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Abstract— Fluorescence Confocal Microscopy(FCM) is nowa-
days one of the most important tools in biomedicine research.
In fact, it makes possible to accurately study the dynamic
processes occurring inside the cell and its nucleus by following
the motion of fluorescent molecules along the time. Due to the
small amount of acquired radiation and the huge optical and
electronics amplification, the FCM images are usually corrupted
by a severe type of Poisson noise. This noise may be even more
damaging when very low intensity incident radiation is used to
avoid phototoxicity.

In this paper a Bayesian algorithm is proposed to remove the
Poissonmultiplicative noise corrupting the FCM images. The
observations are organized in a 3D tensor where each plane
is one of the images acquired along the time of a cell using
the Fluorescence Loss In Photobleaching (FLIP) technique.
The method removes simultaneously the noise by considering
different spatial and temporal correlations. This is done by
using an anisotropic 3D filter that may be separately tunned
in space and time dimensions.

Tests using synthetic and real data are described and
presented to illustrate the application of the algorithm.

Index Terms— Denoising, Poisson, Bayesian, confocal mi-
croscopy, convex optimization.

I. I NTRODUCTION

Confocal microscopy is known since the end of fifties.
However, the most significant advances occurred during
the last decade. The fluorescence confocal microscope has
became one of the most powerful tools in medical and
biological research [1] due to the improvement of thelaser
scanning confocal microscope(LSCM) [2], to the develop-
ment of synthetic fluorescent probes and proteins and to
the development of a wider spectrum of laser light sources
coupled to highly accurate acoustic/optic controlled filters.
The main advantage of the fluorescence confocal microscope
over the traditional optical one consists on its capability
to illuminate a thin plan of the specimen to be observed,
collecting the light radiated from that plan and eliminating
the out-of-focus information [2]. The illumination is provided
by a highly focused laser beam and the observation is
performed by rejecting all radiation but the one emitted by
the fluorescence effect.

One difficulty arising in this modality of image mi-
croscopy is thephotobleachingeffect. This, phenomenon
occurs when fluorophore permanently loses the ability to
fluoresce, due to chemical reactions induced by the incident
laser or by other surrounding molecules. This effect leads
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to a decrease in the image intensity along the time and at
space varying rates. When the acquisition is fast and the
laser intensity is low this phenomenon is not relevant. But
in long time acquisition processes or when high intensity
lasers are used this effect must be considered. However,
this undesirable effect may be used to study some dynamic
processes occurring inside the cell [3].

A common technique employed to measure the molecular
mobility and to study the dynamics in living cells isFluo-
rescence Loss In Photobleaching(FLIP). In this technique a
small defined area is repeatedly bleached over time by a high
intensity laser beam and the surrounding area is monitored
for a decrease in the level of fluorescence. Any fraction of
the cell connected to the area being bleached will gradually
fade owing to the movement of bleached molecules into
the region. In contrast, regions of the cell not connected to
the bleached region will remain unaffected and continue to
fluoresce. The FLIP technique can be used to assess whether
or not a tagged bio-molecule moves to a particular area of
the cell [4].

In this paper a denoising algorithm is proposed for FCM
images where the FLIP technique is used. The goal is to
study the process of RNA molecules synthesis inside the cell
nucleus, namely, their flow along the time. These molecules
are tagged withGreen Fluorescent Protein(GFP) to be
observed in the FCM images.

The denoising algorithm is formulated in the Bayesian
framework where a Poisson distribution models the obser-
vation noise and a Gibbs distribution, withlog-quadratic
potential functions, regularizes the solution, defining the field
to be estimated as aMarkov Random Field(MRF). This log-
quadraticpotential functions have shown to be more appro-
priated to deal with this type of optimization problems in
RN

+ [5]. The regularization is performed in the image space
and in time (time courses) using different prior parameters.
The denoising iterative algorithm involves an anisotropic3D
filtering process to cope with the different smoothing effects
performed in the space and time dimensions.

Tests using synthetic and real data are presented to
illustrate the application of the algorithm. The paper is
organized as follows: Section II formulates the problem from
a mathematical point of view and section III presents the
experimental results. Section IV concludes the paper.

II. PROBLEM FORMULATION

The sequence under analysis,Y, is the result of a FLIP
experiment. Data can be represented by a3D tensor,Y =
{y(i, j, t)}, containing a stack ofL fluorescence confocal



microscopy(FCM) images with0 ≤ i, j, t ≤ N − 1,M −
1, L − 1. Each image at the discrete timet0, y(i, j, t0), is
corrupted by Poisson noise as well as each time course
associated with the pixel(i0, j0), y(i0, j0, t). In this paper
the image sequence corresponds toL observations of a cell
nucleus along the time, acquired at a period rate of30
seconds. The goal of this study is to estimate the underlying
cell nucleus morphology,X, from the noisy observed images,
Y, exhibiting a very lowsignal to noise ratio(SNR), as
shown in Fig. 1.

Fig. 1. Fluorescence confocal microscopy image sequence along the time.

A Bayesian approach is adopted to estimateX by solving
the following optimization problem

X̂ = arg min
X

E(X,Y) (1)

where the energy function is a sum of two terms,E(X,Y) =
EY (X,Y) + EX(X,Y). EY (X,Y) is called thedata fi-
delity term and EX(X) is called theprior term. The first
term pushes the solution toward the observations according
to the type of noise corrupting the images and the prior
term smooths the solution [6], [7]. If independence of the
observations is assumed, thedata fidelity termis defined as

EY (X,Y) = − log





∏

i,j,t

p(y(i, j, t)|x(i, j, t))



 . (2)

Since the images are corrupted by Poisson noise,p(y|x) =
xy

y! e
−x, the log data fidelity term is

EY (X,Y) =
∑

i,j,t=0

d(i, j, t) + C (3)

where C is a constant term andd(i, i, t) = x(i, j, t) −
y(i, j, t) log(x(i, j, t)).

The prior term regularizes the solution by removing the
noise. Here an anisotropic prior term is used, in the sense that
the penalization between neighboring pixels is one value for
pixels at the same image (spatial correlation) and another for
neighboring pixels from different images (time course corre-
lation). The prior is a Gibbs distribution withlog-Euclidean
potential functions which are the more appropriated when
the unknowns to be estimated are all positive [5], [8],

p(X) =
1

Z
e−U(X) (4)

where

U(X) = α

[
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)

+ log2

(
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x(i, j − 1, t)

)]

+ β log2

(
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)

(5)

The prior term is− log EX(X) and therefore the overall
energy function to be minimized is

E(X,Y) =

N−1,M−1,L−1
∑

i,j,t=0

[x(i, j, t) − y(i, j, t) log(x(i, j, t))]

+α
∑

i,j,y

[

log2
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x(i, j, t)

x(i − 1, j, t)

)

+ log2
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x(i, j, t)

x(i, j − 1, t)

)]

+β
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log2
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x(i, j, t)

x(i, j, t − 1)

)

(6)

The minimization of this energy function (6) is not a convex
problem and its optimization using the agradient descendent
or Newton-Raphson based methods is difficult. However,
performing an appropriate change of variablez(i, j, t) =
H(x(i, j, t)), it is possible to turn it into convex. Let
z(i, j, t) = H(x(i, j, t)) = log(x(i, j, t)) or x(i, j, t) =
ez(i,j,t). The functionH(x) is monotonic and therefore the
minimizers ofE(X,Y) and E(Z,Y) are related byZ∗ =
log(X∗). The new energy function becomes

E(Z,Y) =
∑

i,j,t

[

ez(i,j,t) − y(i, j, t)z(i, j, t)
]

+α
∑

i,j,t

(z(i, j, t) − z(i − 1, j, t))2 + (z(i, j, t) − z(i, j − 1, t))2

+β
∑

i,j,t

(z(i, j, t) − z(i, j, t − 1))2 (7)

where α and β are prior parameters to tune the level of
smoothing across the images and across the time courses
respectively.

The minimization of (7) is performed by finding its
stationary point according to the first order condition

∇E(Z,Y) = 0 (8)

or

∂E(Z,Y)

∂z(i, j, t)
= ez(i,j,t) − y(i, j, t) + 2h(i, j, t) (9)

with

h(i, j, t) = α[Nsz(i, j, t) −
∑

s

zs(i, j, t)]

+ β[Ntz(i, j, t) −
∑

τ

zτ (i, j, t)] (10)

where zs(i, j, t) and zt(i, j, t) are theNs = 4 spatial and
Nt = 2 temporal neighbors ofz(i, j, t) respectively.

The tensorH = {h(i, j, t)} may be computed by

H = Φ ∗ Z (11)



where∗ denotes the 3D convolution andΦ is the following
3D mask
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The solution of (8) is obtained by solving the following
convex equation

F (Z) = eZ − Y + 2Φ ∗ Z = 0 (13)

using the Newton-Raphson method

Z
(k+1) = Z

(k) −
eZ

(k)

− Y + 2Φ ∗ Z
(k)

eZ(k) + 2(αNs + βNt)
(14)

wherek stands for the iteration number.
Reversing the change of variable, the final solution is

X̂ = eZ (15)

III. E XPERIMENTAL RESULTS

In order to quantize the quality of the denoising method-
ology described above, synthetic data were generated: a
stack of 50 images,55 × 80 pixels. The images are cor-
rupted by Poisson noise with an intensity decreasing for
each pixel following an exponentials decay along the time.
The synthetic images were processed using the denoising
methodology described above. Fig. 2 shows the noisy ((a)
and (c)) and denoised ((b) and (d)) synthetic images for two
time instants in the sequence. The SNR (signal to noise ratio)
were computed before and after denoising and the results for
(a) and (b) were respectively8.47 and13.12 and for (c) and
(d) were respectively2.60 and10.42, suggesting a substantial
improvement in the quality of the images. Two time courses
can be seen in Fig. 3. The right plot corresponds to a pixel
in the bleached region where the SNR before and after the
denoising procedure are12.74dB and14.37db respectively.
The left plot represents the time course for a different pixel
further away from the bleached region and the SNR before
and after denoising are respectively16.65dB and25.15dB.
These SNR results mean that the noise associated with lower
intensities (inside the hole) is harder to remove than the
noise connected with the higher ones. The global (3D) SNR
improved is1.66dB from 7.85dB to 9.51dB.

The sequence of real data under analysis,Y, is the result
of a FLIP experiment where a spot of 30 pixels diameter
was repeatedly bleached at intervals of3.63 s and imaged
between27 ms bleach pulses. From a series of350, 90
images of260 × 380 pixels are used for testing. The3D
tensorY = {y(i, j, t)} represents the stack offluorescence
confocal microscopy(FCM) images with0 ≤ i, j, t ≤
259, 379, 89 where no background was subtracted. The only

(a) (b)

(c) (d)

Fig. 2. Noisy (a) and (c) and denoised synthetic (b) and (d) data
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Fig. 3. Time courses for synthetic data outside the hole (a) and inside the
hole (b)

preprocessing performed on the acquired data was a simple
alignment procedure to correct for cell displacement during
image acquisition, that consisted of a set of rigid body
transforms driven by the maximization of the correlation
between images.

In order to estimateX, the aligned images were then
processed using the denoising methodology described above.
The CPU time of the algorithm was1.2s per iteration in a
Centrino Duo 2.00GHz, 1.99 GB RAM processor. The results
for three images of the stack are shown in Fig. 4; images
(a), (c) and (e) show the raw aligned cell nucleus data for
t = 5, 45, 85; (b), (d) and (f) show the respective denoised
images. As can be seen in these figures there is a great deal
of improvement in the quality of the representation. The blurr
present in the denoised images results from thelog-quadratic
prior used to remove the noise. This undesirable effect may
be attenuated by using other priors namely, edge preserving
priors such astotal variation (TV).

Improvements can also be noticed in the time dimension.
Results for two time courses are shown in Fig. 5. Both plots
show noisy and denoised time courses, the left one for pixel
(136, 183) and the right one for pixel (105, 85), respectively
outside and inside the bleached region.

A graph-cuts segmentation procedure was performed on
the denoised data in order to display the propagation of
the fluorescence loss that occurs inside the nucleus with
time. The segmentation results for instantst = 10, 75 of
the denoised images are shown in Fig. 6 (a) and (c); results
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Fig. 4. Raw data and filtered data of HeLa immortal cell nucleus for t=5,
50, 90.
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Fig. 5. Time courses outside the bleach region (a) and inside the bleached
region (b).

for the companion segmentation can be see in Fig. 6 (b) and
(d). Has shown in the figure, the fluorescence loss spreads
inside the nucleus from a region around the bleached area
toward the edges of the nucleus, particularly on the left side,
since the bleach area is not standing in the center of the
nucleus.

IV. CONCLUSIONS

In this paper a new denoising algorithm is proposed to
Fluorescence Confocal Microscopy(FCM) imaging with
photobleaching. The sequence of FCM images taken along
the time, in this microscopy modality, are corrupted by a type
of multiplicative noise described by a Poisson distribution.
Furthermore, the global intensity of the images decreases
along the time due to permanent fluorophore loss of its
ability to fluoresce, caused by chemical reactions induced
by the incident laser or by other surrounding molecules.
The decreasing on the image intensity is ”associated” to a
decreasing on the signal to noise ratio of the images, making

(a) (b)

(c) (d)

Fig. 6. Photobleaching propagation across the nucleus fromthe bleached
area. Raw data (left) and segmentation results (right) for images t = 10

and t = 75.

the biological information recovery a difficult task [9].
In this paper a Bayesian algorithm is proposed to perform

a simultaneous denoising procedure in the space (images)
and in time (time course) dimensions . This approach, con-
ceived as an optimization task with themaximum a posteriori
(MAP) criterion, leads to a filtering formulation involving
a 3D (2D+time) anisotropic filtering procedure. The energy
function is designed to be convex and its minimizer is com-
puted by using the Newton method which allows continuous
convergence toward the global minimum, in a small number
of iterations.

Tests using synthetic and real data have shown the ability
of the methodology to reduce the multiplicative noise cor-
rupting the images and the time courses.
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