Fluorescence Confocal Microscopy Imaging Denoising with Rbleching

Isabel Rodrigué'?, Jodo Xaviet® and Jodo Sanche$

Abstract— The Fluorescence Confocal MicroscopyCM) is Principal Light

nowadays one of the most important tools in biomedical and Pathways in - % :],_Phommump“er
pharmaceutic research. The main advantage of this technique Confocal Microscopy . Detector
over the traditional bright field optical microscopy is the fact — Detector
that it allows the selection of a thin cross-section of the sample In-Focus Filmnole

i i i i i i Emission Aperture
by rejecting the visual information coming from the out-of-focus

. Laser Light Ray

planes. However, the small amount of energy radiated by the Excitation Out-of-Focus
fluorophore and the huge light amplification performed by the _f?'_i'_"‘e_ i ONCRCEREs
photon detector to capture this visual information introduces Light Ray

a type of multiplicative noise described by a Poisson distri-

bution. Additionally, the radiation efficiency of the fluorophore R\~ Dichromatic

decreases with the time, an effect calleghotobleaching leading Light S-ourlce e
to a decrease in the image intensity along the time. Aé‘;‘}lﬂf& 3 “ — Objective
In this paper a reconstruction algorithm is proposed where . ’ —Excitaﬂon
the multiplicative noise and the photobleaching effect are Specimen, L)  LightRay

modeled. The goal is to obtain the morphology and the foca I\

intensity decay rate across the cell nucleus from a sequence
of FCM images. The reconstruction algorithm is formulated
as an optimization problem where a convex energy function is
minimized. Tests using synthetic and real data are presented to
illustrate the application of the algorithm and the effectiveness
of the results.

Index Terms—Denoising, Poisson, Bayesian, confocal mi-

Fig. 1. Fluorescence Confocal Microscope (from Nikon-MamopyU).

croscopy, convex optimization. The FCM images are in general very noisy, with snsajt
nal to noise ratio(SNR), corrupted by a type of multiplica-
|. INTRODUCTION tive noise described by a Poisson distribution. Additibnal

The Fluorescence Confocal MicroscogFCM) is nowa- an intensity decreasing effect along the time, depending on

days one of the most important tools in biomedical aane intensity of the incident LAS.ER cgllqnhotobleaching
pharmaceutic research [1]. The main advantage of this tec|ﬁ_observeq. The. more intense is the incident LASER beam
nigue over the traditionabright field optical microscopy is the Iarger'ls the |nt.en3|ty. decgy rate [2]. . . .
the fact that it allows the selection of a thin cross-section The Poisson noise arises in systems |_nvolvmg counting
of the sample by rejecting the visual information Comin(frocedures such as PET./SPECT [3], functional MRI [4] and
from the out-of-focus planes (see Fig. 1). Additionally, it luorescence confo.cal microscopy [2].

allows the use of fluorescence synthetic moleculesgeegn . The phqtobleaghmgeffecf[ results frqm the GFP decreas-
fluorescent protein(GFP), that radiate in a wave Iength'ng radiation emission efficiency. Thls_ occurs because the
different from the one of the incident LASER. Using theﬂuoroph_ore perm_anen_tly loses the at_mht_y to fluoresce, due
right optical filters it is easy to track these moleculesdesi to chemical reactions induced by the incident LASER or by

the cell, by observing only its emitted radiation. Taggihg t other surrounding molecules. The decreasing on the image

protein of interest with GFP it is possible to follow theseIntenSIty is associated to a decreasing on the signal to

molecules aiming to understand the dynamic mechanisnr\]é’ise ratio of the images, m?‘k"‘g the biological informatio
behind the molecular machinery. recovery more and more difficult [5].

The most significant advances in this technique, occurred This photobleaching effect, however, enables the obser-

during the last decade, due to the improvement on tfi/eat'on of the spatio-temporal dynamics of the fluorescently

Laser Scanning Confocal MicroscofeSCM) [1], to the agged proteins, namely with the use of GFP fusions ex-

development of synthetic fluorescent probes and proteids aﬂresﬁed n I|v_|ng ceIIIs [6]. In fSCt’ tbyhsttrglnglyh_radlat;fngta_
to the development of a wider spectrum of LASER IightSma région In nucleus, an abrupt photbleaching ettect 1s

sources coupled to highly accurate acoustic/optic cdetiol mduced in that region. The intensity in the rest of the nusle
filters. will also decrease due to the random walk effect of the

molecules that enter into the hole. Therefore, by observing
Correspondent author: Isabel Rodrigues (irodriguesigtisttl.pt). the intensity decay rate in the cell nucleus it is possible to
Pa”'a”yFé‘épé’s)”Ed by FCT, under ISR/IST plurianual fngli(POSC  infer the diffusion velocity of these molecules. Some ofithe
program, . .
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In this paper a denoising algorithm is formulated as aw; ; == [yi j(1)Vi,j(2) --- ¥ij(T)], obtained by collecting all
optimization problem where a convex energy function ishe observanons associated with the pixelj) along the
minimized. Since the purpose is to achieve knowledge draxis. In this paper, th&-dimensional vectory; ; are pro-
the dynamics of the molecular process occurring along theessed independently of one another. Thus, a total »iM
time, the denoising methodology is performed in a timéD signals must be processed but, since they are decoupled,
course basis instead of the traditional image basis. Tl technique is amenable to a fast implementation in a
convex formulation and the optimization procedure wittparallel computing environment.
the Newton algorithm guarantees a continuous convergenceThe noise corrupting thEluorescent Confocal Microscopy
toward the global minimum in a small number of iterations(FCM) images is multiplicative and described by a Poisson
The algorithm assumes a constant cell morpholdgy,with  distribution [7]. Furthermore, the time-decreasing isign
a pixel intensity decreasing along the time with a spacealled photobleaching[8], is modelled by a decaying ex-
varying decay rate); j. The ultimate goal is to estimate theseponential whose rate may vary from pixel to pixel (see
two fields from the sequence of images that were previousfsig.4). To simplify notation, lety = [y(1)y(2) ---y(T)] be

aligned using a simple correlation based method. the T-dimensional data vector associated with the pixgj)

Tests with synthetic and real data are presented to I|hﬂ$tfﬂprev|ous|y denoted by; ]) In view of our assumptions, we
the application and performance of the algorithm. have

The paper is organized as follows. Section Il formulates oY
the problem, section Ill presents the experimental results gt) = fe o )
using synthetic and real data and section IV concludes the (gt _

t|f,A) = 9t
Il. PROBLEM FORMULATION The goal is to estimate the deterministic paramefersO

The data used to reconstruct the cell nucleus is composaddA > 0 from the data vectoy, by solving the associated
of a set of images acquired along the time. During th&aximum LikelihoohdML) [9] optimization problem
acquisition process the cell moves and rotates. Therefore,

previous to reconstruction, an alignment procedure is eged (f.4) = argf>rg,1/{r;0E(y, f.A) “)
to compensate for these displacements. In this work a S'm%ereE (v, f,2) = —log(p(ylf,A))
correlation technique is used to align the images, e o .
Assuming statistical mdependence over time,
Tkr =arg rr%amorr(xk,TkJ(X,)) Q)
. . . p(ylA, f) |'lp ) £.4) ®)
where corr(X,Y) is the correlation function between two

images andTy, is the rigid body transform that maximizes
the correlation between the imag¥g and X;. These trans- .
formations are computed for all pairs of consecutive images (f,A)=arg min @(f,A) (6)
in the sequenceTij11, and the respective compensation 1>04>0

performed. By stacking these aligned images, a volume datdere

the ML problem boils down to

is obtained. o(f,A)=c(A)f —aylog(f)+ByA, )
. 1 T it efA 1_67/\T
W=32°8" =7 1oer ®

-

with ay == (1/T) 3Ly y(t) and By := (1/T) 34 (ty(t)).
Problem (6) is solved by first optimizing ovérsince, for
fixed A, the functiong in (7) is convex with respect té and
therefore the global minimizer corresponds to the statipna
point f(A) = ay/c(A).
Plugging this back in (7) leaves the one-dimensional
problem

Fig. 2. Data tensor A= arg/l\“ﬂi(l)’]w()\) = aylog(c(A)) + ByA 9)
>

Let Y ={yijt) :1<i<N,1<j<M1<t<T}be 10 be solved. It can be shown that the cost functjom (9)
the D data tensor containing the collection of acquirdal 2 is convex (proof omitted due to paper length constraints).
images. Heret represents time and the ordered pdirg)  Thus, Newton’s algorithm
denote pixel indexes within each image. Thus, the images Aest = A — WA /DA 10
are stacked along the temporal axis, as shown in Fig. 2. 1= M= S () /P (A (10)
To each pixel(i, j) corresponds & -dimensional data vector wheres, denotes an Armijo step, will converge quadratically



to the global minimizer from any initial point [10]. In fact,
the following heuristic provides us with a good initial pbin
for A > 0 and largeT, we havee T ~ 0, leading to the
approximationc(A) ~ e /(T(1—e*), see (8). Inserting
this in (9) yields

A= inB,— ay)A —aylog(1—e
arg)@g(ﬁy ay)A —ay og< e )
which can be solved in closed-form:

A" =log(By/(By—ay)) (11)

This point A* can be used as an initialization for the

Newton’s algorithm.

The parameter$ andA were computed for the 1D vector

associated to each pixel along the time, callietse course
and two imagesfi ; and A; j, with 0 <i,j < N,M, were
estimated and displayed

IIl. EXPERIMENTAL RESULTS

In this section the results obtained from tests using syn-

thetic and real data are presented to illustrate the apiolica
of the algorithm.
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Fig. 3. Synthetic Data (a)-(d) and the resulting reconstédicmagesf;
(e) andAij ().

A. Synthetic Data

(@n=0

(c) n=150

(b) n=50

(d) n= 250

(e) fij

600

500

400

300-

200-

100

(}4 2 0 2 4 6 8 10 12

(g9) A histogram inside the nucleus

Fig. 4. Real Data (a)-(d) and the resulting reconstructech@szfi ; (e)
and ;i j (f) and the respective histogram (g).

regions were generated: two squares with intensity 200 and
a zero intensity background. The intensity images were the
result of applying exponential decays to the square regions
with rates ofA =0.01 andA = 0.075 for the upper left square
and the lower right square respectively and the 100 images
were generated. The stack was then corrupted by Poisson
noise (Fig.3 (a) - (d)). The methodology presented above was
applied to these data and the results are displayed in Fig.3
(e) and (f). The mean values far were computed in both
squaresA; = 0.01 with a standard deviation of, = 0.00045

The synthetic data consists on a set of 100 images witbr the upper left square and, = 0.075 and a standard
256 x 256 pixels. In the template image three differentleviation ofo, = 0.0021 for the lower right.



B. Real Data

may contain relevant biological information, namely, piot

The real data is composed of a set of 273 images witlPW information across the nucleus.

320x 420 pixels obtained with aonfocal LASER-scanning
microscopg(CLSM).

In confocal LASER-scanning microscopy a LASER beal
is raster-scanned across a focal plane within the specisen a
shown in Fig.5. The emitted light is processed, the out-o

The reconstruction algorithm processes the datatima
coursebasis, that is, the data associated with each pixel along
nihe time is processed independently of the other pixels.
The estimation algorithm is based on the minimization of
@n energy function with respect to tiig andA; j parameters.

focus information rejected by a pinhole and the remainin§]! e context of the presented methodology, the optinuzati

light directed to a detector to produce a digital image in &

roblem is convex which guarantees the convergence to the

computer. In this technique it is possible to define a smaflloP@l minimum and therefore to the optimum solution.

region in the specimen where the incident LASER is more

Synthetic and real data are used to illustrate the appdicati

intense and so is the photobleaching; in the image it appea%the algorithm. The synthetic example shows the ability of

as a darker region. In fact, this region is the main source
the photobleaching effect observed in the whole image. The
green fluorescent proteifGFP) molecules that are observed
in this type of images diffuse across the image enterin
and leaving the hot spot region according to a random Wa&
process. However, inside the hole, these proteins loose thg
fluorescence properties and when they get out to the rest
of the cell they contribute less to the mean intensity of the
image, leading to a substantial decrease on the intensity cﬂ]
the observed image along the time.

In Fig.4 (a)-(d), four of the 273 data images that constitutel]
the sequence are shown. Fig.4 (e) and (f) present images of
the estimated parametefs; (e) andj; j (). In these images
it is possible to observe the hot spot (the black hole) where
a high intensity LASER beam is focused. The decay rate i)
approximately constant across the image, inside the nsicleu(4]
Fig.4 (g) shows the histogram @&f j inside the nucleus which
assumes values mainly in the intery@l002 0.005.
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Fig. 5. Confocal Laser-Scanning Microscog€LSM).

IV. CONCLUSIONS

In this paper a reconstruction algorithm is proposed to
fluorescent confocal LASER scanning microscopy imaging.
In this modality the images are corrupted by a type of
multiplicative noise described by a Poisson distributidne
to the huge light amplification performed by the photon
detectors, in order to make the light emitted by the GFP
visible. Additionally, the emission efficiency of these f@ios
decreases along the time leading to a decreasing effect on
the image intensity callegphotobleaching In this paper a
statistical algorithm is proposed to estimate the morpiylo
of the cell nucleus as well as the decay rate for each
location. The estimation of this decay rate is important to
compensate for the photobleaching effect but also because i

{Hpe algorithm to find the true solution.
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