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ABSTRACT
The functional MRI (Magnetic Resonance Imaging), fMRI, is today
a widespread tool to study and evaluate the brain from a functional
point of view. The blood-oxygenation-level-dependent (BOLD) sig-
nal is currently used to detect the activation of brain regions with a
stimulus application, e.g., visual or auditive. In a block design ap-
proach the stimuli (called paradigm in the fMRI scope) are designed
to detect activated and non activated brain regions with maximized
certainty. However, corrupting noise in MRI volumes acquisition,
patient motion and the normal brain activity interference makes this
detection a difficult task. The most used activation detection fMRI
algorithm, here called SPM-GLM [1] uses a conventional statistical
inference methodology based on the t-statistics

In this paper we propose a new Bayesian approach, by modeling
the data acquisition noise as additive white Gaussian noise (AWGN)
and the activation indicators as binary unknowns that must be esti-
mated. Monte Carlo tests using both methods have shown that the
Bayesian method, here called SPM-MAP, outperforms the traditional
one, here called SPM-GLM, for almost all conditions of noise and
number of paradigm epochs tested.

Index Terms—Functional MRI, Activity Detection, Bayesian

1. INTRODUCTION
The functional Magnetic Resonance imaging (fMRI) is currently the
most prominent method used for functional brain imaging, and it is
a big step forward in the process of answering the main question
asked to all the functional imaging methods: What are the brain re-
gions involved in mediating a specific brain function? And thought
the fMRI’s obvious qualities have allowed for its fast acceptance and
development, its limitations are far from letting this question to be-
come a "closed problem".

The fMRI experiments usually look for the change in blood
oxygenation and blood volume resulting from altered neural activ-
ity. This signal, called blood-oxygenation-level-dependent (BOLD),
results from the endogenous paramagnetic contrast property of the
deoxygenated hemoglobin. Hence, increased blood volume reduces
the local concentration of deoxygenated hemoglobin causing an in-
crease in the MR signal on a T2*-weighted image [2]. It is com-
monly accepted, and has been empirically proved, that there is a
strong correlation between neural activity and the vascular response
that leads to the consequent increase of this BOLD signal [3]. This
relation, know as the hemodynamic response function (HRF), is at
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the core of fMRI data analysis. Inferences about which brain regions
are involved in the particular stimulated cognitive and sensorimotor
functions are based on how well the BOLD signal correlates with
this stimulation, mediated by the HRF.

Contrary to the impression one might get in a brief review of the
literature, there are not many ways to analyze fMRI time-series with
a diversity of statistical and conceptual approaches. In fact, with
very few exceptions, every analysis is a variant of the general lin-
ear model (GLM), that expresses the observed response variable in
terms of a linear combination of explanatory variables [4]. Based on
this model, data analysis is usually processed in a number of steps
involving image processing and statistical evaluation that, in the end,
produce a functional brain map. Often methods used involve several
modules for image preprocessing, spacial transformation, statistical
tests and the final inferences procedures. This work focuses on the
last two steps and how our Bayesian method compares with the most
commonly used method, Statistical Parametric Mapping (SPM) [1]
when applied to single voxel time-course data. This last method
makes use of univariate statistical tests (T of F tests) at each brain
voxel and subsequent statistical inferences about the observed re-
sponses using a user defined p-value threshold, for the 1D data case.
This classical approach maybe a simple one with reasonable results,
but it has several disadvantages that can be tackled. On this work we
propose a Bayesian approach for the binary (activated or not) analy-
sis of simulated 1D block-designed data and present the Monte Carlo
results from the comparison between the presented method and the
standard SPM procedure.

2. PROBLEM FORMULATION
Let us consider the voxels (volume elements) displayed in Fig. 1.
Each voxel, after the application of a given paradigm, may be acti-
vated by one or more applied stimulus (∃k : βk = 1) or may not be
activated at all (∀k : βk = 0).

Fig. 1. Activated and non activated regions in fMRI.

In this paper we consider the signal BOLD associated to a single
voxel at a time - time course - with the following data observation
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model, displayed in Fig. 3,

y(n) = h(n) ∗

N∑
k=1

βkpk(n) + η(n) (1)

where η(n) is modeled as additive white Gaussian noise (AWGN),
h(n) is the hemodynamic response function of the brain tissues,
pk(n) are the stimulus signals along time (see Fig. 2) and βk are
unknown binary variables to model the activation of the voxel by the
kth stimulus. For instance, Fig. 1 shows the result of application of a
two stimulus paradigm where three voxels are referenced: i) a voxels
was activated by the first stimulus, β1 = 1 and β2 = 0, ii) a voxel
was not activated, β1 = 0 and β2 = 0, and iii) a voxel was only
activated by the second stimulus, β1 = 0 and β2 = 1.

Fig. 2. Paradigm with three block-designed stimulus.

In this paper we describe a Bayesian Statistical Parametric Map-
ping algorithm (SPM) based on the maximum a posteriori (MAP)
criterion to estimate the vector b = {β1, β2, ..., βN}, associated
with each voxel, called SPM-MAP1. We use the observation model
displayed in Fig. 3 and described by the equation (1). Monte Carlo
tests with synthetic data are used to evaluate the performance of the
algorithm and compare it with the SPM based on the general linear
model (GLM), here called SPM-GLM [1], which is one of the most
commonly used methods to detect activated voxels in the functional
MRI scope.

Fig. 3. BOLD signal generation model.

Let x = {x(1), x(2), x(3), ..., x(L)}T (see Fig. 3) where L is
the time-course observations length. x may be expressed as x = θb
where

θ =

⎛
⎜⎜⎜⎜⎜⎝

p1(1) p2(1) p3(1) ... pN (1)
p1(2) p2(2) p3(2) ... pN (2)
p1(3) p2(3) p3(3) ... pN (3)
...

...
... ...

...
p1(L) p2(L) p3(L) ... pN (L)

⎞
⎟⎟⎟⎟⎟⎠ (2)

The output vector of h(n) displayed in Fig. 3,

z = {z(1), z(2), z(3), ...z(L)}T , (3)
1Statistical parametric mapping is generally used to identify functionally

specialized brain responses[1]

is obtained by z(n) = h(n) ∗ x(n). Here, for sake of simplicity,
h(n) is assumed to be a F length finite impulse response (FIR), al-
though infinite responses may also be considered [5]. Therefore the
output signal may be expressed as z = HxwhereH is the following
Toeplitz matrix

H =

⎛
⎜⎜⎜⎝

h(1) 0 0 0 0 0
h(2) h(1) 0 0 0 0
h(3) h(2) h(1) 0 0 0
... ... ... ... ... ...
0 ... h(p) h(p − 1) ... h(1)

⎞
⎟⎟⎟⎠ (4)

The observed BOLD signal y(n), y = {y(1), y(2), ..., y(L)}T

is therefore obtained as follows

y = Ψβ + n (5)

where Ψ = Hθ, n = {η(1), η(2), ..., η(L)}T is a vector of in-
dependent and identically distributed (i.i.d) zero mean random vari-
ables normally distributed, that is, p(η(k)) = N(0, σ2). The ad-
ditive white Gaussian noise (AWGN) is usually used to model the
corruption process in functional MRI although other models may
also be used, e.g., Rice and Rayleigh.

3. ESTIMATION
The MAP estimate of b can be obtained by solving the following
equation

b̂ = arg min
b

E(y,b) (6)

where E(y,b) is an energy function defined as follows

E(y,b) = − log(p(y|x(b)))︸ ︷︷ ︸
Data fidelity term

− log(p(b))︸ ︷︷ ︸
Prior term

(7)

where Ey(y,b) = − log(p(y|x(b))) is the likelihood term and
Eb(b) = − log(p(b)) incorporates the a priori knowledge about
the unknowns to be estimated; in this case, that βk are binary.

Statistical independence of the observations means that

p(y|x(b)) =
L∏

i=1

p(y(i)|x(b)). (8)

Since the noise is assumed to be additive white and Gaussian

(AWGN), p(y(i)|x(b)) = 1√
2πσ2

e
− (y(i)−x(i))2

2σ2
y . The unknowns

to be estimated, βk, are also assumed to be independent, that is,

p(b) =
N∏

i=1

p(βk) (9)

where p(βk) is a bi-modal distribution defined as a sum of two Gaus-
sian distributions centered at zero and one, of σ2

β variance

p(βk) =
1

2

[
N(0, σ2

β) + N(1, σ2
β)

]
(10)

because βk are binary variable, βk ∈ {0, 1}. In order to better ap-
proximate the binary answer σβ should be as small as possible but
numerical stability reasons prevent the adoption of too small values.

The MAP estimate is therefore the minimizer of the following
energy function

E(y,b) = (Ψb − y)T (Ψb − y) + Eb(b) + C (11)
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where C is a constant and

Eb(b) =

N∑
k=1

[
2β2

k − 2βk + 1

4σ2
β

− log

(
cosh

[
2βk − 1

4σ2
β

])]
. (12)

The MAP estimate is obtained by finding the stationary point of
E(y,b),

∇bE(y,b) = 0 (13)

where ∇b is the gradient operator w.r.t. b, which may be written as
follows

∇bE = ΨT (Ψb − y) +
σ2
y

σ2
b

[
b −

1

2
R(b)

]
= 0 (14)

where R(b) is a column vector with N elements rk

rk = 1 + tanh

[
2βk − 1

4σ2
β

]
(15)

The solution of (14) may be obtained by using the fixed point
method which leads to the following recursion

b̂
t+1 = (ΨT Ψ + αI)−1(ΨT y + αR(b̂t)) (16)

where α = σ2
y/2σ2

β is a parameter, I is aN ×N identity matrix and
b̂t is the b estimate at tth iteration.

The estimated elements of b, βk, are real numbers and not bi-
nary. Therefore, the binary estimate of β̂k, bk, is obtained as follows

bk =

{
0 β̂k < 0.5

1 otherwise
(17)

Two main differences must be stressed between the proposed
SPM-MAP and the standard SPM-GLM method:
1. In the SPM-GLM method the wholeN period signal is some-
times broken into N pieces corresponding to each paradigm
period and the resulting observation pieces are averaged to
reduce the noise corrupting the observations Y . The matrix
θ, defined in (2), is built by using only a single paradigm pe-
riod. In the proposed method, instead of braking the signal,
it is dealt with as a whole signal. And the same goes for
the paradigm signal. The noise reduction is performed in a
Bayesian framework where a realistic observation model is
used to cope with it. In the case of AWGN both methods are
very similar, but if other noise models (e.g. multiplicative)
are used this would no longer be true. This is because the av-
eraging procedure is only adequate for certain noise models.

2. In the SPM-GLM method the estimation of each βk is based
on the well known classical t-test [6] applied to the estimated
coefficients βk. This statistical inference technique is based
on the null hypothesis test, Ho, where the activation proba-
bility of a given voxel is computed with a certain confidence
degree. This test is performed over the estimated coefficients,
βk, obtained with the GLM. These coefficients used to lin-
early combine the EVs (usually a convolution between the
paradigm stimulus and the HRF model (s)) are estimated by
using the MSE criterion. These real coefficients reflect the
estimated "presence" amplitude of each EV in the observed
data. In the SPM-MAP method the coefficients set are as-
sumed to be binary and are estimated in a Bayesian frame-
work where a prior distribution forces its values to be close

of {0, 1}. Once again, our concern is to follow a realistic
model where it is assumed that a given voxel was activated or
not by a given stimulus. Partial voxel activation is not accept-
able in this scope: it is totally activated or it is not activated
at all, by a given stimulus, pk(n).

To better understand the difference between both methods, a
short description of the SPM-GLM method is presented where the
t-test is used to determine if a given voxel is or is not activated by a
single EV , p(n) ∗ h(n), which means that b is a scalar, b = [β].

The observed BOLD signal is assumed to be obtained from the
following model

y = β(p(h) ∗ h(n)θ) + e (18)

where θ is defined in (2) but with only one stimulus,

θ = {p(1), p(2), ..., p(L)}T , (19)

h(n) is the canonical gamma function [1,4,7] and e is the residual
error vector not explained by the model. The β estimation given by
the GLM method, in this very simple case, is computed as follows

β̂ = θ+Y (20)

where θ+ = (θT θ)−1θT is the so called pseudoinverse of θ.
The SPM-GLM method core, tags each voxel as activated, b =

1, or as inactivated, b = 0, by computing the probability of being
activated by the stimulus with a confidence level α, that is,

b =

{
1 (Active) ifp < α; (rejectH0)

0 (No Active) Otherwise; (aceptH0)
(21)

where H0 is the null hypothesis which assumes no activation with a
confidence level α.

The p-value is obtained as follows

p = P (t ≥ T ) = 1 − I L

L+T2
(L/2, 0.5) (22)

where Ix(a, b) is the incomplete Beta-function [6] defined as

Ix(a, b) =
Γ(a + b)x

Γ(a)Γ(b)

∫ x

0

τa−1(a − τ)b−1dτ (23)

and
T = β̂/σβ (24)

is the T estimator associated t-statistics, where β̂ is the estimation
value of β, and σβ the standard deviation. t is large if the estimated
value is much larger than the estimator variance and t is small if
the estimated value is comparable with the corresponding estimator
variance.

The estimator variance, σ2
β , may be numerically estimated using

the following expression

σ2
β = σ2

y

L∑
n=1

p2(n) (25)

where p(n) is the nth θ element and σ2
y is the estimated noise energy

σ2
y =

1

L − 1

L∑
n=1

[
y(n) − β̂p(n)

]2

. (26)

In the next section Monte Carlo simulations are presented com-
paring the probability of error (Pe), obtained with both methods,
SPM-MAP and the SPM-GLM described above.
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4. EXPERIMENTAL RESULTS
To access the effectiveness of the proposed SPM-MAP method
against the presented SPM-GML, synthetic 1D-block-designed sin-
gle stimulus data, with several AWGN noise levels (σ) and several
stimulus epochs (periods in a block design paradigm approach), N ,
are used in Monte Carlo simulations. In these, the error probability
(Pe), was obtained for each method as follows

Pe(σ, N) =
1

R

R∑
i=1

|b̂i − bi| (27)

where R = 250 is the number of data repetitions used in the Monte
Carlo tests. The HRF function is assumed to be known and was
selected from the PBH model estimation on real data [5].

The resulting Pe differences between SPM-MAP and SPM-
GLM, i.e: ΔPe = Pe(SPM−MAP ) − Pe(SPM−GLM), was com-
puted for each experiment, and the average results for the different
noise levels and epochs are displayed in Fig.4 and in table 1. Notice
that in table 1, σ values that resulted in all null Pe are not displayed.

Although the performance of both algorithms decreases, as
expected, with the amount of noise and with the decrease in
epochs number, the ΔPe obtained is negative for most of the
(N, σ) data pairs tested, which means that the SPM-MAP out-
performs the SPM-GLM method for almost every configuration
tested. This is confirmed by Table 1, where the summation of ΔPe,∑

i,j ΔPe(Ni, σj) = −0.46, is negative. The number of negative
values of ΔPe, #(ΔPe < 0) = 23 and the number of positive val-
ues of ΔPe, #(ΔPe > 0) = 6, which confirms that the SPM-MAP
surpasses the traditional SPM-GLM method. Still it is obvious that
both methods present high accuracy in these tests due to the exact
knowledge of both the HRF and noise distribution.

Fig. 4. Difference of probability errors, ΔPe = Pe(SPM−MAP ) −
Pe(SPM−GLM), between the SPM-MAP and the SPM-GLM meth-
ods for two different views. N is the number of epochs and σ is
noise standard deviation level.

5. CONCLUSIONS
In this paper a new Bayesian method for detection of brain acti-
vated regions in the scope of functional MRI is proposed where the
noisy observations are modeled with additive white Gaussian noise
(AWGN) and the activation indicators are modeled by binary vari-
ables that are estimated. The prior associated with the binary indica-
tors is a bimodal Gaussian distribution around the 0 and 1 values to
cope with the uncertainty related with the noise.

The proposed method is compared with the one proposed in [1]
that uses a classical statistical inference methodology based on the t-
test method. Monte Carlo tests on synthetic-1D-block-designed data
with both methods have shown that the proposed Bayesian method,

N\σ 1 2 4
2 -0.012 0 -0.168
3 -0.012 0.004 -0.108
4 -0.008 -0.012 -0.044
5 -0.004 -0.012 -0.032
6 0 -0.008 -0.016
7 0 -0.008 -0.008
8 0 -0.004 0
9 0 0 -0.004
10 0 0 0.004
11 0 -0.004 0.012
12 0 0 0.004
13 0 -0.004 0
14 0 -0.004 0
15 0 -0.004 0.004
16 0 0 -0.004
17 0 0 0
18 0 0 0.004
19 0 0 -0.004
20 0 0 -0.008

Table 1. ΔPe = Pe(SPM−MAP ) − Pe(SPM−GLM) for 2 ≤
N ≤ 20 and σ = {1, 2, 4}. For all other tested values of σ =
0.01, 0.02, 0.05, 0.1, 0.2, 0.5.

called SPM-MAP, outperforms the classical one based on the gen-
eral linear model (GLM), here called SPM-GLM. The performance
evaluation was based on the computation of the error probability,
Pe(N, σ), for each method which proved to be smaller for the pro-
posed SPM-MAPmethod than the corresponding ones obtained with
the SPM-GLM method, for almost every tested conditions: differ-
ent noise levels, σj and number of paradigm epochs, Ni, in a block
design framework.
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