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Abstract— Fluorescence Confocal Microscopy(FCM) is nowa- to a decrease in the image intensity along the time and at
days one of the most important tools in biomedicine research. space varying rates. When the acquisition is fast and the
In fact, it makes possible to accurately study the dynamic |aqer intensity is low this phenomenon is not relevant. But
processes occurring inside the cell and its nucleus by following . . s . . .
the motion of fluorescent molecules along the time. Due to the in long time achIsltlon processes or Whe_n high intensity
small amount of acquired radiation and the huge optical and lasers are used this effect must be considered. However,
electronics amplification, the FCM images are usually corrupted  this undesirable effect may be used to study some dynamic
by a severe type of Poisson noise. This noise may be even moreprocesses occurring inside the cell [3].
damaging when very low intensity incident radiation is used to A common technique employed to measure the molecular

avoid phototoxicity. . S
In this paper a Bayesian algorithm is proposed to remove the mobility and to study the dynamics in living cells Euo-

Poisson multiplicative noise corrupting the FCM images. The rescence Loss In PhotobleachifgLIP). In this technique a
observations are organized in a tensor where each plane small defined area is repeatedly bleached over time by a hig
b i ized in a 3D h h pl Il defined tedly bleached time by a high
is one of the images acquired along the time of a cell using intensity laser beam and the surrounding area is monitored
the Fluorescence Loss In Photobleaching (FLIP) technique. ¢4 5 decrease in the level of fluorescence. Any fraction of
The method removes simultaneously the noise by considering the cell connected to the area being bleached will graduall
different spatial and temporal correlations. This is done by - g 9 ! Yy
using an anisotropic 3D filter that may be separately tunned fade owing to the movement of bleached molecules into
in space and time dimensions. the region. In contrast, regions of the cell not connected to
Tests using synthetic and real data are described and the bleached region will remain unaffected and continue to
prellsznteqrto '”L‘St[r)ate the ap%“c.at'on ogthe "".'gor'thm'f | . fluoresce. The FLIP technique can be used to assess whether
ndex Terms— Denoising, Poisson, Bayesian, confocal mi- . .
Croscopy, convex optimization. or not a tagged bio-molecule moves to a particular area of
the cell [4].
. INTRODUCTION In this paper a denoising algorithm is proposed for FCM

Confocal microscopy is known since the end of fifties!Mages where the FLIP technique is used. The goal is to

However, the most significant advances occurred durirﬂUdy the process of RNA molecules synthesis inside the cell
the last decade. The fluorescence confocal microscope H4¥€us, namely, their flow along the time. These molecules
became one of the most powerful tools in medical and'® tagged withGreen Fluorescent ProteifGFP) to be
biological research [1] due to the improvement of thser observed in _the FCM Images. _ _
scanning confocal microscope SCM) [2], to the develop- The denoising algon_thm is _formulgted in the Bayesian
ment of synthetic fluorescent probes and proteins and {Rmework where a Poisson distribution models the obser-
the development of a wider spectrum of laser light sourca@tion noise and a Gibbs distribution, witbg-quadratic
coupled to highly accurate acoustic/optic controlled rilte potentlal_functlons, regularizes the sol_utlon, defmmgﬂllald
The main advantage of the fluorescence confocal microscoffeP€ estimated asMarkov Random FieldMRF). Thislog-
over the traditional optical one consists on its capabilitﬁl{adrat'cpOtent'al, funcfuons have shqwn tq be more appro-
to illuminate a thin plan of the specimen to be observeo‘)r]'\f‘ted to deal with this type of optimization problems in
collecting the light radiated from that plan and elimingtin RY [5]. The regularization is performed in the image space
the out-of-focus information [2]. The illumination is prided ~ 2nd in time (time courses) using different prior parameters
by a highly focused laser beam and the observation {the denoising iterative algorithm involves an anisotrcii

performed by rejecting all radiation but the one emitted by}!t€"Ng process to cope with the different smoothing effec
the fluorescence effect. performed in the space and time dimensions.

One difficulty arising in this modality of image mi- . Tests using syr_1the_tic and real da_ta are presented_ to
croscopy is thephotobleachingeffect. This, phenomenon |Ilustre_1te the application _of the algorithm. The paper is
occurs when fluorophore permanently loses the ability t8r9anized as follows: Section Il formulates the problenmfro
fluoresce, due to chemical reactions induced by the incidefit Mathematical point of view and section IIl presents the
laser or by other surrounding molecules. This effect lead&Perimental results. Section IV concludes the paper.
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PartlaIIyFElE)pEps)rted by FCT, under ISR/IST plurianual furgdi(POSC The sequence under analysl, is the result of a FLIP
program, .
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microscopy(FCM) images with0 < i,j,t < N —1,M — where

1,L — 1. Each image at the discrete timeg, y(i, j,to), IS

corrupted by Poisson noise as well as each time course ) (i, 4, 1) , (i, j, 1)
associated with the pixelio, jo), y(io,jo,t). In this paper U(X) = {log ( ( _’1’ , t)> + <(’—’1t)>}
the image sequence correspondd.tobservations of a cell Z_ ) > Js T J ’
nucleus along the time, acquired at a period rate3®f + Blog? (W> (5)
seconds. The goal of this study is to estimate the underlying (i, j,t —1)

cell nucleus morphologyX, from the noisy observed images, The prior term is— log Ex(X) and therefore the overall
Y, exhibiting a very lowsignal to noise ratio(SNR), as energy function to be minimized is

shown in Fig. 1.
N—-1,M—1,L—1

EX,Y)= Y [2(i,5,0) —y(i, 4, t)log(x(i, ,1))]

i,j,t=0

o b () e (20|
+ﬂZlog< 717??1)) (6)

©.3:Y

The minimization of this energy function (6) is not a convex
problem and its optimization using thegeadient descendent
or Newton-Raphson based methods is difficult. However,
performing an appropriate change of variablg, j,t) =
H(z(i,j,t)), it is possible to turn it into convex. Let
Z(iyj,t) = H(J?(i,j,t)) = IOg( (7' Js )) or $(i,j,t> =
e*(h3:) The functionH (x) is monotonic and therefore the
minimizers of E(X,Y) and E(Z,Y) are related byZ* =

Fig. 1. Fluorescence confocal microscopy image sequenceg #hentime.

A Bayesian approach is adopted to estim¥téy solving
the following optimization problem

X = argmin E(X,Y) (1) log(X*). The new energy function becomes
X
where the energy function is a sum of two terf$X,Y) = E(Z,Y)=)_ [ez(m’t) —y(i, 4, t)2(3, J, t)}
Ey(X,Y) + Ex(X,Y). Ey(X,Y) is called thedata fi- it

delity termand Ex (X) is called theprior term. The first +a Y "(z(i,j,t) — (i — 1,4,£))* + (2(i, 4,t) — 2(i,j — 1,1))?
term pushes the solution toward the observations according i,j,
to the type of noise corrupting the images and the prior +BZ(Z(Z}J} t) = 2(i,5,t — 1))2 (7)
term smooths the solution [6], [7]. If independence of the oy
observations is assumed, tbata fidelity termis defined as
where o and 3 are prior parameters to tune the level of
smoothing across the images and across the time courses

Ey(X,Y) =—log | [[ pw(i, . t)](i, 5,1)) | - (2)  respectively.
b5t The minimization of (7) is performed by finding its
Since the images are corrupted by Poisson ngiégz) = stationary point according to the first order condition
%e—w, the log data fidelity term is VE(Z,Y) =0 ®)
Y)= Y di,jt)+C (3) or
i,5,t=0 OE(Z,Y) o
=2 = 3 (G G t) + 2h(i, j, t 9
where C' is a constant term and(i,i,t) = z(i,j,t) — 0z(i, J,t) ‘ y(i, g, 6) + 2k (. 3, 1) ©
y(i, 4, t) log(x (i, j, 1)) with
The prior term regularizes the solution by removing the
noise. Here an anisotropic prior term is used, in the serage th h(i,j,t) = «[Nsz(i,j,t) — Z 2s(i,7,1)]
the penalization between neighboring pixels is one value fo s
pixels at the same image (spatial correlation) and another f + BINez(iy g t) = >z (0,5, 1)) (10)

neighboring pixels from different images (time course eerr
lation). The prior is a Gibbs distribution witlog-Euclidean
potential functions which are the more appropriated wh
the unknowns to be estimated are all positive [5], [8],

T

eWhere zs(i,7,t) and z(i,7,t) are theN, = 4 spatial and
R’ = 2 temporal neighbors of(i, j,t) respectively.
The tensoH = {h(i, j,t)} may be computed by

p(X) = %e‘U(X) @) H=d+7Z (11)



wherex denotes the 3D convolution anil is the following @ ©®)
3D mask
0 0 0
0 —0B/Ny 0
0 0 0
0 —a /Ny 0
®=| —a/N, aNs+ 3N, —a/N; (12) © ©
0 —a/ Ny 0
0 0 0
0 —B/Ny 0
0 0 0

The solution of (8) is obtained by solving the following
convex equation

Fig. 2. Noisy (a) and (c) and denoised synthetic (b) and (t& da
F(Z)=e2-Y +20+Z=0 (13)
using the Newton-Raphson method
z*) k
Z(k_,'_l) _ Z(k) _ € —Y+2‘1)*Z( ) (14)

eZ® 1+ 2(aN, + BN;)

wherek stands for the iteration number. ’ 1
Reversing the change of variable, the final solution is " 1. \%%h
X = ¢Z (15) s L e R

IIl. EXPERIMENTAL RESULTS
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. . . Fig. 3. Time courses for synthetic data outside the hole (d)imside the
In order to quantize the quality of the denoising methodhole (b)

ology described above, synthetic data were generated: a

stack of 50 imagesh5 x 80 pixels. The images are cor-

rupted by Poisson noise with an intensity decreasing fgreprocessing performed on the acquired data was a simple

each pixel following an exponentials decay along the timealignment procedure to correct for cell displacement durin

The synthetic images were processed using the denoisiiigage acquisition, that consisted of a set of rigid body

methodology described above. Fig. 2 shows the noisy ((&gansforms driven by the maximization of the correlation

and (c)) and denoised ((b) and (d)) synthetic images for twieetween images.

time instants in the sequence. The SNR (signal to noisg)ratio In order to estimateX, the aligned images were then

were computed before and after denoising and the results farocessed using the denoising methodology described above

(a) and (b) were respective8i47 and13.12 and for (c) and The CPU time of the algorithm wak2s per iteration in a

(d) were respectivel®.60 and10.42, suggesting a substantial Centrino Duo 2.00GHz, 1.99 GB RAM processor. The results

improvement in the quality of the images. Two time coursefor three images of the stack are shown in Fig. 4; images

can be seen in Fig. 3. The right plot corresponds to a pixéh), (c) and (e) show the raw aligned cell nucleus data for

in the bleached region where the SNR before and after thie= 5,45, 85; (b), (d) and (f) show the respective denoised

denoising procedure ark2.74dB and14.37db respectively. images. As can be seen in these figures there is a great deal

The left plot represents the time course for a different Ipixeof improvement in the quality of the representation. Thetrblu

further away from the bleached region and the SNR befofgresent in the denoised images results fromalgequadratic

and after denoising are respectivel§.65dB and25.15dB.  prior used to remove the noise. This undesirable effect may

These SNR results mean that the noise associated with lowssr attenuated by using other priors namely, edge preserving

intensities (inside the hole) is harder to remove than thgriors such agotal variation (TV).

noise connected with the higher ones. The global (3D) SNR Improvements can also be noticed in the time dimension.

improved is1.66dB from 7.85dB to 9.51dB. Results for two time courses are shown in Fig. 5. Both plots
The sequence of real data under analy¥isjs the result show noisy and denoised time courses, the left one for pixel

of a FLIP experiment where a spot of 30 pixels diametefl136, 183) and the right one for pixell(5, 85), respectively

was repeatedly bleached at intervals3083 s and imaged outside and inside the bleached region.

between27 ms bleach pulses. From a series 330, 90 A graph-cuts segmentation procedure was performed on

images of260 x 380 pixels are used for testing. TH&D  the denoised data in order to display the propagation of

tensorY = {y(i,j,t)} represents the stack @iiorescence the fluorescence loss that occurs inside the nucleus with

confocal microscopy(FCM) images with0 < 4,5,t < time. The segmentation results for instamts= 10,75 of

259, 379,89 where no background was subtracted. The onlthe denoised images are shown in Fig. 6 (a) and (c); results



Fig. 4. Raw data and filtered data of HeLa immortal cell nucleug=5,
50, 90.
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Fig. 5. Time courses outside the bleach region (a) and inkeldleached
region (b).

for the companion segmentation can be see in Fig. 6 (b) a

Fig. 6. Photobleaching propagation across the nucleus fhenbleached
area. Raw data (left) and segmentation results (right) fogégsa = 10
andt = 75.

the biological information recovery a difficult task [9].

In this paper a Bayesian algorithm is proposed to perform
a simultaneous denoising procedure in the space (images)
and in time (time course) dimensions . This approach, con-
ceived as an optimization task with theaximum a posteriori
(MAP) criterion, leads to a filtering formulation involving
a 3D (2D+time) anisotropic filtering procedure. The energy
function is designed to be convex and its minimizer is com-
puted by using the Newton method which allows continuous
convergence toward the global minimum, in a small number
of iterations.

Tests using synthetic and real data have shown the ability
of the methodology to reduce the multiplicative noise cor-
rupting the images and the time courses.
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