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ABSTRACT

The segmentation of the heart’sleft ventricle(LV) chamber in sev-
eral medical imaging modalities, e.g.Ultrasound(US) andMagnetic
Resonance(MRI), is important from a clinical point of view in the
diagnosis of certain cardiopathies. Manual segmentation is difficult,
not accurate and time consuming. Therefore, automatic segmenta-
tion and tracking during cardiac cycles is needed. In this paper an au-
tomatic algorithm to segment the LV boundary along a cardiac cycle
from ultrasound image sequences is used and a Bayesian despeck-
ling algorithm is proposed. The prior parameter of the Bayesian
filter is automatically estimated and an automatic window size se-
lection strategy in used to adapt its dimension to the statistical char-
acteristics of the image in the vicinity of the deformable contour
model which segments the LV boundary. Sequences of real ultra-
sound images are used to illustrate the effectiveness of the approach
and a comparison with other state-of-the-art filtering algorithms is
provided.

Index Terms— Left ventricle, total variation, tracking, ultra-
sound imaging.

1. INTRODUCTION

The segmentation of the heart’sleft ventricle(LV) chamber in sev-
eral medical imaging modalities, e.g.Ultrasound(US) andMagnetic
Resonance(MRI), is important from a clinical point of view in the
diagnosis of certain cardiopathies. Manual segmentation is difficult,
not accurate and time consuming and, therefore, automatic segmen-
tation and tracking during cardiac cycles is needed.

These images present lowsignal to noise ratio(SNR) and are
corrupted by a type of multiplicative noise, calledspeckle[1]. This
type of noise usually appears in acquisition processes involving co-
herent radiation likeLASER[2], Ultrasound[3] andSynthetic Aper-
ture Radar (SAR) [4]. The most used paradigmAdditive White
Gaussian Noise(AWGN) is not appropriate to deal with this medi-
cal imaging modality in which the noise can not be assumed additive
neither variance space invariant across the image.

Several techniques have been proposed to reduce the speckle
noise without distorting the relevant clinical details, e.g.median
filtering [5], anisotropic diffusion[6], wavelet soft thresholding[7]
and others approaches, such as, adaptive window stochastic [8].
Bayesian methods has been successfully used [9] in several biolog-
ical and medical imaging modalities. In the Bayesian framework
used in this paper the minimizer of an energy function is the desired
denoised one. This energy function is the sum of two terms: the
first, calleddata fidelity term, pulls the solution toward the data; the
second, is the prior term which regularizes the solution to remove the
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noise. The prior parameterα allows to tune the degree of smooth-
ness of the solution. Large values ofα makes it possible to remove
large amounts of noise but also some anatomical details needed for
the diagnosis. Small values ofα allows to keep these details but also
keeps the noise. Therefore, a tradeoff must be attained.

In this paper a Bayesian algorithm fordespeckleultrasound im-
ages is proposed where the prior parameter and the region of sup-
port of the kernel are automatically selected based on the statistical
properties of the image in the vicinity of the active contour. The
proposed algorithm is termed as TV-AWS (Total Variation with Au-
tomatic Window Size).

The TV-AWS method is compared with an unifying denoising
framework, proposed in [10], and with a state-of-the-art SBF method
[8] using real ultrasound sequences.

2. PROBLEM FORMULATION

Let X be aN ×M unknown image to be estimated from the noisy
imageY. The estimation ofX, formulated in a Bayesian frame-
work, is obtained by solving the following optimization problem

X̂ = arg min
X

E(X,Y) (1)

Using themaximum a posteriori(MAP) criterion the energy
function is

E(Y,X) = − log [p(Y|X)p(X, α)]

= − log [p(Y|X)]| {z }
EY (Y,X)

− log [p(X, α)]| {z }
EX (X)

(2)

wherep(Y|X) is the likelihood function, p(X, α) is a prior distri-
bution andα is a parameter;EY (X,Y), calleddata fidelity term,
depends on the observation model and attracts the solution toward
the data, andEX(X), calledprior term or internal energy, regular-
izes the solution, removes the noise and incorporates a priori knowl-
edge about the solution. In this paper thespecklenoise that cor-
rupts the ultrasound images is modeled by a Rayleigh distribution,
i.e. p(y|x) = (y/x)e−y2/2x, and it is assumed that the observations
are independent, i.e.p(Y|X) =

QN,M
i,j=1 p(y(i, j)|x(i, j)). This

leads to

EY (Y,X) =

N,MX
i,j=1

y(i, j)

x(i, j)
e
− y2(i,j)

2x2(i,j) (3)

whereX is assumed to be a band-limited signal described by a
Markov Random Field(MRF) defined using neighborhood interac-
tions among set of pixels. The prior distribution, under these as-
sumptions, is a Gibbs distribution, i.e.P (X) = Z−1e−U(X) where
Z is the partition function andU(X) is the so calledGibbs energy.



The Gibbs energy,U(X) smooths the solution and reduces the
noise. However, it must be carefully designed in order to not dis-
tort the transitions containing relevant anatomic details. To preserve
these details several authors have proposed Gibbs distributions that
preserve transitions, callededge preserving priors. One of the most
used is based on thetotal variation (TV) where the Gibbs energy is
defined as follows

U(X) =

N,MX
i,j=1

g(i, j) (4)

whereg(i, j) is the gradient magnitude computed at the pixel(i, j)
which may be computed by

g(i, j) =
p

(x(i, j)− x(i− 1, j))2 + (x(i, j)− x(i, j − 1))2) (5)

The energy to be minimized is therefore

E(Y,X) =

N,MX
i,j=1

"
y(i, j)

x(i, j)
e
− y2(i,j)

2x2(i,j) + αg(i, j)

#
(6)

The prior parameterα is used to control the smoothing effect in
the final solution by tuning the interaction strength among neighbor-
ing nodes. The larger isα the smoother is the final solution. The
selection ofα is a difficult and open problem. Most of the time this
parameter is chosen manually in a trial and error basis but several au-
thors already have proposed methods to select it automatically [11].
In this paper a new automatic method is proposed.

Let us factorize the prior distribution

p(X) =
1

Z
e−αTV =

N,MY
i,j=1

1

z(i, j)
e−αg(i,j) (7)

which may be viewed as the joint probability density function of
NM independent and identically distributed(i.i.d) random vari-
ables with probabilityp(g(i, j)) = 1

z(i,j)
e−αg(i,j). The indepen-

dence assumption of the gradients may be not realistic. However,
is a straightforward algebraic consequence of the Gibbs distribution
that describesX. Furthermore, this assumption leads to consistent
results, validating the above assumption. This distribution is a true
probability density function if

R∞
0

p(g)dg = 1 where the integration
is performed only forR+ becauseg(i, j) ≥ 0. From equation (2)
it is derived the following result:z(i, j) = 1/α, which means that
p(X) = αNMe−αTV (X). The energy function to be minimized is
therefore

E(Y,X, α) = EY (Y,X) + αTV (X)−NM log(α) (8)

The optimum value forα is the minimizer ofE(Y,X, α)

αopt = arg min
α

E(Y,X, α) (9)

which may be computed by solving the following equation
∂E(Y,X,α)

∂α
= TV (X)− NM

α
= 0, leading to

αopt =
NM

TV
=

1

ḡ
(10)

where ḡ is the average value of the gradient magnitude computed
over all pixels of the image.

The results obtained with this optimum parameter,αopt are usu-
ally over smoothed. In fact, the mean of the gradient magnitude
across the whole image tends to decrease due the homogeneous re-
gions which leads to an increase on the parameterαopt = 1/ḡ. To

avoid this effect, instead of using a constant optimum prior param-
eter computed with all image pixels, we propose to use an adaptive
scheme where the prior parameter is adjusted to the local character-
istics of the image, that is

α(i, j)opt = (G ∗H)(i, j) (11)

whereG is aN × M matrix containing the gradient magnitude at
each pixel andH is an ×m convolution mask. For instance, ifH
is a rectangular window eachα(i, j)opt is the average value of the
gradient magnitude computed around the(i, j)th pixel.

Here, theflattopwindow implemented in Matlab is used because
comparative experimental results have shown that leads to the better
results.

The energy function

E(Y,X) =

N,MX
i,j=1

"
y(i, j)

x(i, j)
e
− y2(i,j)

2x2(i,j) +
g(i, j)

(G ∗H)(i, j)

#
(12)

is minimized by using aMajorize/Minimize (MM) optimization
strategy, formulated as aSylvester/Lyapunovequation for which
there are fast and efficient algorithms described in the literature and
the fixed point method as described in [12]. This leads to

ΦNX + XΦM + C(Xt−1) = 0 (13)

whereΦN = β
2
IN + ΘN ; ΦM = β

2
IM + ΘM andC(Xt−1) =

Gt−1¯G̃¯ (Xt−1−(1/2)Y¯2)

2X¯2
t−1

−βXt−1. The matricesIN , IM areN

andM dimensional identity matrices respectively;G̃ = Gt−1 ∗H
andβ is a conditioner parameter, important to stabilize the iterative
algorithm but does not change the final solution, only the conver-
gence properties;̄ denotes an element wise operation andt the
estimation attthiteration. The matrixΘ is defined in [12].

3. SIZE WINDOW ESTIMATION

This section describes the procedure to automatically select theH
window size. The criterion used herein is inspired by [8] which is
based on the fact that the ratio of the mean to standard deviation of
a Rayleigh distribution is constant,R =

q
π

4−π
≈ 1.9. However

the real ultrasound images do not precisely follow a true Rayleigh
distribution. Thus, the adopted strategy is to select the size of the
window which distribution is as similar as possible with the Rayleigh
one.

At each pixel of the US image, we dynamically choose the win-
dow of dimension̂L× L̂ so that

L̂ = arg min
L∈S

|R−RL×L| (14)

whereRL×L is the ratio of the mean to standard deviation within a
neighborhood window sizeL. We allowed for a square window with
odd row and column to vary inS = {3, 5, . . . , 21} at each pixel.

This method allows us to select the best size window for each
pixel. Fig. 1(a) shows an US image of the LV, Fig. 1(b) shows
the corresponding“window size image”, where the intensity of each
pixel is the window size to be applied at that pixel. It is possible
to see the LV contour in a darker region (see Fig. 1(b)). Darker
regions correspond to smaller window sizes, brighter regions cor-
respond to larger windows. This means that at the discontinuities,
the window should be small, whereas in homogeneous regions the
window should be larger. Since the goal of this paper is to track the
boundary of the LV, we conclude that smaller sizes for the window
are desirable.



(a) (b)

Fig. 1. (a) Ultrasound image of the LV; (b)window size image.

The selection of the window size to be applied throughout the
sequences is related with the initialization of the tracking process.
This makes the procedure fully automatic. The initialization of the S-
PDAF (Shape Probabilistic Data Association) tracker [13] requires
that, the user must provide a set of points of the curve (samples of
the active contour) located at the LV contour in the first frame (see
dots in Fig. 2(a)). Then, orthogonal lines radiating from these points
are automatically constructed giving thevalidation gate(region in
which the features are detected from the image; we refer the reader
to [13]). Then, we compute the intensity profiles of all orthogonal
lines in thewindow size image. Fig.2 (c) shows one orthogonal line,
and Fig.2 (d) shows the corresponding intensity profile. After this
stage, we compute the histogram of the mean intensity profiles of all
orthogonal lines. The result is shown in Fig. 2 (b), which justifies
the window size of 3 pixel used in the evaluation presented in the
Section 4.
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Fig. 2. (a) Ultrasound image of the LV with the contour initialization
(dots), and the validation gate (orthogonal lines); (b) histogram of
the window sizes estimated from the validation gate; (c)window size
imagewith one orthogonal line and (d) the corresponding intensity
profile taken at that orthogonal line.

4. EXPERIMENTAL RESULTS

In this section we present an example of application concerning the
tracking of the left ventricle (LV). Two sequences of the ultrasound
LV are used. These sequences correspond to real medical exams
performed in two different people. The sequences were obtained

at a frame rate of15 frames sec−1 using an ultrasound probe op-
erating at1.7 Mhz. The size of the ultrasound sequences are: (i)
case]1: 490 frames (26 cycles); (ii) case]2: 470 frames (19 cy-
cles). The tracker used in this study is the S-PDAF. Details about
this method can be found in [13]. In this study we provide a compar-
ison of the following denoising methods:i) median filtering;ii) L2

prior; iii) TV prior; iv) Benford prior andv) proposed method;vi)
SBF [8]. The methodsii) to v) are implemented in the denoising
unified framework proposed in [10].

The ultrasound sequences were first pre-processed by each of the
six denoising algorithms mentioned above. In this way, we obtain a
total of 12 pre-processed sequences (six for each case). Then, we run
the tracker for each of the 12 pre-processed sequences, obtaining 12
sets of estimated contours of the LV.

Objective Evaluation

To evaluate the performance of the algorithms we compare the
contour estimates provided by the tracker with the ground truth (ref-
erence contours) provided by a cardiologist of Hospital Amadora-
Sintra. This comparison is done as follows: we selected four images
from each cardiac cycle (two images in the systole phase and two im-
ages in the diastole phase) and asked to a doctor to manually define
the LV contour for each of these images. The specialist segmented
80 images: 40 images from each sequence, 20 of them extracted dur-
ing the systole phase and other 20 images during the diastole phase.
The selection of the frames was random.

Five metrics were used in these tests:i) Hausdorff distance (cf.
[14]); ii) the average distance;iii) Hammoude distance (cf. [15]);
iv) Mean Sum of Squared Distance (MSSD) (cf. [16]) and Mean
Absolute Distance (MAD) (cf. [17]). Next, we briefly describe them.

Let X = {x1,x2, . . . ,xNx}, andY = {y1,y2, . . . ,yNy}, be
two sets of points obtained by sampling the estimated contour and
the reference contour. The smallest distance from a pointxi to the
curveY is

d(xi,Y) = min
j
||yj − xi|| (15)

This is known as the distance to the closest point (DCP). The average
distance between the setsX , Y is

dAV =
1

Nx

NxX
i=1

d(xi,Y) (16)

whereNx is the length of theX The Hausdorff distance between
both sets is defined as the maximum of the DCP’s between the two
curves

dHDF (X ,Y) = max
�
max

i
{d(xi,Y)}, max

j
{d(yj ,X )}

�
(17)

For Hammoude distance let us defineRX , RY as the image re-
gions inside the two contours. We compute the number of points
which belongs to only one of these regions and normalize it by the
number of points of the union of both regions

dHMD =
]
�
(RX ∪RY)− (RX ∩RY)

�

](RX ∪RY)
(18)

If we represent the regionsRX , RY by two binary images, the
dHMD is equal to the Hamming distance between the binary images,
normalized by the area of their sum. The Hammoude distance is a
normalized version of the Hamming distance which is widely used
to compare binary strings and images in information theory.

The MSSD and MAD distances are defined as follows

dMSSD(X ,Y) =
n 1

n

nX
i=1

d2(xi,Y) +
1

m

mX
i=1

d2(yi,X )
o

(19)



Table 1. Metrics mean values for the first and second sequences.
Median L2 TV Bfd TV −AWS SBF

dHmd
sequence#1 0.20 0.18 0.19 0.17 0.14 0.18
sequence#2 0.25 0.22 0.19 0.20 0.18 0.18

dAv
sequence#1 4.66 4.20 4.19 3.81 3.30 4.32
sequence#2 4.57 4.33 3.57 3.74 3.68 3.75

dHdf
sequence#1 13.74 12.83 12.78 11.33 9.70 13.25
sequence#2 12.17 11.16 9.48 9.95 9.95 9.86

dMSSD
sequence#1 2.13 1.61 1.57 1.26 0.96 1.62
sequence#2 2.14 1.55 1.46 1.79 1.31 1.19

dMAD
sequence#1 0.25 0.23 0.23 0.21 0.19 0.24
sequence#2 0.26 0.24 0.20 0.21 0.20 0.20

dMAD(X ,Y) =
n 1

n

nX
i=1

d(xi,Y) +
1

m

mX
i=1

d(yi,X )
o

(20)

whered is the DCP given as in (15). In the two above distances,
they do not give higher weights to longer sequences. In this paper,
the distances in (19) and (20) do not have point correspondence as
originally proposed in [16,17]. Thus, the nearest point from the other
contour is taking as the corresponding point.

Table 1 shows the fidelity in the representation of the LV con-
tour obtained in the two US sequences, which is an important fea-
ture when tracking the contour of the object of interest. These val-
ues correspond to the mean values of the metrics described above.
From Table 1 we conclude that, in the first sequence, the proposed
approach exhibits the best results. In the second sequence, the best
scores are shared with the proposed method the TV prior as well as
the state-of-the-art SBF method. We can say that the proposed ap-
proach provides competitive results which are capable to compete
with other methods recently proposed.

5. CONCLUSIONS

This paper proposes a new denoising algorithm with automatic win-
dow size and hyper parameter estimation. A comparison between
the proposed approach and an unified framework [10] as well as a
state-of the art algorithm SBF [8] is provided. The experimental re-
sults testify that the method proposed herein is capable to provide
competitive results.

Although remarkable results are achieved, further work will ad-
dress spatial-temporal concerns. In fact, we have used the same win-
dow size for all points along the LV contour during all frames in
the sequence. We believe that it is possible to improve the results,
providing higher accuracy estimates of the LV contour, if the hyper
parameter estimation is performed in a spatiotemporal vary window.
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