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ABSTRACT

Cytogenetics is the preferred tool in the diagnosis of genetic diseases
such as leukemia and detection of aquired chromosomal abnormali-
ties, such as translocations, deletions, monosomies or trisomies, etc.
The karyotyping is a set of procedures, in the scope of the cytoge-
netics, that produces a visual representation of the 46 chromosomes,
paired and arranged in decreasing order of size, observed during the
metaphase step of the cellular division (meiosis).

The pairing is the procedure in the karyotyping process where
the homologous chromosomes are paired according to dimensional,
morphological and textural similarity criteria. This process is time
consuming and is usually performed manually by experts. An auto-
matic pairing algorithm is still an open problem.

In this paper we present new contributions to solve the auto-
matic pairing problem in the scope of the karyotyping process for
leukemia diagnostic purposes. Besides the traditional features used
to compute the similarity between chromosomes, such as, normal-
ized area, ellipsis axis length and banding profiles, we introduce the
Mutual Information (MI) measure to assess the textural similarity
between two chromosomes.

A supervised linear classifier is trained to combine the different
features computed from each pair, aiming at the correct pairing (as
given by experts). The resulting classifier is then employed, together
with a combinatorial optimization algorithm based on A*, to com-
pute the pairing for any given image.

Simulations using real images, obtained with a LeicaTMOptical
Microscope DM 2500, were performed. These images were man-
ually paired by experts and used as a ground truth for the pairing
process to assess the performance of the proposed classifier. Fur-
thermore, qualitative comparisons with the results obtained with a
LeicaTMCW 4000 Karyo software were also performed.

Index Terms— Chromosome Pairing, Leukemia, Image pro-
cessing, Classification, Mutual Information

1. INTRODUCTION
The karyotyping procedure is one of the most important steps in con-
ventional cytogenetic analysis. The karyogram is an image represen-
tation of stained human chromosomes with the widely used Giemsa
Stain metaphase spread (G-banding) in which homologous chromo-
somes are paired in 23 classes, arranged in order of decreasing size.
A karyotype is the set of characteristics extracted from the karyo-
gram that may be used to detect chromosomal abnormalities, such
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as, translocations, duplications, inversions, deletions, monosomies
or trisomies (some of these abnormalities occur in leukemia cancer-
ous cells). Fig.1 shows a typical image of a normal male karyotype.
The karyotyping procedure is time consuming and technically de-
manding, when done manually. Automatic algorithms are needed
but the difficulty of the problem makes it hard to design accurate and
reliable automatic processing algorithm for karyotyping purposes.
Namely, the essential process of chromosome pairing is still an open
problem. For instance, the most widely used commercial packages
available for cytogenetic analysis like LeicaTM, MetasystemsTMand
CytovisionTMare still very ineffective when it comes to chromosome
classification and/or pairing.

The problem of the automated chromosome classification has
been an important pattern recognition problem for more than 20
years and remains an active field of research [1–6].The more specific
problem of chromosome pairing has been also investigated, namely
by Wu et al [7,8].

The main issue in this paper is the chromosome pairing and not
the classification itself. The ultimate goal is to design a pairing al-
gorithm for karyotyping purposes in order to help the technical staff
in this important step of the cytogenetic analysis.

The proposed algorithms use a linear classifier based on the tra-
ditional dimensional and morphological features extracted from the
karyogram and a new one based on themutual information (MI). The
goal is to better characterize the textural information associated with
each pair by adding discriminative power to the G-banding profiles
information. The proposed algorithms characterize pairs of chro-
mosomes rather than isolated ones.Therefore measures are extracted
from each chromosome and combined in a pairwise basis to obtained
features associated to candidate pairs.

The images were acquired with a LeicaTMOptical Microscope
DM 2500 and the image pre-processing and chromosome segmenta-
tion were performed with LeicaTMCW 4000 Karyo software used in
the Institute of Molecular Medicine of Lisbon (IMM). The pairing
process has been performed in this institute mostly in a semi-manual
fashion.

The images used in the karyotyping process for leukemia diag-
nostic purposes, in which we are interested in, present less quality
than the ones used in the traditional genetic analysis that use the sets
like Edinburgh, Copenhagen[1] and Philadelphia[9], namely with re-
spect to the centromere, band profile description, and level of chro-
mosome condensation.

Tests using real data have shown promising results when com-
pared with the pairing results provided by the LeicaTMCW 4000
Karyo software.

This paper is organized as follows: section 2 formulates the
problem, describing the features used in a pairwise basis, and sec-
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tion 3 describes the classifier and the training procedure. Section 4
shows illustrative examples using several real data sets, and section
5 concludes the paper.

Fig. 1. Normal male karyotype.
2. PROBLEM FORMULATION

The data is composed by 2N chromosomes images obtained with
a LeicaTMOptical Microscope DM 2500 and pre-processed by the
Leica CW 4000 Karyo software where N is the number of homolo-
gous pairs. In the pre-processing stage the images are denoised and
the chromosomes are manually segmented (isolated) in a computer
assisted basis. Therefore, in this paper, the data is composed by a set
of isolated and unpaired chromosomes as shown in Fig.1.

The first step in the proposed methodology is a pre-processing
algorithm where the following operations are performed: i) bound-
ing box computation isolating each chromosome, ii) independent
histogram equalization of the images contained in each bounding
box (textural correction), and iii) chromosome axis determination
and distortion correction (geometric correction).

This pre-processing step aims at reducing the effects of the tex-
tural and geometric distortions in the processing phases that follow.
The brightness and contrast characteristics depend on the specific
tuning of the microscope, and therefore the final results should be
insensitive to it. On the other hand, the particular geometric distor-
tion observed in a given chromosome is related with the particular
methaphasic plaque under processing, and not with the intrinsic ge-
ometric characteristics of the chromosome, therefore it should also
be compensated.

The proposed methodology consists of two phases. In the first
phase, a classifier is trained based on a set of paired images provided
by experts. This classifier is then used in the second phase to process
new images. Then, the resulting pairing is obtained using a combi-
natorial optimization technique based on the A* algorithm [10].

The features used by the classifier to pair the chromosomes are
distance metrics between each pair based on measures computed
from the chromosomes such as: i) Size — axis dimensions of the
ellipsis containing the chromosome, length proportion, perimeter,
length, and area [2], ii) Shape — bounding box normalized area and
iii) Texture — band profile [1] and mutual information.

The features related with texture, such as band profile and mu-
tual information, are computed after resizing all bounding boxes to
the same dimension by interpolation.

The distance between two chromosomes is computed as follows

d(i, j;w) =
L∑

k=1

w(k) ‖fi(k), fj(k)‖k (1)

where ‖x, y‖k denotes the metric function used to compare the kth
features of the xth and yth chromosomes. All features except one

use the Euclidean metric, i.e., ‖x, y‖k =
√∑n

r=1 [x(r)− y(r)]2

where x, y ∈ Rn. The only exception is the mutual information
(MI) feature, MI(i, j), whose values already are referred to each
pair.

During the training step, described next, a set of vector weights,
wr with 1 ≤ r ≤ N = 22 (in this paper the sexual chromosomes
were not considered) are obtained from all pairs of chromosomes for
each class r in the training set.

The distance between two chromosomes is assumed to be the
smallest one among all weight vectorswr ,

D(i, j) = min
w∈{w1,...w22}

d(i, j;w) (2)

The vectors wr are obtained by minimizing an energy function
under the constraint ‖w‖ = 1, wr = arg min

w:‖w‖=1 E(w). In
this paper two energy functions are tested,

E1(w) =

⎡
⎣ ∑

(i∧j)∈V (r)

d(i, j;w)−
∑

(i∨j)/∈V (r)

d(i, j;w)

⎤
⎦

E2(w) =

⎡
⎣ ∑

(i∧j)∈V (r)

d2(i, j;w)−
∑

(i∨j)/∈V (r)

d2(i, j;w)

⎤
⎦

where V (r) is the set of chromosomes of the r-th class. The algo-
rithm that minimizes E1 is called method A and the algorithm that
minimizes E2 is called method B.

In the method A each weight vector wr is computed by mini-
mizing the sum of intraclass distances and maximizing the sum of
interclass distances. The method B is mutatis mutandis of A, except
that squared distances are used instead.

Let us consider

Fr =

⎛
⎜⎜⎜⎝

f1(1) f1(2) f1(3) ... f1(L)
f2(1) f2(2) f2(3) ... f2(L)
f3(1) f3(2) f3(3) ... f3(L)

... ... ... ... ...
fR(1) fR(2) fR(3) ... fR(L)

⎞
⎟⎟⎟⎠ . (3)

aR×Lmatrix where L is the number of features andR the number
of different pairs of chromosomes in the training set from class r.
Let us also consider the matrix F̃r with the same structure of Fr but
now involving all pairs of the training set where at least one of the
indices does not belong to class r.

By using the Lagrange method both energies may be written as
follows

E1(wr) = (1T
Fr − 1̃

T
F̃r)wr + γw

T
r wr

= Φwr + γw
T
r wr (4)

E2(wr) = (Frwr)
T (Frwr)− (F̃rwr)

T (F̃rwr) + γw
T
r wr

= w
T Θw + γw

T
r wr (5)

where 1 is a column vector of ones, Θ = F
T
r Fr − F̃

T
r F̃r , Φ =

1
T
Fr − 1̃

T
F̃r , and γ is the Lagrange multiplier. The minimizers of

E1(wr) and E2(wr) are respectively

(wr)1 = ΦT /
√

ΦΦT = vers(Φ) (6)
(wr)2 = uΘ (7)

where vers(Φ) is the unit length vector aligned with Φ and uΘ is the
unit norm eigenvector of Θ that minimizeswT

r Θwr .
The equations (6) and (7) are used to compute the set of vectors

wr , with 1 ≤ r ≤ 22, which are then used in turn to compute the
distance between two chromosomes using the expression (2).
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3. CLASSIFIER

Given a test set of n chromosomes a n × n matrix of distances is
computed by using the expression (2), D = {D(i, j)} where each
element is the distance between the ith and jth chromosomes. This
matrix is symmetric, and in the ideal case, the minimum entry of
each row correspond to the right pairing (no column contains two
entries that are minimum values in the respective rows).

The pairing process is a computationally hard problem because
the final pairing matrix must minimize the overall distance which
means that no local decisions could be taken. Next, a description of
the algorithm used to solve this combinatorial optimization task is
performed.

Considering n chromosomes (for n even), a pairing assignment
P is defined as a set of ordered pairs (i, j), such that i �= j holds
for any pair, and any given index i appears in no more than one
pair of the set. A pairing assignment is said to be total if, for any
i = 1, . . . , n, there is exactly one pair (r, s) in the set such that
either i = r or i = s. The sum of distances implied by a pairing P
can be written as

C(P ) =
∑

(i,j)∈P

D(i, j) (8)

The goal of the pairing process is then to find a total pairing P
that minimizes C(P ). To accomplish this goal, the well-known A*
search algorithm is used [10]. The state space considered by the
search algorithm consists of tuples in the form 〈F, P 〉, where F is
a set of chromosomes (called the free set), and P is a pairing as-
signment. Only valid solutions are considered by the search algo-
rithm, thus, the set F and the set of all indices in P form disjoint
sets, which union results in the set of all chromosomes {1, . . . , n}.
The successor function consist in adding pairs to P : after selecting
a pivot i ∈ F , create a new state 〈F ′, P ′〉 for each j ∈ F\{i},
adding the pair (i, j) to it (P ′ = P ∪ {(i, j)}), and removing i and
j from the corresponding free set (F ′ = F\{i, j}). The choice of
this successor function guarantees that no repeated states are gener-
ated, thus dispensing the need to deal with repeated states. Provided
that the heuristic function is admissible, i.e., the true cost from a
given state and any solution state is never over-estimated, the A* is
guaranteed to be complete and optimal. It is complete in the sense
that, unless no solution exist, at least one solution is found, and it
is optimal in the sense that, if more than one solution exists, the op-
timal one is returned. It is also optimally efficient, meaning that
no other optimal search algorithm is guaranteed to expand fewer
nodes [10]. The cost function g is the sum of distances defined
above, g(〈F, P 〉) = C(P ), with the heuristic function. The heuris-
tic function h is defined in the following way: given a state 〈F, P 〉,
build a matrixD′ containing only the rows and columns from the dis-
tances matrix D which indices are in the set F ; then, sum the min-
imum distance in each row (excluding the main diagonal) divided
by 2 (otherwise, each distance would be accounted twice). Formally
one can write

h(〈F, P 〉) =
∑
i∈F

min
j∈F\{i}

D(i, j)/2 (9)

This heuristic function is admissible because the contribution of the
pairs still to be made from F , to the sum of distances of any succes-
sor solution node, is greater or equal than h(〈F, P 〉), for any valid
state. The admissibility of this heuristic implies that the proposed
algorithm finds the optimal solution for the pairing assignment prob-
lem [10].

4. EXPERIMENTAL RESULTS
In this section the results obtained with 19 real karyograms are pre-
sented. Two test sets with growing pairing difficulty are considered.
The first set contains chromosomes only from classes 1, 10, 16, and
21, while the second, with higher pairing difficulty, contains chro-
mosomes from classes 1, 3, 10, 12, 15, 16, 21 and 22. This means
that the first testing set is composed by 19 × 4 × 2 = 152 chro-
mosomes and the second by 304 chromosomes. The chromosomes
in each data set are classified and paired manually by experts, thus
providing ground truth to assess the performance of the automatic
pairing algorithms proposed in this paper.

These two test sets were used with both classifiers proposed in
this paper and the results are listed in tables 1 and 2. These tables
display the number of pairing errors in each experiment where 18
karyograms/pairs are used for training and the remaining one for
testing. In these tables 19 lines are listed corresponding to the 19
possible tests using this strategy, that is, using all but one pair for
training and using the remaining one for testing (leave-one-out cross-
validation). The features used in these tests to compute the distance
between pairs of chromosomes are the following: area, perimeter,
length proportion, dimensions of the main axis of the ellipsis con-
taining the chromosomes, normalized area, band profile, and mutual
information (MI).

Besides the overall characterization of the classifier we are also
interested in evaluating the improvement due to the introduction of
the MI as a discriminative factor for the pairing process. Therefore,
tables 1 and 2 also display the pairing results with and without MI
for comparison purposes. In these tables the symbol

√
is used to

indicate that a correct pairing was obtained.
From tables 1 and 2 it is concluded that both methods provide al-

most the same results. The only exception in the set of all tests is the
case of the test set 13 with MI where the method A performs better
than method B. However, more tests are needed to clearly conclude
whether method A is better than method B.

It is also concluded that the introduction of the MI in the set of
features leads to an improvement in the pairing results in the case
of experiments 6 and 12 with the data set with 8 classes. Again,
additional tests are needed to confirm this result.

The classification time is dependent on the distance matrix D

but in all tests performed here it is of the order of few milliseconds.
Although combinatorial optimization problems are in general very
hard to solve, these short solving times can be explained by the fact
that the distances matrices are easy to handle, in the sense that the
A* algorithm is able to proceed directly to the goal very quickly.

In the experiments presented here, listed in tables 1 and 2, it is
observed a correct pairing with themethod A andmutual information
in 63% of the tests.

5. CONCLUSION
In this paper two pairing algorithms are proposed for pairing pur-
poses in the scope of karyotyping process used in cytogentic anal-
ysis. The proposed algorithms are based on the traditional features
extracted from the karyogram, such as, dimensions and banding pro-
files.

Here a new feature, the mutual information (MI), was intro-
duced, to improve the discriminative power of the automatic pairing
algorithm.

The ultimate goal of this work is to produce a reliable and ac-
curate pairing method to be used in the scope of the cytogenetics,
rather than a chromosome classifier.

Tests using 19 karyograms and a leave-one-out cross-validation
(LOOCV) strategy allow to conclude that the proposed pairing al-
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Data set 1 Data set 2
without MI with MI without MI with MI

1
√ √ √ √

2
√ √ √ √

3 4 4 2 2
4

√ √ √ √
5

√ √ √ √
6 2 2 4 2
7

√ √
2 2

8
√ √ √ √

9
√ √

2 2
10

√ √
5 5

11 2 2
√ √

12
√ √

2
√

13
√ √

4
√

14
√ √

2 2
15

√ √ √ √
16

√ √ √ √
17 2 2 2 2
18

√ √ √ √
19

√ √ √ √

Table 1. Simulation results (number of mispairing pairs in a total of
19 pairs) usingmethod A and two training/test sets: Data set 1with 4
types of chromosomes and Data set 2 with 8 types of chromosomes.
In both cases results with and without MI are presented.

gorithms, working with a limited number of classes (≤ 8), achieve
100% pairing accuracy in 63% of the tests (best case scenario).

Preliminary comparison with the results obtained with the Leica
CW 4000 Karyo software, using the same data, have shown relevant
and promising improvement. In the near future, detailed comparison
with this software and other methods will be performed, in order to
validate our algorithm.

This is an early stage toward a practical pairing software. Addi-
tional, more discriminative features, as well as more complex classi-
fiers must be used. However, this work have shown that besides the
huge difficulty of the problem, it is possible to design automatic clas-
sifiers to help the cytogenetic technicians during the pairing process
of the karyotyping procedure.
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