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ABSTRACT

The emerging functional MRI (Magnetic Resonance Imaging),
fMRI, imaging modality was developed to obtain non-invasive infor-
mation regarding the neural processes behind pre-determined task.
The data is gathered in such a way that the extraction certainty of
the desired information is maximized. Still this is a difficult task
due to low Signal-to-Noise Ratio (SNR), corrupting noise and arti-
facts from several sources. The most prevalent method, here called
SPM-GLM [1] uses a conventional statistical inference methodology
based on the t-statistics, where it assumes a rather rigid shape on the
BOLD Hemodynamic Response Function (HRF), constant for the
whole region of interest (ROI).

A new algorithm, designed in a Bayesian framework, is pre-
sented in this paper, called SPM-MAP. The algorithm jointly detects
the brain activated regions and the underlying HRF in an adaptative
and local basis. This approach presents two main advantages: 1) the
activity detection benefits from the method’s high flexibility toward
the HRF shape; 2) it provides local estimations for the HRF.

The SPM-MAP algorithm is validated by using Monte Carlo
tests with synthetic data and comparisons with the SPM-GLM are
also performed. Tests using real data are also performed and re-
sults are compared with the ones provided by the SPM-GLM method
tuned by the medical doctor.

Index Terms— functional Magnetic Resonance, Nervous sys-
tem, MAP estimation, Biomedical signal detection, Adaptive signal
processing.

1. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is a new and pow-
erful method that, among other purposes, may be used in the deter-
mination of which parts of the brain are involved in a particular task.
It is sensitized to the paramagnetic properties of deoxyhaemoglobin
[2] which concentration locally fluctuates in strong correlation with
the physiological events of brain activity.

The computational analysis of the data provided by this method
is difficult and is an open problem. Usually, it aims at obtaining a
visual statistical map representation of the activated areas after the
stimulation paradigm applied during the scan (see Fig. 1).

To obtain the desirable results several processing steps are usu-
ally involved, e.g. image preprocessing (motion compensation and
noise removal), spacial normalization transformation, statistical
tests and the final inferences procedures [3]. Considering the last
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Fig. 1. Example of fMRI activated and non activated regions over-
laid on a structural MRI image.

two steps, which are the focus of this paper, most of the methods
described in the literature are variants of the general linear model
(GLM [1]), which express the observed BOLD response variable
in terms of a linear combination of explanatory variables (EVs),
and make use of classical statistics (T or F tests based on the null
hypothesis) to infer activity, using e.g. a p-value threshold.

The main EVs used in the GLM allocate temporal variance in the
(preprocessed) data with strong correlation with the paradigm stim-
ulus. To achieve this, the stimulus paradigm timing is convolved
with one or more fixed shape hemodynamic impulse response func-
tion (HRF). But since there is considerable variability in the HRF
shape [4,5], this may lead to reduced sensitivity when the local HRF
is significantly different from the template one. Also, the SPM-GLM
method is based on the p-value tunned by the medical doctor which
introduces a subjective factor on the final results.

To overcome these limitations this paper presents a new algo-
rithm designed in a Bayesian framework based on the Maximum A
Posteriori (MAP) [6] criterion. This new method combines the ac-
tivity detection problem and the local HRF estimation problem, in
order to minimize the detection error probability providing the best
SPM result with the available data. The method is parameter free
providing the most likely solution for the activation event at each lo-
cation: activated or non activated, eliminating the subjectivity asso-
ciated to the p-value selection in the SPM-GLM method. Addition-
ally, it provides local estimations of the HRF which may be useful to
understand the neuro-vascular and physiological events behind local
brain activity.

Monte Carlo tests with synthetic data are performed, for compar-
ison purposes with the SPM-GLM method and also for absolute as-
sessment in order to statistically characterize the overall error prob-
ability. Detection analysis results on real fMRI block-designed data
are also presented and comparison with the SPM-GLM results pro-
vided by the medical doctor is presented.
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2. PROBLEM FORMULATION
The SPM-MAP algorithm assumes the following data observation
model at each time course,

y(n) = h(n) ∗
N∑

k=1

βkpk(n)

︸ ︷︷ ︸
x(n)

+η(n) (1)

where η(n) is modeled as Additive White Gaussian Noise (AWGN),
h(n) is the HRF of the brain tissues, pk(n) are the paradigm stimu-
lus signals along time and βk are unknown binary variables to model
the activation of the voxel by the kth stimulus.

The estimation process is performed by minimizing the follow-
ing energy function depending on the binary unknowns βk, on the
hemodynamic response h(n), and on the observations y(n),

E(y,x(b),h) = Ey(y,x(b),h) + Eb(b) + Eh(h) (2)

where the data fidelity term is

Ey(y,x(b),h) = − log(p(y|x(b),h)) (3)

and the prior terms associated to the unknowns to be estimated, b =
{β1, ...βN} and h = {h(0), ..., h(j − 1)} are

Eb(b) = − log(p(b)) (4)
Eh(h) = − log(p(h)). (5)

where j is selected to cover 40 seconds of HRF.
These priors incorporate the a priori knowledge about the un-

knowns to be estimated: i) βk are binary and ii) h(n) is smooth.
Assuming statistical independence of the observations

p(y|x(b),h) =

L∏
i=1

p(y(i)|(x ∗ h)(i)) (6)

where p(y(i)|(x ∗ h)(i)) = 1√
2πση

2
e
−

(y(i)−(x∗h)(i))2

2ση
2 and ση

2 is

the energy of the noise. The parameters βk to be estimated are also
assumed independent,

p(b) =
N∏

i=1

p(βk) (7)

where p(βk) is a bi-modal distribution defined as a sum of two Gaus-
sian distributions centered at zero and one, with variance σβ

2

p(βk) =
1

2

[
N(0, σ

2
β) + N(1, σ

2
β)
]

(8)

because βk are binary variables, βk ∈ {0, 1}. In order to better
approximate the binary answer, the σβ parameter should be as small
as possible but numerical stability reasons prevent the adoption of
too small values. The prior term Eb(b) may therefore be written as

Eb(b) =

N∑
k=1

[
2β2

k − 2βk + 1

4σ2
β

− log

(
cosh

[
2βk − 1

4σ2
β

])]
.

To impose smoothness [7] on the estimated hemodynamic re-
sponse, h(n) is assumed to be a Markov Random Field (MRF),
which means, by the Hammersley-Clifford theorem, that p(h) is a

Gibbs distribution. In this paper a Gibbs distribution with quadratic
potential functions is used

p(h) =
1

Zh

e
−α

∑N
n=2 (h(n)−h(n−1))2

. (9)

Besides the smoothness of h(n) it is also assumed that h(n)
is the impulse response of the following Infinite Impulse Response
(IIR) Physiologically Based Hemodynamic (PBH) model [8],

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2 + a3z−3
(10)

where the coefficients bk and ak must be estimated.
Therefore, after a first step where a temporal smoothed finite

response (FIR) version of h, g, is estimated, an infinite impulse re-
sponse (IIR) is computed by projecting g in the space of admissible
responses of (10).

The overall estimation process is therefore iteratively performed
in the following three steps,

b
t = arg min

b

E(y,x(bt−1),ht−1) (11)

g = arg min
h

E(y,x(bt),ht−1) (12)

h
t = ProjFIR [ProjIIR(g)] (13)

where ()t means estimation at tth iteration and Proj stands for the
projection operation by using the minimum square error (MSE) cri-
terion. The ProjIIR problem is not trivial [9,10]. In this paper the
approximation algorithm proposed by Shanks [11,12] is used.

The above three steps are iteratively performed until conver-
gence is achieved.

3. RESULTS
This section presents the test results done on the SPM-MAP method
and is divided is three sections, where synthetic data is used in the
first two and experimental data in the last.

3.1. SPM-MAP v.s. SPM-GLM Activity Detection
To access the effectiveness of the proposed SPM-MAP method
against the presented SPM-GLM, synthetic 1D-block-designed sin-
gle stimulus data, corrupted by several amount of AWGN energies,
ση , and several stimulus epochs (periods in a block design paradigm
approach), N , are used in Monte Carlo simulations. In these, the
error probability (Pe), was obtained for each method as the ratio
of the total number of wrong estimations over the total number of
Monte Carlo tests (250). In this first experiment the HRF is assumed
to be known and was selected from the PBH model estimation on
real data [8].

The resulting Pe differences between SPM-MAP and SPM-
GLM, i.e.: ΔPe = Pe(SPM−MAP ) − Pe(SPM−GLM), was com-
puted for each experiment, and the average results for the dif-
ferent noise levels and epochs are displayed in Fig.2 Although
the performance of both algorithms decreases, as expected, with
the amount of noise and with the decrease in epochs number, the
ΔPe obtained is negative for most of the pair parameters (N, σ)
tested,

∑
i,j ΔPe(Ni, σj) = −0.46 (the volume under the graph

displayed in Fig.2). The number of negative values of ΔPe,
#(ΔPe < 0) = 23 and the number of positive values of ΔPe,
#(ΔPe > 0) = 6 which means that the SPM-MAP outperforms the
SPM-GLM method for almost every configuration tested.

It is important to notice that in the SPM-GLM approach, the
HRF is indirectly estimated and used for every time-course activa-
tion analysis. On the contrary, in the SPM-MAP method, this HRF
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Fig. 2. Error probability differences, ΔPe, between the SPM-MAP
and the SPM-GLM methods. N is the number of paradigm epochs
and σ is the AWGN standard deviation level.
is jointly estimated with the activation variables in an adaptative
and space variant basis. The adaptatively nature of the SPM-MAP
method clearly suggests that in real conditions the performance gap
between both methods increases.
3.2. Joint Activity Detection and HRF Estimation Results
In this sub section synthetic data is used to characterize the error
probability, Pe, of the SPM-MAP method. Two synthetic binary
images of 128x128 voxels where generated, which represent a single
BOLD slice signal and the activation ground truth of two paradigm
stimulus to be estimated for each voxel. For each voxel, synthetic
block-designed data was generated with 5 paradigm epochs, several
noise levels and a fixed HRF extracted from real data. The mean Pe

is presented in Tab. 1 for each noise level.

ση 0.2 0.5 0.7 1
SNR(dB) [7.3,11] [-0.63,2.6] [-3.6,-0.37] [-6.7,-3.5]

Pe(%) 0.0427 0.0916 0.168 4.27

Ṗe(%) 0 0 0.0244 1.51
P̈e(%) 0 0 0.0073 0.513

Table 1. Monte Carlo Pe of SPM-MAP for several noise levels (dis-
played in the ση and SNR lines for two different signal energy situ-
ations,

∑2
k=1 βk = 1 and

∑2
k=1 βk = 2. Spatial correlation correc-

tion is exemplified in Ṗe and P̈e where one and two isolated pixels
were dismissed, respectively.

It is important to point-out that although the SNR in MRI de-
pends on a large number of variables, it is usually more than 1dB

[3]. So the most realistic ση values would be situated between 0.2
and 0.5, for the data used (see Table 1). In this range the method
achieves values of Pe < 0.1%. Furthermore, for the very high noise
amount of ση = 1 (SNR = [−6.7;−3.5]) the Pe stays below 5%.

For illustration purposes, the Pe is recalculated after a simple
clustering correction of removing areas of one (Ṗe) and two (P̈e)
isolated voxels in an 8 voxels neighborhood. The resultant error
probabilities (see Table 1) decreases for all the noise amounts, yield-
ing null for ση = 0.2 and ση = 0.5.

The Pe results cannot be directly compared with the results in
section 3.1 because i) there are two paradigms instead of one and ii)
the HRF is unknown and jointly estimated; yielding an explosion in
the possible number of solutions.

3.3. Joint Activity Detection Results On Real Data
In this section results using real data are presented an compared with
the ones obtained by the medical doctor by using the Brain Voyager
software.

Subjects and Data Collection
Two volunteers with no history of neurological or psychiatric

diseases participated on motor and trajectory generation block-
designed paradigms during fMRI data acquisition on a Philips In-
tera Achieva Quasar Dual 3T whole-body system with a 8 channel
head-coil. T2*-weighted echo-planar images (EPI), 23cm square
field of view with a 128 × 128 matrix size resulting in an in-plane
resolution of 1.8× 1.8mm for each 4mm slice, echo time = 33ms,
flip angle = 20o were acquired with a TR = 3000ms.

Data Analysis and Results The fMRI data was preprocessed
with the standard procedures implemented in the Brain Voyager soft-
ware, namely decrease of data distortions due to motion or other
phase changes over time (registration) and spacial smoothing. This
data was then statistically processed by the Brain Voyager SPM-
GLM and SPM-MAP algorithms, and the results are plotted in Fig.
3 for a selection of two slices presenting considerable activity areas.
Since the obtainable brain maps by SPM-GLM highly depends on
the selected p-values (see section 3.1), a neurologist provided the re-
sults (up right), for each data set, which he considers more correct
(reference result), based on its experience. Since this result is sub-
jective, he also provided two other results which he considers loose
(bottom left) and restricted (bottom right).

Visual inspection of the results in Fig. 3 show some expected
resemblance between the preferred solution of the neurologist, ob-
tained with the SPM-GLM algorithm, and the brain maps obtained
by the proposed SPM-MAP algorithm. The small differences dis-
played in Figs. 3 (a) and (b) and may be explained by the structural
different approaches used by both methods about the HRF. In the
SPM-GLM this response is considered space invariant while in the
SPM-MAP methods it is jointly estimated in each time course.

In several of the brain map image sets there are brain regions
detected as activated by SPM-MAP that were not detected by SPM-
GLM as shown in Fig.4. These are unlikely false positives. Con-
sidering that the error probability has been shown considerably low
(see section 3.2), the probability of several false positives occurring
grouped in a small image area, instead of randomly dispersed in the
image, is infinitesimally small. Therefore, non single voxel brain
areas detected by the proposed method should be considered as reli-
able as larger is its dimensions. The detection of these "new" areas
happens when a voxel time-course does fluctuates in correlation with
the stimulus paradigm, but with a different HRF from the template
shape used by the SPM-GLM. Further anatomical testings are re-
quired to enhance confidence in these "new" areas. Furthermore, as
shown in the Fig.4 the time course associated with these regions are
clearly correlated with the paradigm as visually may be checked.

4. CONCLUSIONS
In this paper a new Bayesian method is proposed, where the neural
activity detection is jointly obtained along with the HRF estimation.
This approach presents two main advantages: 1) the activity detec-
tion benefits from the adaptative nature of the HRF shape estimation
and 2) it provides local, space variant, HRF estimation. This might
provide a useful tool to evaluate and compare estimated brain activ-
ity between regions or subjects and for possible behavioral, neural
and vascular local consideration.

Furthermore, when comparing with the widespread SPM-GLM
method, this new method does not depend on any tunning parameter,
which means, the subjective nature of the results associated with the
selection of a parameters by the medical doctor is removed in the
proposed method.

Monte Carlo tests on synthetic-1D-block-designed data showed
that the SPM-MAP algorithm outperforms the activity detection of
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(a) Trajectory generation paradigm results.

(b) Right hand paradigm results

Fig. 3. SPM-MAP activity detection SPM results (top left) on real
data compared against data processed by a neurologist on SPM-GLM
(top right - reference SPM result; bottom - restricted and loose SPM
results).

the standard SPM-GLM method for almost every tested conditions:
different noise levels, σj and number of paradigm epochs, Ni, in a
block design framework.

The Monte Carlo tests performed to assess the performance of
the algorithm have shown that the error probability obtained was
lower than 0.1% for noise levels close to expected real ones, but
even for extreme noise levels the method showed itself considerably
reliable, presenting error probabilities lower than 5%.

The real fMRI data tests showed that the SPM-MAP was able
to detect most of the activity detected by SPM-GLM and also detect
other activated brain regions. Further analysis of these new brain
areas will be done in future works.
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