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Abstract— The Fluorescence Confocal Microscopy(FCM) is
nowadays one of the most important tools in biomedical and
pharmaceutic research. The main advantage of this technique
over the traditional bright field optical microscopy is the fact
that it allows the selection of a thin cross-section of the sample
by rejecting the visual information coming from the out-of-focus
planes. However, the small amount of energy radiated by the
fluorophore and the huge light amplification performed by the
photon detector to capture this visual information introduces
a type of multiplicative noise described by a Poisson distri-
bution. Additionally, the radiation efficiency of the fluorophore
decreases with the time, an effect calledphotobleaching, leading
to a decrease in the image intensity along the time.

In this paper a reconstruction algorithm is proposed where
the multiplicative noise and the photobleaching effect are
modeled. The goal is to obtain the morphology and the
intensity decay rate across the cell nucleus from a sequence
of FCM images. The reconstruction algorithm is formulated
as an optimization problem where a convex energy function is
minimized. Tests using synthetic and real data are presented to
illustrate the application of the algorithm and the effectiveness
of the results.

Index Terms— Denoising, Poisson, Bayesian, confocal mi-
croscopy, convex optimization.

I. I NTRODUCTION

The Fluorescence Confocal Microscopy(FCM) is nowa-
days one of the most important tools in biomedical and
pharmaceutic research [1]. The main advantage of this tech-
nique over the traditionalbright field optical microscopy is
the fact that it allows the selection of a thin cross-section
of the sample by rejecting the visual information coming
from the out-of-focus planes (see Fig. 1). Additionally, it
allows the use of fluorescence synthetic molecules, e.g.green
fluorescent protein(GFP), that radiate in a wave length
different from the one of the incident LASER. Using the
right optical filters it is easy to track these molecules inside
the cell, by observing only its emitted radiation. Tagging the
protein of interest with GFP it is possible to follow these
molecules aiming to understand the dynamic mechanisms
behind the molecular machinery.

The most significant advances in this technique, occurred
during the last decade, due to the improvement on the
Laser Scanning Confocal Microscope(LSCM) [1], to the
development of synthetic fluorescent probes and proteins and
to the development of a wider spectrum of LASER light
sources coupled to highly accurate acoustic/optic controlled
filters.
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Fig. 1. Fluorescence Confocal Microscope (from Nikon-MicroscopyU).

The FCM images are in general very noisy, with smallsig-
nal to noise ratio(SNR), corrupted by a type of multiplica-
tive noise described by a Poisson distribution. Additionally,
an intensity decreasing effect along the time, depending on
the intensity of the incident LASER calledphotobleaching,
is observed. The more intense is the incident LASER beam
the larger is the intensity decay rate [2].

The Poisson noise arises in systems involving counting
procedures such as PET/SPECT [3], functional MRI [4] and
fluorescence confocal microscopy [2].

The photobleachingeffect results from the GFP decreas-
ing radiation emission efficiency. This occurs because the
fluorophore permanently loses the ability to fluoresce, due
to chemical reactions induced by the incident LASER or by
other surrounding molecules. The decreasing on the image
intensity is associated to a decreasing on the signal to
noise ratio of the images, making the biological information
recovery more and more difficult [5].

This photobleaching effect, however, enables the obser-
vation of the spatio-temporal dynamics of the fluorescently
tagged proteins, namely with the use of GFP fusions ex-
pressed in living cells [6]. In fact, by strongly radiating a
small region in nucleus, an abrupt photbleaching effect is
induced in that region. The intensity in the rest of the nucleus
will also decrease due to the random walk effect of the
molecules that enter into the hole. Therefore, by observing
the intensity decay rate in the cell nucleus it is possible to
infer the diffusion velocity of these molecules. Some of them,
however, are binded to large and almost static structures
presenting very small diffusion rates.



In this paper a denoising algorithm is formulated as an
optimization problem where a convex energy function is
minimized. Since the purpose is to achieve knowledge on
the dynamics of the molecular process occurring along the
time, the denoising methodology is performed in a time
course basis instead of the traditional image basis. The
convex formulation and the optimization procedure with
the Newton algorithm guarantees a continuous convergence
toward the global minimum in a small number of iterations.
The algorithm assumes a constant cell morphology,fi, j , with
a pixel intensity decreasing along the time with a space
varying decay rate,λi, j . The ultimate goal is to estimate these
two fields from the sequence of images that were previously
aligned using a simple correlation based method.

Tests with synthetic and real data are presented to illustrate
the application and performance of the algorithm.

The paper is organized as follows. Section II formulates
the problem, section III presents the experimental results
using synthetic and real data and section IV concludes the
paper.

II. PROBLEM FORMULATION

The data used to reconstruct the cell nucleus is composed
of a set of images acquired along the time. During the
acquisition process the cell moves and rotates. Therefore,
previous to reconstruction, an alignment procedure is needed
to compensate for these displacements. In this work a simple
correlation technique is used to align the images,

Tk,r = argmax
T

corr(Xk,Tk,r(Xr)) (1)

where corr(X,Y) is the correlation function between two
images andTk,r is the rigid body transform that maximizes
the correlation between the imagesXk andXr . These trans-
formations are computed for all pairs of consecutive images
in the sequence,Ti,i+1, and the respective compensation
performed. By stacking these aligned images, a volume data
is obtained.

Fig. 2. Data tensor

Let Y = {yi, j(t) : 1 ≤ i ≤ N,1 ≤ j ≤ M,1 ≤ t ≤ T} be
the 3D data tensor containing the collection of acquired 2D
images. Here,t represents time and the ordered pairs(i, j)
denote pixel indexes within each image. Thus, the images
are stacked along the temporal axis, as shown in Fig. 2.
To each pixel(i, j) corresponds aT-dimensional data vector

yi, j := [yi, j(1)yi, j(2) · · · yi, j(T) ], obtained by collecting all
the observations associated with the pixel(i, j) along the
t-axis. In this paper, theT-dimensional vectorsyi, j are pro-
cessed independently of one another. Thus, a total ofN×M
1D signals must be processed but, since they are decoupled,
our technique is amenable to a fast implementation in a
parallel computing environment.

The noise corrupting theFluorescent Confocal Microscopy
(FCM) images is multiplicative and described by a Poisson
distribution [7]. Furthermore, the time-decreasing intensity,
called photobleaching[8], is modelled by a decaying ex-
ponential whose rate may vary from pixel to pixel (see
Fig.4). To simplify notation, lety = [y(1)y(2) · · · y(T) ] be
theT-dimensional data vector associated with the pixel(i, j)
(previously denoted byyi, j ). In view of our assumptions, we
have

g(t) = f e−λ t (2)

p(y(t)| f ,λ ) =
(g(t))y(t)

y(t)!
e−g(t) (3)

The goal is to estimate the deterministic parametersf > 0
andλ > 0 from the data vectory, by solving the associated
Maximum Likelihoohd(ML) [9] optimization problem

( f̂ , λ̂ ) = arg min
f>0,λ>0

E(y, f ,λ ) (4)

whereE(y, f ,λ ) = − log(p(y| f ,λ )).
Assuming statistical independence over time,

p(y|λ , f ) =
T

∏
t=1

p(y(t) | f ,λ ) (5)

the ML problem boils down to

( f̂ , λ̂ ) = arg min
f>0,λ>0

φ( f ,λ ) (6)

where
φ( f ,λ ) = c(λ ) f −αy log( f )+βyλ , (7)

c(λ ) :=
1
T

T

∑
t=1

e−λ t =
e−λ

T
1−e−λT

1−e−λ , (8)

with αy := (1/T)∑T
t=1y(t) andβy := (1/T)∑T

t=1(ty(t)).
Problem (6) is solved by first optimizing overf since, for

fixed λ , the functionφ in (7) is convex with respect tof and
therefore the global minimizer corresponds to the stationary
point f̂ (λ ) = αy/c(λ ).

Plugging this back in (7) leaves the one-dimensional
problem

λ̂ = argmin
λ>0

ψ(λ ) := αy log(c(λ ))+βyλ (9)

to be solved. It can be shown that the cost functionψ in (9)
is convex (proof omitted due to paper length constraints).
Thus, Newton’s algorithm

λk+1 = λk−skψ̇(λk)/ψ̈(λk) (10)

wheresk denotes an Armijo step, will converge quadratically



to the global minimizer from any initial point [10]. In fact,
the following heuristic provides us with a good initial point:
for λ > 0 and largeT, we havee−λT ≈ 0, leading to the
approximationc(λ ) ≈ e−λ /(T(1− e−λ ), see (8). Inserting
this in (9) yields

λ ∗ = argmin
λ>0

(βy−αy)λ −αy log
(

1−e−λ
)

which can be solved in closed-form:

λ ∗ = log(βy/(βy−αy)) (11)

This point λ ∗ can be used as an initialization for the
Newton’s algorithm.

The parametersf andλ were computed for the 1D vector
associated to each pixel along the time, calledtime course,
and two imagesfi, j and λi, j , with 0 ≤ i, j ≤ N,M, were
estimated and displayed

III. E XPERIMENTAL RESULTS

In this section the results obtained from tests using syn-
thetic and real data are presented to illustrate the application
of the algorithm.

(a) n = 0 (b) n = 10

(c) n = 25 (d) n = 100

(e) fi, j (f) λi, j

Fig. 3. Synthetic Data (a)-(d) and the resulting reconstructed images,fi, j
(e) andλi, j (f).

A. Synthetic Data

The synthetic data consists on a set of 100 images with
256× 256 pixels. In the template image three different

(a) n = 0 (b) n = 50

(c) n = 150 (d) n = 250

(e) fi, j (f) λi, j
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(g) λ histogram inside the nucleus

Fig. 4. Real Data (a)-(d) and the resulting reconstructed images, fi, j (e)
andλi, j (f) and the respective histogram (g).

regions were generated: two squares with intensity 200 and
a zero intensity background. The intensity images were the
result of applying exponential decays to the square regions
with rates ofλ = 0.01 andλ = 0.075 for the upper left square
and the lower right square respectively and the 100 images
were generated. The stack was then corrupted by Poisson
noise (Fig.3 (a) - (d)). The methodology presented above was
applied to these data and the results are displayed in Fig.3
(e) and (f). The mean values forλ were computed in both
squares:̄λ1 = 0.01 with a standard deviation ofσ1 = 0.00045
for the upper left square and̄λ2 = 0.075 and a standard
deviation ofσ2 = 0.0021 for the lower right.



B. Real Data

The real data is composed of a set of 273 images with
320×420 pixels obtained with aconfocal LASER-scanning
microscope(CLSM).

In confocal LASER-scanning microscopy a LASER beam
is raster-scanned across a focal plane within the specimen as
shown in Fig.5. The emitted light is processed, the out-of-
focus information rejected by a pinhole and the remaining
light directed to a detector to produce a digital image in a
computer. In this technique it is possible to define a small
region in the specimen where the incident LASER is more
intense and so is the photobleaching; in the image it appears
as a darker region. In fact, this region is the main source of
the photobleaching effect observed in the whole image. The
green fluorescent protein(GFP) molecules that are observed
in this type of images diffuse across the image entering
and leaving the hot spot region according to a random walk
process. However, inside the hole, these proteins loose their
fluorescence properties and when they get out to the rest
of the cell they contribute less to the mean intensity of the
image, leading to a substantial decrease on the intensity of
the observed image along the time.

In Fig.4 (a)-(d), four of the 273 data images that constitute
the sequence are shown. Fig.4 (e) and (f) present images of
the estimated parametersfi, j (e) andλi, j (f). In these images
it is possible to observe the hot spot (the black hole) where
a high intensity LASER beam is focused. The decay rate is
approximately constant across the image, inside the nucleus.
Fig.4 (g) shows the histogram ofλi, j inside the nucleus which
assumes values mainly in the interval[0.002,0.005].

Fig. 5. Confocal Laser-Scanning Microscope(CLSM).

IV. CONCLUSIONS

In this paper a reconstruction algorithm is proposed to
fluorescent confocal LASER scanning microscopy imaging.
In this modality the images are corrupted by a type of
multiplicative noise described by a Poisson distribution,due
to the huge light amplification performed by the photon
detectors, in order to make the light emitted by the GFP
visible. Additionally, the emission efficiency of these proteins
decreases along the time leading to a decreasing effect on
the image intensity calledphotobleaching. In this paper a
statistical algorithm is proposed to estimate the morphology
of the cell nucleus as well as the decay rate for each
location. The estimation of this decay rate is important to
compensate for the photobleaching effect but also because it

may contain relevant biological information, namely, protein
flow information across the nucleus.

The reconstruction algorithm processes the data in atime
coursebasis, that is, the data associated with each pixel along
the time is processed independently of the other pixels.

The estimation algorithm is based on the minimization of
an energy function with respect to thefi, j andλi, j parameters.
In the context of the presented methodology, the optimization
problem is convex which guarantees the convergence to the
global minimum and therefore to the optimum solution.

Synthetic and real data are used to illustrate the application
of the algorithm. The synthetic example shows the ability of
the algorithm to find the true solution.
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