)(1 − bz−1)(1 − cz−1)
(5)

The observation model is the following

y(n) = Kx(n) − Dx(n − 1)

− Ay(n − 1) − By(n − 2) − Cy(n − 3)

+ η(n) (6)

whereη(n) → N(0, σ2) is additive white Gaussian noise(AWGN),
A = 1 − a − b − c, B = ab + ac + bc and C = −abc are
the parameters of the system to be estimated. The small number
of samples of each time course,L = 6, is augmented by inter-
polation in order to generate a large vector of observationsy =
{y(0), y(1), ..., y(N − 1)}T whereN >> L. The bolus injec-
tion signal,x = {x(0), x(1), ..., x(N − 1)}T , is not completely
known and is also jointly estimated with the set of parametersθ =
{K, A, B, C}T by minimizing an energy functionE(y,x, θ).

The estimation of the parameters,θ = {K, A, B, C}T is per-
formed with theShanks’method [9,10]. The estimation of these
parameters is performed several times for different bolus injection
signals

x(n) =

{
1, d0 ≤ n ≤ d1

0, otherwise
(7)

whered0 andd1 changes each time the vectorθ is estimated. The
estimated vector[d̂0, d̂1] is obtained by

[d̂0, d̂1] = arg min
[d0,d1]

‖y − h(d0, d1) ∗ x(d0, d1)‖2
2 (8)

whereh(d0, d1) = {h(0), h(1), ..., h(N − 1)}T is the impulse re-
sponse of the estimated transfer functionH(z) when the input is the
signalx(d0, d1).

Three restrictions are imposed for[d0, d1]: i) the bolus injec-
tion starts before the acquisition of the first post-contrast image, ii)
d0, d1 > 0 and iii) the bolus injection durationd1 − d0 ≤ 40s. It is
also forced that they(n) will approximate zero fort = 960 seconds
after the beginning of the acquisition when the Gd is taught to be
going out of the body.

4. EXPERIMENTAL RESULTS

In this section two data sets from a benign and a malign tumors
were used to illustrate the application of the algorithm. The data
sets were aligned and the tumors segmented with active contours in
a single cross-section. TheMaximum, WashInandWashOutrates
values were computed from the estimated perfusion curves obtained
from the time courses associated with each voxel inside the tumor.

Fig.5 displays the estimated perfusion curves for a benign and
a malign tumor. Fig.6 displays theWashInrates for both tumors
where it is clear that the malign tumor is more heterogeneous than
the benign one.

The three parametersWashIn, WashOutand Maximumof the
perfusion curves are displayed in Fig. 7 and their mean and variance
are presented in Table 1.

This table shows clearly higher values for the mean and variance
values in the case of the malign tumor. In Fig.6 it can be seen that, in
terms ofWashIn, there is higher heterogeneity for the malign tumor.
The same effect can be observed in the other parameters.

5. CONCLUSIONS

In this work, a MI based registration algorithm was developed using
non-rigid transformations for DCE-MRI datasets. In this paper, it
was presented an algorithm to extract automatically features to build
a classifier of the tumor benignancy/malignancy based on theMaxi-
mum(Max),WashIn(WI) andWashOut(WO) rates obtained from the
perfusion curves measured from the MRI images. It was concluded
that the following features[µWI , σWI , µWO, σWO, µMax, σMax]
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Fig. 5. Time Courses inside the tumor. Observations (red), expanded
vector (green), estimated bolus injection (yellow) and estimated per-
fusion curves (blue)

Mean Variance
Malign 40 × 30 × 10 size 12 bins,1000 samples
WashIn 0.0650 2.7e − 3
WashOut 0.0067 1.6e − 5
Maximum 2.1729 1.9
‖f‖2/‖fw‖2 2.1739/0.0653 1.9/0.0027

Benign 80 × 90 × 16 size 32 bins,7000 samples
WashIn 0.0419 2.2e − 4
WashOut 0.0037 1.3e − 6
Maximum 1.3735 1.5e − 1
‖f‖2/‖fw‖2 1.3741/0.0421 0.1546/0.0002

Table 1. Features.f = [WashIn, WashOut, Maximum] and
fw = [WashIn, WashOut]

has enough discriminative properties to use in an automatic classi-
fying process. Other parameters can also be extracted from images
in order to get more relevant information about the tumors such as
shape irregularity and texture analysis in the parameters space. In
the future, more data and realistic perfusion models should be used
in order to design robust classifiers.
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