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Abstract— This paper presents an algorithm for recovering the radio
frequency (RF) signal provided by the ultrasound probe from the log-
compressed ultrasound images displayed in ultrasound equipment.

Commercial ecographs perform nonlinear image compression to
reduce the dynamic range of the Ultrasound (US) signal in order to
improve image visualization. Moreover, the clinician may adjust other
parameters, such as brightness, gain and contrast, to improve image
quality of a given anatomical detail. These operations significantly
change the statistical distribution of the original RF raw signal, which
is assumed, based on physical considerations on the signal formation
process, to be Rayleigh distributed. Therefore, the image pixels are no
longer Rayleigh distributed and the RF signal is not usually available
in the common ultrasound equipment.

For statistical data processing purposes, more important than having
”good looking” images, it is important to have realistic models to
describe the data.

In this paper, a nonlinear compression parametric function is used
to model the pre-processed image in order to recover the original RF
image as well the contrast and brightness parameters.

Tests using synthetic and real data and statistical measures such
as the Kolmogorov-Smirnov and Kullback-Leibler divergences are used
to assess the results. It is shown that the proposed estimation model
clearly represents better the observed data than by taking the general
assumption of the data being modeled by a Rayleigh distribution.

I. INTRODUCTION

Ultrasound (US) imaging is the most prevalent diagnostic tool in
almost all hospitals around the world. Unfortunately, the US images
present small Signal to Noise Ratio(SNR), meaning poor quality,
and are corrupted by a type of multiplicative noise called speckle
[1].

Several statistical models have been proposed [2] to describe the
speckle noise. A common one, derived from physical consideration
on the RF signal generation process, is the Rayleigh distribution
[3]. However, the RF signal is not usually available in the common
ultrasound equipment and it is usually pre-processed (filtered and
compressed) to improve its visualization. Compression is needed to
reduce the dynamic range of the RF signal in order to adapted it
to the dynamic range of the monitor.

Unfortunately, this pre-processing modifies the distribution of the
RF signal. This step depends on a set of parameters such as the
brightness, contrast, zoom and dynamic gain. These are tuned by
the clinician in order to improve the visualization of an organ or
region of interest (see Fig. 1). These processes affect the statistics
of the original RF signal which is no longer Rayleigh (Fig. 2).

It is important that these processing operations could be reverted
in order to obtain images Rayleigh distributed, independent on the
particular parameter selected by the clinician. This is crucial to
guarantee objective and reproducible tissue characterizations and
realistic models for image reconstruction and de-noising.
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Fig. 1. Ultrasound images showing different contrast and brightness levels.

Fig. 2. Probability Density Functions (PDFs) for Rayleigh and log-
compressed Rayleigh models.

The statistics of the speckle pattern, which depend on the
microstructure of the tissue parenchyma, can be useful for differ-
entiating between different tissue compositions or types [4]. In [5]
the authors describe a method for carotid plaque characterization
based on a Rayleigh observation model, which is known to be a
reasonable approximation but not entirely correct.

The goal of this paper is to estimate the original RF signal
from the observed pre-processed images for which it is known
that the Rayleigh distribution is more appropriated to describe it.
Here, relevance is not given to the improvement in the visualization
obtained by log-compression operation because the main concern
is to obtain a realistic model to describe the data.

The paper is organized as follows. Section II describes the US
data model proposed here. Parameter modeling and estimation is
described in section III and experimental results are presented in
section IV. Section V concludes the paper.

II. ULTRASOUND SIGNAL MODELING

Let Y be the N × M signal matrix (image) generated by the
ultrasound probe of i.i.d. (independent and identically distributed)
random variables, which are assumed to be Rayleigh distributed
[3],

p(yi|ψi) =
yi

ψi
e
− y2

i
2ψi , (1)

where yi denotes the intensity of the ith pixel of the data before
compression and ψi is the value of the noiseless image ith pixel ,
related with the tissue reflectivity at that location [4].



Fig. 3. Pixel histogram of a region selected from an ultrasound image.

Figs. 2 and 3 show clearly that the assumption of a Rayleigh
distribution is not realistic. The histogram of an homogeneous
region in a real ultrasound image (see Fig. 3), suggests that the
data is modeled by a compressed, shifted version of this Rayleigh
model.

Let Z be the ultrasound image where statistical independence of
its pixels is assumed. This may not be realistic because the point
spread function (PSF) of the image-acquisition system is larger than
the interpixel distance. However, modeling of the pixels dependence
highly increases the mathematical complexity of the algorithms
without significative improvements in the final results [6].

The pre-processing procedure performed by the ultrasound equip-
ment is modeled as follows,

zi j = α log(yi j +1)+β , (2)

where the log function accounts for the compression, (α ,β ) are
unknown parameters which account for the contrast and brightness,
respectively, and zi j is the intensity at the (i, j)th observed pixel.
The distribution of z is given by

p(z) =
∣∣∣∣dy
dz

∣∣∣∣ p(y), (3)

where p(y) is the probability density function (PDF) of the
original non-compressed image and dy/dz is the value of the
derivative of the inverse compression function [7]. By using (1 -
3),

p(z) =
η (η +1)
α ψ(x)

e
−η2

2ψ , (4)

where η = e
z−β

α − 1 and α and β are the parameters to be
estimated.

III. PARAMETER ESTIMATION

If y is a random variable (RV) which is described by a Rayleigh
distribution (1) and the logarithmic compression expression is given
by (2), the distribution of z, p(z), is a Fisher-Tippett distribution
(double exponential) [8,9]. After rearranging the previous equations,
p(z) becomes

p(z) =
2
α

e−θ−e−θ
, (5)

with θ = log(2ψ)−2 y−β
α .

Fig. 4. Mean and SD of the estimators α̂ (a) and β̂0 (b).

The expressions for the mean and standard deviation for this
distribution are

µz =
α
2

[log(2ψ)− γ]+β . (6)

σz = π α/
√

24 (7)

where γ = 0.5772... is the Euler-Mascheroni constant. From (7)
an estimator for α can be easily derived,

α̂ =

√
24
π2 σ2

z . (8)

Assuming that η = e
z−β

α −1 is Rayleigh distributed and therefore
that η > 0, then β must always be smaller than min(z). Therefore
the initial guess for β is,

β̂0 = min(z). (9)

The estimator provides reasonable results, as expected because
min(z) = min(log(y+1)+β ) = log(1)+β = β .

A set of Monte Carlo tests was performed using uniform synthetic
data in order to assess the performance of the estimators for α
and β . A set of 150 images with 128 × 128 pixels, corrupted
with Rayleigh noise, compressed and shifted with several pairs of
parameters (α ,β ) was used. For each pair of parameters (α ,β ), the
estimators (α̂, β̂ ) were computed for each image and their mean
and standard deviation (SD) were displayed. The results are shown
in Fig. 4 a). Fig. 4 a) shows the estimations of α for several
values of the parameter ψ = (500,1000,2000,3000,5000,7000).
The estimator of α appears to be unbiased and insensitive to
the parameter ψ . The SD of α̂ increases with the ψ parameter,
but its maximum value is small, which indicates it is an efficient
estimator. Fig. 4 b) shows a similar experiment but now to assess
the performance of β̂0, given by (9). The results prove that there
exists a considerable dependence of β̂0 with respect to α . However,
good results are obtained for low α values. It is also observed that
the SD of β̂0 grows with α .

As shown in [8] a non biased estimator for β is

β̂ = E(β0)−αA, (10)

where A =
∫ ∞

0
e
− τ2

2ψ ′
τ+1 dτ depends on ψ ′ = ψ/N. (10) shows that

the β0 estimator is biased and greater than β̂ . The coefficient A
(see Fig. 5) depends on the amount of available data N. As the



Fig. 5. Numerical computation of the coefficient A(ψ). The plot on the
bottom clearly shows that A becomes very small as N grows.

amount of data grows, ψ ′ → 0, and A → 0. Therefore, the estimator
β0 approximates β when N increases.

The estimator (10), on the contrary, is unbiased but it depends on
the unknown ψ . To circumvent this difficulty let us combine (10)
and (6),

µz −min(z) =
α
2

log(2ψ)− αγ
2

−αA(ψ). (11)

which is equivalent to the following equation depending on ψ

F(ψ) =
α
2

log(2ψ)− αγ
2

−αA(ψ)−µz +min(z) = 0. (12)

An estimation of ψ can be obtained from (12) using the Newton-
Raphson method, ψt+1 = ψt − F(ψ)

F ′(ψ) to be used in (6) in order to

obtain β̂ ,

β̂ = µz − α̂
2

(log(2ψ̂)− γ). (13)

IV. EXPERIMENTAL RESULTS

In this section we present three types of experiments,

1) Testing the performance of the estimators of α and β for
homogeneous synthetic data;

2) Recovering the RF signal from a set of real medical images;
3) Testing if the proposed compression law is valid by using the

Kolmogorov-Smirnov and the Kullback-Leibler conformity
tests in synthetic and real data.

Fig. 6 (top) displays a synthetic image, created with random
Rayleigh-distributed pixels. The histogram of the pixel intensity
is shown below. Fig. 6 (middle) shows the logarithmic compressed
image obtained by applying the nonlinear transformation given by
(2) to the pixels of the original image, with parameters α = 10
and β = 20. As expected, the histogram is no longer Rayleigh. Fig.
6 (bottom) shows the estimated image using the log-compressed
model. As it can be observed, the estimated image is similar to
the original one, with both histograms almost identical, proving the
ability of the algorithm to recover the original data.

Fig. 7 displays the mean and SD of α̂ and β̂ as a function of the
true parameters. This results were obtained by 50 runs of Monte
Carlo tests to assess the performance of the estimators for each pair
of true α and β parameters. It is experimentally shown (see Fig.7
a)) that the µα estimator is unbiased and presents a small variance,
independent on β . The SD of α̂ increases linearly with the true

Fig. 6. Images and histograms from restoration with the logarithmic
compression law proposed and using estimates of α and β . a) original
(Rayleigh distributed), b) observed (log compressed) and c) decompressed.

Fig. 7. Mean and SD of the estimators α̂ and β̂ for ψ = 5000. Results were
obtained with 50 Monte Carlo tests with uniform images with logarithmic
compression Rayleigh distribution and different pairs of α and β .

parameter α presenting, however, small values for the whole range
tested. The estimator of β̂ (see Fig.Fig.7 b)), is also unbiased with
a SD that increases with α .

Restoration results using medical data are displayed in Fig.8. Fig.
8 a)-c) (top) show observed US images and respective histograms
of the thyroid, gall bladder and carotid artery. It is observed that
this histograms follow approximately a log compressed Rayleigh
distribution and Fig. 8 a)-c) (bottom) shows the estimations of the
unobserved RF signal. The histograms of these images clearly show
that the decompression function using the estimated parameters α
and β makes it possible to recover the original RF signal.

In a final experiment, conformity tests were applied to the US
observed images for two different hypotheses: Rayleigh and Fisher-
Tippett distributions. To measure the level of fitness between the
experimental and theoretical curves, given by the respective PDFs it
was used (i) the level of confidence on the null hypothesis, H0, given
by the Kolmogorov-Smirnov statistical test and (ii) the Kullback-
Leibler divergence (also called relative entropy).

Conformity test using the original ultrasound data and the esti-
mated Rayleigh and Fisher-Tippet distributions were performed in
order to assess which model better represents the observed data.



Fig. 8. Restoration results (Original and decompressed images and
histograms) using medical data of the tyroid (a), gall bladder (b) and carotid
artery (c).

Considering the Kolmogorov-Smirnov conformity statistical test,
Pe = 1−PH0 is the probability of rejection of the null hypothesis,
H0, which is the hypothesis of the data have been generated
by the Rayleigh/Fisher-Tippett distributions. Here, PH0 = QKS(λ ),
QKS(λ ) = 2 ∑∞

j=1(−1) j−1 e−2 j2 λ 2
, λ = (

√
(N)+0.12+ 0.11√

N
)D, N

is the number of data points and D = max|c(n)− ch(n)|, ch(n) are
the cumulative probability functions of the Rayleigh/Fisher-Tippett
distributions and c(n) is the histogram of the observed image.

The Kullback-Leibler entropy distance is given by, d =
∑n p(n) log( p(n)

h(n) ). Here, p(n) are the Rayleigh/Fisher-Tippett PDFs
and h(n) is the histogram of the observed image.

Recall that the PDF of the Rayleigh distribution is given by,

p(x) =
x

ψR
e−

x2

2ψR , (14)

where ψR is given by the maximum likelihood (ML) estimate,
ψR = 1

2n ∑y2. The PDF of the Fisher-Tippett distribution depends
on three parameters, (ψ̂, α̂, β̂ ), which were previously modeled and
estimated. Table I displays the conformity test results for several
synthetic images and also for medical data. From the synthetic
images it is visible that there is a good fit between the experimental
data and the proposed model (Fisher-Tippett) because the Pe from
the Kolmogorov-Smirnov test is very low and the measure of

TABLE I
KOLMOGOROV-SMIRNOV AND KULLBACK-LEIBLER TESTS FOR

SYNTHETIC AND REAL DATA. (α̂ , β̂ ) ESTIMATES ARE ALSO PROVIDED.

α β ψ α̂ β̂ PeR PeFT dR dFT

10 10 1e3 9.4848 9.4600 1 2.9055e−04 2.8683 0.0030
20 20 1e3 19.0217 20.8884 1 2.1e−03 2.7706 0.0038
30 50 1e3 28.3301 51.8945 1 1.0e−03 2.6844 0.0038
20 20 4e3 19.2550 21.3793 1 3.3106e−09 3.0516 0.0020
10 10 7e3 9.8086 11.6963 1 2.2766e−012 3.2600 0.0012

tyroid 15.0686 48.7970 5.4727 0.2985
gallbladder 26.6844 28.5519 4.6665 0.6626

carotid 26.9595 12.6349 4.1438 0.3654

Fig. 9. Comparison of the PDFs of the experimental data (blue), Rayleigh
(red) and estimated Fisher-Tippett (green) for uniform synthetic (a) and
medical (b) images.

entropy d of the Kullback-Leibler test is also low. For the real
data, the fitness is reenforced with the Kullback-Leibler test. As
an example, the PDFs of a test using an uniform synthetic image
and a real US image are shown (see Fig. 9) to prove the good fit
between the experimental data and the estimated model.

V. CONCLUSIONS

This paper presented an algorithm for modeling ultrasound
images in order to recover the RF signal. The experimental results
show that the proposed estimation model manages to retrieve the
log-compression parameters and to estimate the original signal.
The restoration results obtained with our model by considering the
compression of the ultrasound data outperform the ones achieved
by using the common Rayleigh distribution without compression.
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