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Abstract— Image reconstruction from noisy and incomplete The specklenoise appearing in the US images is particular
observations is usually an ill-posed problem. A Bayesian frame- severe and the traditional methods based on the classical
work may be adopted do deal with this such inverse task by - Aqgitive White Gaussian NoiS@WGN) paradigm are not
well posing the reconstruction problem. In this approach, theill iate. To deal with this t f noi | thod
poseness nature of the reconstruction is removed by minimizing appropriate. 10 deal wi . }’Pe OFNOISE Severa me 00S
a two-term energy function. The first term pushes the solution have been proposed for de-noising and reconstruction based
toward the data and the second regularizes the solution. on wavelets [4], anisotropic diffusion [5] and level setaol

A Bayesian algorithm for ultrasound image reconstruction methods, recently proposed, have shown to be particulrly e

anddde-noizing ishpmposedh.""her?f aredge rk)}r@erving.prior ish fective to deal withspecklenoise:Non-Local MeangNLM)
used to reduce the smoothing effect at the transitions. The 11" s cese Box FiltefSBF) [7].

prior distribution is based on log-Euclidean potential functions i )
that are particular suitable in reconstruction problems under Bayesian framework has also been successfully used in

the constraint of positivity, that is, when the unknowns to be several medical imaging modalities, namely, in ultrasound
estimated should be positive, which is the case, where the noisy |mag|ng [8] In this approach the i”_poseness nature of
observations are modeled by a Rayleigh disiribution. the reconstruction/de-noising problem is circumvented by
In this paper, the reconstruction procedure is formulated as . o . .
the optimization of a convex function and a Newton method USiNga priori information about the unknown image to be
is adopted to obtain the minimizer. This strategy guarantees estimated. The estimation is formulated as an optimization
a convergence to the global minimum in a small number of task where a two-term energy function is minimized. The
iterations. Experimental results, using synthetic and real med- fjrst term pushes the solution toward the observations and
ical images are shown. The proposed method produces images e gecond regularizes the solution. This second termectall
where speckle noise is effectively suppressed and important . . L ’ .
clinical details (organ and tissue transitions) are preserved.  Prior term, introducesa priori knowledge about the solution
by removing ambiguities that arise when only the observa-
I. INTRODUCTION tions are taken into account. Tipeior usually smooths the

Ultrasound imaging is widely used in clinical practice forsolution by removing the noise corrupting the observations
diagnostic purposes because it is non-invasive, noniiugiz and filling the gaps of non observed regions. However a
not expensive and real time based. Therefore, ultrasouffficulty must be addressed. The smoothing effect, which
image processing is an active field of research in areas sughcrucial to noise removal, should not distort too much the
as 2D and 3D reconstruction, despeckling and textural arfflges of the solution associated with the anatomical detail
morphological characterization of tissues and organs.  that are important from a clinical point of view.

The ultrasound images usually present a Isignal to In this paper a Bayesian reconstruction/de-noising al-
noise ratio (SNR) and are corrupted by a type of multi-gorithm for ultrasound data is proposed where ege
plicative noise calledspecklethat accompanies all coherentPreservingprior based orlog-Euclideanpotential functions
imaging modalities. It appears when images are obtained Bl is used. The reconstruction procedure is formulated
using coherent radiation and is the result of the constreicti @ the optimization of a convex function and a Newton
and destructive interference of the echoes scattered frdiethod is adopted to obtain the minimizer [10]. This strateg
heterogeneous tissues and organs [1]. guarantees a convergence to the global minimum in a small

The characteristic granular speckle pattern present in tihgimber of iterations. Tests using synthetic and real daa ar
ultrasound images is evident in Fig. 55%(tow, 15 col. of presented to illustrate the application of the algorithm.
each image set). Its reduction or even its removal, while The paper is organized as follows. Section Il formulates
keeping the transitions that represent the anatomicallsletathe problem and section Il describes the optimization .step
throughout the image would be beneficial for automati©ection IV presents several results using synthetic and rea

contour segmentation or tissue characterization. medical data and Section V concludes the paper.
Several statistical models are proposed in the literatre t
describe this type of multiplicative noise [2]. One of thesho Il. PROBLEM FORMULATION

used in Ultrasound (US), LASER an8lynthetic Aperture

Radar (SAR) is the Rayleigh distribution [3]. LetX = {x;j} andY = {yi,j} be aN x M original noiseless

image and a noisy version respectively. Témecklenoise
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Fig. 1. 4-pixel causal neighborhood representation. Fig. 2. Log-Euclideangradient magnitude (blue) and the quadratic (red)
and linear (black) potential functions.

The estimation oK from Y is formulated as the following

optimization task To overcome this undesirable behavior, in this paper, an
N . edge preserving13] potential function is used,
X :argn>1<|nE(X,Y), (2)
P(Xij) = Gi] )

whereE(X,Y) is an energy function.

The optimization problem, described by equation (2), iwhereg is the log-Euclideangradient magnitude af, j)*"
usually ill-posed in the Hadamard sense E(X,Y) is the pixel,
log-likelihood function, E(X,Y) = log p(Y |X).

This difficulty may be overcome by using tieaximum a (i, j) = \/'092(Xi.j/xi71,j) +log?(% /% j-1) (8)
posteriori (MAP) criterion,

This potential function is appropriated when positivity
E(X,Y)= Ev(X,Y) + Ex(X), (3) constraint is imposed at the solutiog,; > 0, which is the
dataﬁdmrm m case. Fig.2 shows this potential functigrix,y) = Iogz(x/y),
for 0 < x <10 andy = 1. Thelog-Euclidean[9] potential
whereEy(X,Y), calleddata fidelity termis the symmetric fynction penalizes much more small differences between
of the log-likelihood function neighboring pixels, when they are small than the quadric
N,M potential function. On the contrary, if the difference isji,
Ev(X,Y) = —log [ |_| p(yi,j|xi,j)] , (4)  which usually happens at the transitions, thg-Euclidean
=1 potential function penalizes less than the quadratic prior
where it is assumed statistical independence of the obsengnoothing less the transitions.
tions [11]. The log-Euclideanprior is based on the distance function
The prior term is used to regularize the solution byp(x,y) = [log(x/y)| that is in fact a metric because the
introducing a priori information about the imag& to be following conditions hold:
estimated. Typically, the prior term is obtained by assgmin 1) p(x,y) >0
thatX is aMarkov random fieldMRF) where a neighboring  2) p(x,y) =0 if and only ifx=y
system,, is considered to define spatial interactions among 3) p(x,y) = p(y,X)
neighboring pixels (Fig. 1). By using the Emmerson-Cliffor  4) p(x,2) + p(zy) > p(x,y).
theorem the assumption thitis a MRF means thap(X)

is a Gibbs distribution [1l. CONVEX OPTIMIZATION
p(X) = %e—aU(X)7 (5) The energy function to be minimized is given by
2
whereZ is the partition function [12]a controls the prior EX.Y)=Y Yiij +log(xij) [ +a Y g, (9)
strength andU (X) is the Gibbs energy. 0] 2x.j " 5

This Gibbs energy is usually defined as follows whereg,, is defined in (8).

UX)= zp(Xi’j), (6) This energy function is not convex because (lggis
] concave and Ax andp(x) are convex. Therefore, let us con-

where p() is called potential function an¥; ; is a set of Sider the following variable change = log(x) (notice that

pixels containing the pixek; ; and its neighbors. Iog(_x) _is a monotonic function). The new energy function to
A typical potential function is the quadratic ong(X; j) = MiniMize Is
(Xi,j —Xi—1,j)2+ (%,j —%i.j—1)%, where neighboring pixel dif- 2
ferences are quadratically penalized. This potentialtanc  E(F,Y) = ['Z’Jef‘-i + 1 (20)
leads to simple equations and is able to efficiently remove I
the noise. However, it also oversmooths the transitions, + az\/(fi’j_fiil,j)2+(fi7j_fi’j71)2+87
]

attenuating or removing important anatomical details.



which is now convex, because ' and p(f) are both
convex.

The minimization of the energy function (10) is iteratively
performed by using a line search [10] algorithm in which the
basic step isxc.1 = X + 0k dx, with ag > 0. A continuous
variation strategy (here termedoling) is used where a small
decreasing constamt updated at each iteration, is added in
order to deal with the non-smooth term of (10). Different
strategies to compute the descent directiprwere tested:

1) Barzilai-Borwein steepest (gradient) method =

; d T
—DE()/ak, with ay = GVt gng el o

Runtime
Algorithm ([N = 128 |H = 51?2 | H = 1024
Hewton 0.07&1 0.1875 0.3125
BBEnoCool | 10.5781 | 40.3281 74.9531
BBECool 5.2813 | 17.8750 | 36.3750

dy g1 Ve 101 S M
1&6 : | Wteraans
2) BarZIIaI-Borwgln steepest (gradlent) method, with ConI':ig. 3. Profiles of the reconstructed data. Performances eofdiffierent
tinuous variation ofe=1—0 ; descent methods used.

3) Newton algorithm, with continuous variation &f=

Rayleigh distributed vector Y with parameter X was then

1— 0, wheredy = — DZE(xk) DE(X). generated. Results of de-noising and performance using the
— three different descent strategies are depicted in Figid3. F
Hessia 3 (bottom) illustrates the outstanding performance of the

The main steps of the overall convex reconstruc: . >
tion/denoising algoorithm for ultrasound images are disteNEWtOn algorithm when compared with the other methods.

in the following table, Therefore, thg .Newton method is used from now on.
Moreover, it is shown that lower values for the parameter

, a (prior strength) lead to sharper solutions were the transi-
Prototype algorithm tions are better preserved. This parameter is manuallydtune
1. > chose initial estimatiorx, tolerancen =106 ande and was selected in a trial and err(?r paSB'
2.> setk=0 In the second example, synthetic images (a square and
z-D F;O‘T‘“P)lh‘e@lk:'jt'fk( § " a set of different-sized ellipses) corrupted with Rayleigh
.> if |gk)|| < n, stop (or decreme . . st
5.> compute descent directicd noise were generated (see Fig. 4(a-B) (aw, 1% col.)). The
6. > Armijo rule to define an acceptablg distribution parameters webénax = 5000 andXm,, = 1000.
;- > .“pdatexk:“.tl =;‘.k * lf’k*gk 1 SteD 3 Reconstruction results obtained with the proposed method
+P> Increment fieration k and return to step (Fig. 4(a-b) (' row, 29 col.)) were visually compared

with SBF (Fig. 4(a-b) (2 row, 1%t col.)) and NLM (Fig.

_ L o o 4(a-b) (29 row, 29 col.)) algorithms. It is observed that
The final solution isX = €#. As it is shown in Fig. 3 e proposed algorithm provides images where the speckle

the Newton method performs better than the other desceqise js successfully attenuated while the edges are better

approaches used in the optimization algorithm, which is 8feserved. This observation is supported by inspecting the

expected behavior because the search direction takes 9 qised image profiles (Fig. 4 (bottom)). To allow a more

account not only the gradient of the energy function but aISBbjective comparison the signal to noise ratio (SNR) was

its second-order information. The Newton algorithm seemgc computed. For both images, the best SNR is achieved
to be very computationally demanding because the NewtQliih the method proposed in this’paper.

direction is obtained by solving a rather large linear syste
at each iteration. However, we are dealing with highly sparg. Medical data
Hessian matrices (a variable is coupled only with its spatia

neighbors) which makes the method feasibie. In the last example, application of the proposed recon-

struction algorithm and comparison with SBF and NLM
IV. RESULTS was done in real medical data. 4 different ultrasound images
In this section we present three examples of reconstructiéie presented f1row, ™ col. of each set of images) and
using synthetic and real data. In the synthetic case w&construction results using the proposed method (RaylCx -
use both 1D and 2D data corrupted with multiplicativel™ row, 2 col.), SBF (29 row, 1* col.) and NLM (2¢
Rayleigh noise. In the real case, several ultrasound imagi¥V, 2" col.) are depicted in Fig. 5. At the bottom of each

are presented. set of images, profiles from the de-noised images using the
_ different reconstruction algorithms are shown. Reguéitn
A. Synthetic data - 1D and 2D parameters used by the three algorithms were kept constant

In this experiment we have first generated a vector Jlong the different images to study the robustness of the de-
with dimensionN = 1024 corresponding to a rectangulamoising methods.
shaped function withXmax = 5000 and Xqin = 500. A By qualitative inspection of the images and corresponding
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Fig. 4. De-noising results of two artificially generated syimages: a
noisy blank square (left) and a set of noisy different-sibéahk ellipses
(right), using the proposed method and two other de-noisiggrighms.
(bottom) De-noised image profiles.

profiles, the proposed de-noising algorithm, which is time
competitive with the others used, attains cleaner imagds wi
the relevant organ edges being well preserved. For instance
Fig.5(a) shows that the SBF overestimates the original®dge

V. CONCLUSIONS

; J b f |
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This paper proposes a Bayesian ultrasound imag d) ahf WFWM\
reconstruction/de-noising (despeckle) algorithm usihg t -
maximum a posterior(MAP) criterion. The algorithm is Fig. 5. De-noising results of ultrasound images of the car@), liver(b),

formulated as the optimization of a convex energy functioﬁhyzgidd(t:) ar(ljd f;)eatltrt (d), using thef_lproposecli R?jylc_xtagd SBIF NLM
The convexity of the function and the minimization by using"¢"°ds: (&-d) (bottom) image profiles are also depicted.
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