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Abstract— Medical diagnosis is often hampered by the quality of
the images. This happens in a wide range of image modalities. Image
noise reduction is a crucial step, however difficult to be accomplished.
Bayesian algorithms have been commonly used with success, namely
with additive white Gaussian noise(AWGN) model. In fact, the noise
corrupting some of the most used medical imaging modalities is not
additive neither Gaussian but multiplicative described by Poisson or
Rayleigh distributions.

This paper proposes a unified framework with automatic hyper
parameters estimation. The proposed framework deals with AWGN but
also with both Poisson and Rayleigh distributions. The algorithm pro-
posed herein, is based on amaximum a posteriori(MAP) criterion with
the edge preserving prior based on thetotal variation (TV), which avoids
the distortion of relevant anatomical details. The denoising technique
is performed via single parametric iterative scheme parameterized for
each noise model considered. Tests with real data from several medical
imaging modalities testify the performance of the algorithm.

Index Terms— Total variation, Despeckling, Denoising, Left Ventricle,
Tracking, Ultrasound.

I. INTRODUCTION

The extraction of the relevant features in medical images play
an important role for medical diagnosis. However, such task is
hampered by the presence of artifacts and distortions in the images
introduced by the acquisition process. Additionally, the presence
of multiplicative noise (speckle and Poisson) and the low signal to
noise ratio (SNR) are typical in several medical image modalities
and make this task even more difficult. This is typical in the
Ultrasound (US) imagery, which is one of the most used for
diagnosis purposes.

Given the above mentioned issues, noise reduction must be ac-
complished. The statistical characterization of the noise, introduced
by the systems during the acquisition process, is strongly depen-
dent on the acquisition system. Therefore, appropriateddenoising
algorithms must be used according to the image modality under
consideration.

Two types of multiplicative noise assume particular importance:
i) speckle, usually modeled by a Rayleigh distribution andii)
Poisson noise. They are multiplicative since the variance is not
constant and depends on the parameters to be estimated. The
speckle noise usually appears in acquisition processes involving
coherent radiation likeLASER, UltrasoundandSynthetic Aperture
Radar (SAR) and the Poisson noise in systems involving counting
procedures like PET/SPECT, functional MRI and fluorescence
confocal microscopy.

The most common paradigm used to model the noise is the
adaptive white Gaussian noise(AWGN). However, this approach
can not deal with situations in which the noise can not be assumed
additive neither space invariant across the image. This is the case
of the multiplicative noise such as thespecklenoise.

Several techniques and frameworks have been proposed to reduce
the speckle noise without distorting the relevant clinical details.
Among them theBayesian[1] ones have been used with success
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by modeling the speckle noise byRayleighor Rice [13,19] dis-
tributions. Other methods comprise soft thresholding [2], wavelet
based techniques [3,8]–[10], wavelet soft-shrinking [4], or multi-
resolution based techniques [5], median filtering [6], anisotropic
diffusion [7] or variational theory based [11].

In the Bayesian framework used in this paper the minimizer of an
energy function is the desired denoised image. This energy function
is the sum of two terms: i) theData Fidelity Termthat pulls the
solution toward the data and ii) thePrior Term that regularizes the
solution to remove the noise. A prior parameter allows to tune the
degree of smoothness of the solution. Large values of the parameter
makes it possible to remove large amounts of noise but also some
anatomical details needed for the diagnosis. Small values of the
parameter allows to keep these details but also keeps the noise.
Therefore, a trade off is needed and a criterion to automatic select
this parameter is difficult to establish.

Here, an unified framework with automatic model parameter
estimation do deal with additive Gaussian and multiplicative noise
described by Rayleigh and Poisson distributions is described.

Examples of synthetic and real data, as well as a tracker that
tracks theleft ventricle(LV) boundary of the heart during a cardiac
cycle are used to illustrate the application of the method.

The paper is organized as follows: Section II formulates the
estimation problem and the automatic prior parameter estimation.
Section III describes experimental results and Section IV concludes
the paper.

II. PROBLEM FORMULATION

Let Y = {y(i, j)} be a matrix representing the noisy image to
be processed andX = {x(i, j)} the cleaned image to be estimated
from Y. In a Bayesian framework this is is done by solving the
following equation

X̂ = arg min
X

EY (Y,X) + EX(X) (1)

where EY (Y,X) is called thedata fidelity termand EX(X)
is called theprior term. The data fidelity termdepends on the
observations and on the noise generation model and theprior term
is used to well pose the problem that is usually ill-posed and needs
regularization.

Assuming independence of the observations, which is a current
practice and a very convenient simplification from a mathematical
point of view, thedata fidelity termis

EY (Y,X) =
X
i,j

d(i, j) (2)

whered(i, j) = − log[p(y(i, j)|x(i, j)] are listed in Table I for the
three observation models considered here: Gaussian, Poisson and
Rayleigh.

The prior term is EX(X) = − log[p(X)] where

p(X) =
1

Z
e−αTV (X) (3)

is a Gibbs distribution,TV (X) =
P

i,j g(i, j) is called theTotal
Variation of X and

g(i, j) =
p

(x(i, j)− x(i− 1, j))2 + (x(i, j)− x(i, j − 1))2 (4)



is the discrete estimation of the gradient magnitude computed at
pixel (i, j). The prior term is thus

EX(X) = αTV (X) (5)
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TABLE I
GAUSSIAN, POISSON ANDRAYLEIGH MODELS FOR THE OBSERVATIONS.

The minimization ofE(Y,X) = EY (Y,X) + EX(X) (see
equation (1)) is obtained by computing its stationary point,
∇E(Y,X) = 0 which leads to the following set of equations

d

dx(i, j)
d(i, j)

| {z }
see table I

+
∂

∂x(i, j)

X
i,j

g(i, j) = 0, 0 ≤ i, j ≤ N, M (6)

where the first term is a total derivative becaused(i, j) only
depends onx(i, j) while the second term is a partial derivative
becauseg(i, j) depends also on the neighbors ofx(i, j). This set
of equations is non linear and must be iteratively solved. Here
an approximation is assumed for sake of simplicity,g(i, j) ≈
g(i + 1, j) ≈ g(i, j + 1). By assuming this simplification the set
of equations (6) may be written as follows

x(i, j)− xML(i, j)

ξ(i, j)
− α

Nv

g(i, j)
(x(i, j)− x̄(i, j)) = 0 (7)

whereNv = 4 is the number of neighbors ofx(i, j) and

x̄(i, j) =
1

Nv

X

k∈V (i,j)

xk(i, j) (8)

wherexk(i, j) is thekth neighbor ofx(i, j). xML(i, j) is obtained
from table I, as wellξ(i, j) that is

ξ(i, j) =

8
><
>:

σ2 Gaussian model

x(i, j) Poisson model

x2(i, j) Rayleigh model

(9)

The set of equations (7) can be rewritten as follows

x(i, j) = (1−K(i, j,X))xML(i, j) + K(i, j,X)x̄(i, j) (10)

with

K(i, j,X) =
1

1 + g(i,j)
αNvξ(i,j)

(11)

where K(i, j,X) depends on thex(i, j) and on its neighbors,
xk(i, j), k ∈ V (i, j). By using the fixed point method the set
of equations (10) may be iteratively solved with the following
recursion

xt+1(i, j) = (1−Kt(i, j,X))xML(i, j) + Kt(i, j,X)x̄t(i, j) (12)

wheret denotes the estimation att-th iteration.

A. Automatic hyper-parameter

One of the most difficult problems when dealing with this
Bayesian formulation is the choice of the prior parameterα. Most of
the time this parameter is chosen manually in a trial and error basis.
Several authors have proposed method to select it automatically [12]
but it is still an open problem. Here, a new method is proposed.

Let us factorize the prior distribution (3)

p(X) =

N,MY
i,j=0

1

Z(i, j)
e−αg(i,j) (13)

which may be interpreted as the joint probability density function
of NM independent and identically distributed(i.i.d) random
variables with probability

p(g(i, j)) =
1

Z(i, j)
e−αg(i,j) (14)

The independence of the gradient magnitude along the image may
be not realistic but is an admissible interpretation for the equation
(13) that results from the common accepted assumption thatX is a
Markov random field(MRF), being therefore, described by a Gibbs
distribution [20].

This distribution is a true probability density function if
Z ∞

0

p(g)dg = 1 (15)

where the integration is performed only forR+ becauseg(i, j) ≥ 0.
From the equation (15) it is derived the following result

Z(i, j) =
1

α
(16)

which means

p(X) = αNMe−αTV (X) (17)

The energy function to be minimized is therefore

E(Y,X, α) = EY (Y,X) + αTV (X)−NM log(α) (18)

The optimum value forα is the minimizer ofE(Y,X, α)

αopt = arg min
α

E(Y,X, α) (19)

which may be computed by solving the following equation

∂E(Y,X, α)

∂α
= TV (X)− NM

α
= 0 (20)

or

αopt =
NM

TV
=

1

ḡ
(21)

where ḡ is the average value of the gradient magnitude computed
over all pixels of the image.

The estimation ofX is performed by using the recursion (12)
where K(i, j,X), defined in (11), is replaced by the following
expression

Kt(i, j,X) =

�
1 +

ḡtgt(i, j)

Nvξ(i, j)

�−1

(22)

III. EXPERIMENTAL RESULTS

In this section several examples of application are presented.
In the first part, real images from several biomedical imaging
modalities are shown; in the second part two sequences of US
images are used to track the LV boundary during several cardiac
cycles.



A. Real Images

This section presents the results using real images. Fig. 1 (top)
shows a functional MRI image corrupted by AWGN (left) and the
resulting denoised image (right). At the bottom of each example,
the main diagonal profile is extracted from the noisy and noiseless
images and are superimposed for comparison purposes. In this case
the finalαopt = 63.91. Fig. 1 (bottom) also shows an MRI image
of the knee corrupted by AWGN and the corresponding noiseless
and profiles (αopt = 58.39). Fig. 2 shows a confocal fluorescent
image of a cell (αopt = 231.27) (top) and an ultrasound images of
a gall bladder (αopt = 78.73) (bottom) corrupted by Poisson and
Rayleigh noise respectively.

Fig. 1. Additive and Multiplicative noise reduction: (Top) Functional MRI
(AWGN), (bottom) Knee (MRI - AWGN).

B. LV tracking

To assess the performance of the proposed method, the al-
gorithm was tested using two ultrasound sequences of the LV.
These sequences correspond to real medical exams performed on
2 different people. The sequences were obtained at a frame rate of
15 frames sec−1 using an ultrasound probe operating at1.7 Mhz.
The size of the ultrasound sequences used in this study are: case
#1 - 376 frames (16 cycles); case#2 - 470 frames (19 cycles).

In this study we provide a comparison of the following denoising
methods: i) median filtering; ii) L2 prior; iii) TV prior; iv)
Benford prior andv) optimal solution.

This study aims to track the LV during the sequences. (Fig. 3
shows a frame of one sequence and the corresponding denoised
image).

The test is done as follows. The ultrasound sequences were
first processed by each of the five denoising algorithms. All the
methods were implemented using a non Gaussian observation
model (Rayleigh distributed). A tracking algorithm was then applied
to the denoised images to estimate the boundary of the LV. The

Fig. 2. Additive and Multiplicative noise reduction: (Top) Confocal
(Poisson), (bottom) Gall Bladder (Ultrasound - Rayleigh).

Fig. 3. Heart Ultrasound (Rayleigh).

tracker used in this study is the S-PDAF tracker proposed by
the authors (see [14]). The output of the tracker for each of the
denoising conditions was then compared with the ground truth
contours. This comparison is done as follows: we selected four
images from each cardiac cycle (two images in the systole phase
and two images in the diastole phase) and asked to the user to
manually define the LV contour for each of these images. For the
first sequence the user segmented 72 images: 36 images extracted
during the systole phase and other 36 images during the diastole
phase. For the second sequence, the user segmented 78 images: 39
images in systole phase, and 39 images in diastole phase.

To compare performance of different methods, we used five
distance measures:i) Hausdorff distance (cf. [15]); ii) the average
distance;iii) Hammoude distance (cf. [16]); iv) Mean Sum of



Squared Distance (MSSD) (cf. [17]) and Mean Absolute Distance
(MAD) (cf. [18]). We next briefly describe them.

Let X = {x1,x2, . . . ,xNx}, andY = {y1,y2, . . . ,yNy}, be
two sets of points obtained by sampling the estimated contour and
the reference contour. We define the distance ofxi to the curveY
as the distance fromxi to the closest point ofY

d(xi,Y) = min
j
||yj − xi|| (23)

This is known as distance to the closest point (DCP). The average
distance between the setsX , Y is defined as

dAV =
1

Nx

NxX
i=1

d(xi,Y) (24)

whereNx is the length of theX and the Hausdorff distance between
both sets is defined as the maximum of the DCP’s between the two
curves

dHDF (X ,Y) = max
�
max

i
{d(xi,Y)}, max

j
{d(yj ,X )}

�
(25)

For the Hammoude metric, letRX , RY be the image regions
inside the two contours. We compute the number of points which
belongs to only one of these regions (e.g., obtained by pixel-wise
XOR operation) and normalize it by the number of points of the
union of both regions

dHMD =
]
�
(RX ∪RY)− (RX ∩RY)

�

](RX ∪RY)
(26)

The MSSD and MAD distances are defined as follows

dMSSD(X ,Y) =
n 1

n

nX
i=1

d2(xi,Y) +
1

m

mX
i=1

d2(yi,X )
o

(27)

dMAD(X ,Y) =
n 1

n

nX
i=1

d(xi,Y) +
1

m

mX
i=1

d(yi,X )
o

(28)

whered is the DCP given as in (23). In the two above distances,
they do not give higher weights to longer sequences. In this paper,
the distances in (27) and (28) do not have point correspondence
as originally proposed in [17,18]. Thus, the nearest point from the
other contour is taking as the corresponding point.

Table II show the fidelity in the representation of the LV
contour obtained in the two US sequences, which is an important
feature when tracking the contour of the object of interest. These
values correspond to the mean values of the metrics described
herein. However they appear to be close to each other, these small
differences can reflect significant differences in long sequences,
such as the ones used in this paper. From Table II we conclude
that, in the second sequence the best results are shared between the
TV prior and the optimal solution. In the first sequence, the best
scores belong to the method proposed herein. These results testify
that the proposed method exhibit attractive properties, providing
valuable results and capable to compete with other methods recently
proposed.

IV. CONCLUSIONS

This paper proposes an unified framework with automatic model
parameter estimation do deal with additive Gaussian and multi-
plicative noise, described by Rayleigh and Poisson distributions.
A Bayesian unified framework is described, where the denoised
image comes from a minimization of an energy function containing
two terms:data fidelity termand prior term. It is shown how the
prior term can be estimated automatically. The method proposed

TABLE II
METRICS MEAN VALUES FOR THE FIRST AND SECOND SEQUENCES.

Median L2 TV Bfd Opt

dHmd

case#1 0.20 0.18 0.19 0.17 0.14
case#2 0.25 0.22 0.19 0.20 0.18

dAv

case#1 4.66 4.20 4.19 3.81 3.35
case#2 4.58 4.33 3.57 3.74 3.75

dHdf

case#1 13.74 12.83 12.78 11.33 10.04
case#2 12.17 11.16 9.48 9.95 10.56

dMSSD

case#1 2.13 1.61 1.57 1.26 1.00
case#2 2.14 1.56 1.46 1.79 1.29

dMAD

case#1 0.25 0.23 0.23 0.21 0.19
case#2 0.26 0.23 0.20 0.21 0.20

herein exhibits a very good compromise between smoothness-vs-
anatomical details. Experimental results testify an improvement
over the methods previously proposed.
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