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ABSTRACT
The blood-oxygenation-level-dependent (BOLD) signal, measured
with the Magnetic Resonance Imaging (MRI), is currently used to
detect the activation of brain regions with a stimulus application,
e.g., visual or auditive. In a block design approach, the stimuli
(called paradigm in the fMRI scope) are designed to detect activated
and non activated brain regions with maximized certainty. However,
corrupting noise in MRI volumes acquisition, patient motion and
the normal brain activity interference makes this detection a difficult
task.

In this paper a new Bayesian method, called SPM-MAP, is
proposed where a joint detection of brain activated regions and
estimation of the underlying hemodynamic impulse response func-
tion (HRF) is proposed.

Monte Carlo tests on its error probability and HRF estimation
with synthetic data are performed and presented.

Index Terms— Functional MRI, Activity Detection, Bayesian

I. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is the most
prominent method used to detect brain activated regions involved
in particular tasks. This modality relies on changes in blood oxy-
genation and volume, consequence of the hemodynamic response
events related to local neural activity. This signal, called blood-
oxygenation-level-dependent (BOLD), results from the endogenous
magnetic contrast between 0xyhaemoglobin (diamagnetic) and de-
oxyhaemoglobin (paramagnetic). Hence, increased blood volume
reduces the local concentration of deoxygenated hemoglobin caus-
ing an increase in the magnetic resonance (MR) signal on a T2 or
T2*-weighted image [1].

The goal is the visualization of the statistical map representation
of which areas are activated after the stimulatus paradigm applica-
tion during the scan. To obtain the desirable results, several process-
ing steps are usually involved, e.g. image preprocessing (motion and
noise correction), spacial normalization transformation, statistical
tests and the final inferences procedures [2]. Considering the last
two steps, which are the focus of this paper, the general approach
is to express the observed response variable in terms of a linear
combination of explanatory variables (EVs) [3] (which include a
rigid HRF estimate), and makes use of classical statistics (T or F
tests) to infer activity, using e.g. a p-value threshold.
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The inference results are strongly dependent on the HRF esti-
mation, which is usually not known. In the literature there are two
different approaches for the HRF modeling. The most common
approach is purely heuristic, using known functions (e.g. gamma
functions [2], or Gaussian functions to fit the experimental data.
The second approach is physiological, modeling the underlying
physiological process involved in the BOLD signal generation, e.g.
the Balloon Model [4] which is often used and augmented.

In this paper a time invariant linear infinite impulse response
(IIR) model is used, called physiologically based hemodynamic
(PBH) model [5], which is simplicity and physiologically sound.

This paper proposes a new algorithm that jointly detects the brain
activity (which leads to a functional brain map) and the local HRF
estimation, in order to minimize the detection error probability.

In order to estimate the binary (activated or not) information on
each voxel (volume element), a Bayesian approach is used to force
a binary solution for the EV’s and the corresponding optimal HRF
estimating.

Monte Carlo tests are performed using synthetic data, where the
activity detection errors probability and the mean HRF estimations
are presented for several amounts of corrputing.

The rest of the paper is organized as follows. Section II for-
mulates the problem and In Section III the estimation Bayesian
method is presented. Section IV presents the experimental results
and section V concludes the paper.

II. PROBLEM FORMULATION
Each voxel, after the application of a given paradigm (a combi-

nation of stimulus time-courses) may be activated by one or more
applied stimulus (∃k : βk = 1) or may not be activated at all
(∀k : βk = 0).

Fig. 1. BOLD signal generation model.

The signal BOLD associated with each voxel along the time (time
course) is dealt in a 1D basis, independently of the other voxels.
The data observation model, displayed in Fig. 1, is the following

y(n) = h(n) ∗
N∑

k=1

βkpk(n) + η(n) (1)



where η(n) is additive white Gaussian noise (AWGN), h(n) is the
hemodynamic response function of the brain tissues, pk(n) are the
stimulus signals along time and βk are unknown binary variables
to model the activation of the voxel by the kth stimulus.

The Statistical Parametric Mapping algorithm (SPM) proposed
here, designed in a Bayesian framework and using the maximum a
posteriori (MAP) criterion is called SPM-MAP1. It jointly estimates
the vector b = {β1, β2, ..., βN}T , associated with each voxel
and the corresponding hemodynamic response, h(n), which can
be denoted in vectorial form, h = {h(1), h(2), ..., h(L)}T , where
L is the number of y observations.

The physiologicaly based HRF model [5] used in this paper has
the following third order discrete transfer function

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2 + a3z−3
(2)

where the coefficients bk and ak must be estimated.
The estimation process is performed by minimizing an energy

function depending on the binary unknowns βk, on the hemody-
namic response h(n) and on the observations y(n) (see Fig. 1).
The direct estimation of the H(z) coefficients is a difficult task
because it is not easy to define simple priors for these coefficients
based on the desired time response h(n). Therefore, to overcome
this difficulty, instead of estimating the ak and bk IIR coefficients, a
FIR is estimated, g = {g(1), g(2), ..., g(F )}T , with length F ≤ L.
In each iteration this estimated response is projected into the H(z)
space, i.e., the set of coefficients ak and bk are estimated in order
to minimize ‖g(n)− h(n)‖. The first F samples of h(n) are used
to obtain a new estimate of the binary unknowns βk. This process
is repeated until convergence is achieved.

The signal x = {x(1), x(2), x(3), ..., x(L)}T (see Fig. 1) may
be expressed as x = θb where

θ =




p1(1) p2(1) p3(1) ... pN (1)
p1(2) p2(2) p3(2) ... pN (2)
p1(3) p2(3) p3(3) ... pN (3)

...
...

... ...
...

p1(L) p2(L) p3(l) ... pN (L)




(3)

.
The output vector of H(z), displayed in Fig. 1, z =

{z(1), z(2), z(3), ...z(L)}T , is obtained by convolving h with x,
z(n) = hF (n) ∗ x(n), where hF (n) are the first F samples of
h(n). The output signal may be expressed in the two following
ways i) z = Hx and ii) z = Φh where H and Φ are the following
L× L and L× p Toeplitz matrices respectively

H =




h(1) 0 0 0 0 0
h(2) h(1) 0 0 0 0
h(3) h(2) h(1) 0 0 0

...
...

...
...

...
...

0 ... h(p) h(p− 1) ... h(1)




(4)

Φ =




x(1) 0 0 0 0
x(2) x(1) 0 0 0

...
...

...
... 0

x(L) x(L− 1) ... ... x(L− P + 1)


 (5)

1Statistical parametric mapping is generally used to identify functionally
specialized brain responses[3]

The observed BOLD signal y(n), y = {y(1), y(2), ..., y(L)}T

can therefore be obtained with the following two ways

y = Ψb + n (6)

y = Φh + n (7)

where Ψ = Hθ and n = {η(1), η(2), ..., η(L)}T is a vector of
independent and identically distributed (i.i.d) zero mean random
variables normally distributed, that is, p(η(k)) = N(0, σ2

y). This
additive white gaussian noise (AWGN) is usually used to model
the corruption process in functional MRI, although other models
may also be used, e.g., Rice and Rayleigh distributions. In this
work we suppose that the motion correction preprocessing step
was efficient enough to remove most of the temporal correlation
between voxels, and so its influence is included and corrected along
with the corruption noise.

III. ESTIMATION

The maximum a posteriori (MAP) estimation is obtained by
minimizing the following energy function

E(y,x(b),h) = Ey(y,x(b),h) + Eb(b) + Eh(x(b)) (8)

where the data fidelity term Ey(y,x(b),h) = − log(p(y|x(b)))
and the prior terms associated to the unknowns to be estimated,
b = {β1, ...βN} and h = {h(0), ..., h(p − 1)} are Eb(b) =
− log(p(b)) and Eh(x(b)) = − log(p(h)) respectively. These
priors incorporate the a priori knowledge about the unknowns to
be estimated, that is, βk are binary and h(n) is smooth.

The estimation process is performed in the following sequential
three steps,

bt = arg min
β

E(y,x(bt−1),ht−1) (9)

g = arg min
h

E(y,x(bt),ht−1) (10)

ht = ProjFIR [ProjIIR(g)] (11)

where ()t means estimation at tth iteration and Proj stands for
the projection operation by using the minimum square error (MSE)
criterion. The ProjIIR problem is not trivial [6]. In this paper the
approximation algorithm proposed by Shanks [6] is used.

The assumption of statistical independence for the observa-
tions means that p(y|x(b),h) =

∏L
i=1 p(y(i)|(x ∗ h)(i)) where

p(yi) ∼ N ((x ∗ h)(i), σ2
y). The parameters βk to be estimated

are also assumed independent, that is, p(b) =
∏N

i=1 p(βk) where
p(βk) is a bi-modal distribution defined as a sum of two Gaussian
distributions centered at zero and one, with σβ

2 variance.

p(βk) =
1

2

[
N(0, σ2

β) + N(1, σ2
β)

]
(12)

because βk are assumed to be binary variables, βk ∈ {0, 1}. In
order to better approximate the binary answer, the σβ parameter
should be as small as possible but numerical stability reasons
prevent the adoption of too small values. The prior term Eb(b)
may therefore be written as

Eb(b) =

N∑

k=1

[
2β2

k − 2βk + 1

4σ2
β

− log

(
cosh

[
2βk − 1

4σ2
β

])]
. (13)



The smoothness of h(n) is obtained by using a Gibbs distribution
to model h, p(h) = 1

Zh
e−α

∑N
n=2 (h(n)−h(n−1))2 which leads to

Eh(x(b)) = − log(p(h)) = α(∆h)T (∆h) + C (14)

where α is a parameter that tunes the smoothing degree for h(n),
C is a constant, Zh is a partition function and ∆ is the following
difference operator

∆ =




1 0 0 ... 0 −1
−1 1 0 ... 0 0
0 −1 1 ... 0 0
...

...
... ... 0 0

0 0 0 ... −1 1




(15)

The energy function (8) to be minimized, E(y,x(b),h), has
the following formats in step one and step two respectively

E1 =
1

2σ2
y

(Ψb− y)T (Ψb− y) + Eb(b) + C1 (16)

E2 =
1

2σ2
y

(Φh− y)T (Φh− y) + αhT (∆T ∆)h + C2. (17)

The MAP estimate is obtained by finding the E(y,x(b),h)
stationary point, ∇E(y,x(b),h) = 0 where (∇) is the gradient
operator.

In the first step b is estimated by solving the following equation

∇bE1 = ΨT (Ψb− y) +
σ2

y

σ2
β

[
b− 1

2
R(b)

]
= 0 (18)

where ∇b is the gradient operator with respect to b and R(b) is
a column vector with N elements

rk = 1 + tanh

[
2βk − 1

4σ2
β

]
(19)

. The solution of (18) is obtained by using the fixed point method
which leads to the following recursion

b̂t = (ΨT Ψ + λI)−1(ΨT y +
λ

2
R(b̂t−1)) (20)

where λ = σ2
y/2σ2

β is a parameter, I is a N dimensional identity
matrix and b̂t is the b estimate at tth iteration.

In the second step, hN (n) is estimated by solving the following
equation

∇hE2 = ΦT (Φh− y) + 2λσ2
yLh = 0 (21)

where ∇h is the gradient operator with respect to h and L = ∆T ∆
(see (15)). The solution of (21) is

g =
[
ΦT Φ + 2λσ2

yL
]−1

ΦT y (22)

where Φ(x(b)) is computed with the b estimate obtained (20) in
step one, b̂t.

Finally g is projected in the space of the admissible responses
of H(z) and afterward re-projected in the FIR space, h =
ProjFIR [ProjIIR(g)]. This projection step is needed because the
HRF smoothness constraints is much more easy to define in the
time domain than in the parameters domain of the IIR model.
However, this FIR response does not necessarily belong to the
responses space of the adopted IIR PBH model, presented in section
II. The g → IIR projection is performed by using the Shanks’s
method [6] and then, re-projection in the FIR space is nothing more
than computing the L first samples of h(n).

These three steps are repeated until convergence is achieved.
To accomplish the desired binary nature of b̂, the following

threshold is applied to β̂k

b̂k =

{
0 β̂k < 0.5

1 otherwise
(23)

and these are the activation parameters that provide information
on whether the brain area represented in the corresponding voxel
was activated by each of the paradigm stimulus or not.

IV. EXPERIMENTAL RESULTS
In this section Monte Carlo tests of the proposed SPM-MAP

method are presented in order to evaluate the performance of
the algorithm. Two synthetic binary images of 128x128 pixels
where generated, which represent a single BOLD slice signal, as
can be seen overlapped in the Fig. 2 (with the error resultant
from the estimation). In it, colored voxels (red, yellow and white)
where activated by, at least, a stimulus paradigm and the black
pixels where not activated at all. So according to the mathematical
notation presented above, red: b = {1, 0}T ; yellow: b = {0, 1}T ;
white: b = {1, 1}T and black: b = {0, 0}T , which is the activation
ground truth to be estimated for each voxel.

The BOLD signal, y(n), is generated by using the model pre-
sented in Fig. 1. A reasonable two stimuli block-design paradigm,
p1(n) and p2(n), of 10 seconds task duration followed by a 30
second rest period each in 5 epochs, were used in order to obtain
a non superposition of p1(n) and p2(n) while allowing for the
BOLD signal to decay to rest. The true impulse HRF signal,
h(n), was generated from a representative IIR, selected from the
PBH estimation on real single-event data [5], and the following
noise energies were used: σy = {0.2, 0.5, 0.7, 0.8, 1}. These noise
energies are better evaluated when compared against the BOLD
signal energy level, which is done with the signal-to-noise ratio
(SNR = 10 log

∑N
1

[(β1×p1(n)+β2×p2(n))∗h(n)]2

σ2
y

) for the two

data cases in which the BOLD signal is present:
∑2

k=1 b(k) ≥ 1
(see Table I ).

This generated synthetic data is equivalent to 2× 128× 128 =
32768 independent y(n) time-courses, containing all possible com-
binations for the b vector. These are used on Monte Carlo tests
to compute the Pe(σ, N) = 1

R

∑R
i=1 |b̂i − bi|, and the results

graphically presented in Fig. 2 and in Table I).

σy 0.2 0.5 0.7 0.8 1
SNR(dB) 7.3;11 -0.63;2.6 -3.6;-0.37 -4.7;-1.5 -6.7;-3.5

Pe(%) 0.0427 0.0916 0.168 0.260 4.27

Ṗe(%) 0 0 0.0244 0.0245 1.51
P̈e(%) 0 0 0.0073 0.0061 0.513

Table I. Monte Carlo Pe (IV) of SPM-MAP for several values of
AWGN σy and correspondent SNR values for the

∑2
k=1 b(k) ≥ 1

two different signal energy situations. Spatial correlation correction
is exemplified in Ṗe and P̈e where one and two isolated pixels were
dismissed, respectively.

Table I shows that even for high noise levels the proposed SMP-
MAP method presents a Pe < 0.3%. It is important to point-out that
although the SNR in MRI depends on a large number of variables,
it is usually more than 1dB [2]. So the most realistic σy values
would be situated between 0.2 and 0.5, for the data used. In this



Fig. 2. SPM-MAP activation detection results for σy = 0.5 (up)
and σy = 1 (down). Brain areas activated by two paradigms (red
and yellow), with a functional overlapping region (white) and non
activated areas (black).

range, the method achieves values of Pe < 0.1%. Furthermore, for
the very high noise amount of σy = 1 (SNR = [−6.7;−3.5])
the Pe stays below 5%, resulting in the bottom image in Fig. 2.
Notice that when looking at Fig. 2, the intuitive notion on the error
probability might seem higher than the refered 0.1% and 0.5%
values, due to the fact that the images are actualy a overlap of two
images.

It is intuitive when looking at the results in figure 2, that
the accuracy of the method can be improved if spacial correla-
tion information is included, removing several of those isolated,
spatially uncorrelated, voxels. For illustration purposes, the Pe

is recalculated after removing areas of one (Ṗe) and two (P̈e)
isolated voxels in an 8 voxels neighborhood. The resultant error
probabilities (see Table I) decreases for all the noise amounts,
yielding null for the 0.2 and 0.5 σy values.

The HRF estimation results are harder to analyze. For each one
of the 32768 voxels a h(n) HRF is estimated, but only the ones
corresponding to activated brain areas βk = 1 are relevant. So,
in the false-negative case, that information is discarded. On the
other hand, the false-positive case is not discarded and the h(n)
tends to follow the random AWGN form, around zero. These last
situations reduce the amplitude of the HRF mean, computed over all
positive estimated voxels β̂k, including false-positives. This effect
can be seen in Fig. 3, where the false-positives effect is removed.
Considering that in real data we do not have information on false-
positives, a correction could be done dismissing estimated h(n)
functions with AWGN distribution, but since the primary goal of
this work is the activation detection, this is left for further works.
Furthermore there is a global decrease in amplitude of every HRF
estimation in the FIR → IIR projection operation, which can be
seen on figure 3 right column. In fact, when there is not an IIR filter
that perfectly describes the estimated g(n) FIR, the IIR computed
by the Shanks [6,7] algorithm is always of lower amplitude. In spite
of all this, the HRF estimation provided reasonable results (Fig. 3)
and proved robust even in high noise levels.

V. CONCLUSIONS
In this paper a new Bayesian method is presented, where the

neural activity detection is jointly obtained along with the HRF
estimation. This approach presents two main advantages: 1) the
activity detection benefits from iterative and adaptative nature of
the HRF shape estimation; 2) it provides local, space variant, HRF

Fig. 3. Mean HRF estimation results considering all β̂k 6= 0
estimations (left) and for only the b̂k 6= 0 correct ones (right),
for σy = {0.05, 0.5, 1} from top to down. The Real HRF used for
data generation is in green, the estimated FIR average in red, and
the estimated IIR average in blue.

estimation which is more realistic than considering space invariant
HRF’s.

The observations are modeled by the additive white Gaussian
noise (AWGN) model and the stimulus activation indicators are
modeled by binary variables that are estimated. The prior associated
with the binary indicators is a bimodal Gaussian distribution around
the 0 and 1 values to cope with the uncertainty related with the
noise. The HRF is adaptively estimated under the constraint that it
belongs to IIR PBH model [5] space.

Monte Carlo tests using synthetic-1D-block-designed data are
performed and the probability of error, Pe, is computed for different
noise levels. These tests have shown small Pe, less than the ones
obtained with the traditional SPM-GLM [8]. Finally, the average
HRF estimation results showed a robust-to-noise close similarity
between the real synthetic data HRF and the estimated HRF.
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