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Abstract— The BOLD signal provided by the functional
MRI medical modality measures the ratio of oxy- to deoxy-
haemoglobin at each location inside the brain. The detection of
activated regions upon the application of an external stimulus,
e.g., visual or auditive, is based on the comparison of the
mentioned ratios of a rest condition (pre-stimulus) and of a
stimulated condition (post-stimulus). Therefore, an accurate
knowledge of the impulse response of the BOLD signal to neural
stimulus in a given region is needed to design robust detectors
that discriminate, with a high level of confidence activated
from non activated regions. Usually, in the literature, the
hemodynamic response has been modeled by known functions,
e.g., gamma functions, fitting them, or not, to the experimental
data. In this paper we present a different approach based on
the physiologic behavior of the vascular and neural tissues.

Here, a linear model based on reasonable physiological
assumptions about oxygen consumption and vasodilatation
processes are used to design a linear model from which a
transfer function is derived. The estimation of the model
parameters is performed by using the minimum square error
(MSE) by forcing the adjustment of the stimulus response to
the observations.

Experimental results using real data have shown that the
proposed model successfully explains the observations allowing
to achieve small values for the fitting error.

I. INTRODUCTION

During functional magnetic resonance imaging (fMRI), a brief
focal neural activation evokes what is called a hemodynamic time-
course response function (HRF) that mainly depends on tissue
physiology [1]. Although variability exist on who, where, when
and how the data was acquired and processed [2,3], standard HRF
estimates are often an essential basis of fMRI analysis. Several
assumptions are usually made, namely that all neural impulse
events produce the same HRF (assuming minimal variability across
subject, brain region and acquisition system) and that a time series
data is modeled as an impulse train of neural events convolved
with this invariant HRF [4]. Even though some evidences have
shown these assumptions to be erroneous, its impact on many
fMRI statistical analysis studies has not been considered relevant
enough to generally abandon the simplification advantages. In fact
the most commonly used HRF are parametric analytical functions,
namely gamma functions [5]–[7], and to a less extent Poisson or
Gaussian distributions [8], that satisfactorily modulate the rather
invariant form of the blood-oxygen-level dependent (BOLD) time-
signal to short stimuli. Still, the accuracy and relative superiority of
these HRF models cannot be entirely questioned because of their
analytical nature, without incorporation of the slightest knowledge
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of the physiological processes behind the BOLD signal itself. And
though the exact coupling between brain activity, vascular response
and cerebral metabolic oxygen rate that leads to the BOLD response
are not well understood, there are several experimental evidences
that lead to conclusions and assumptions that give us a sketchily,
but important, view of the BOLD physiological features.

It has been shown that an increase in cerebral neuronal activity
generally leads to co-localized increases in cerebral metabolic rate
of oxygen (CMRO2), followed by a much larger co-localized
increase in local cerebral blood flow (CBF) and volume (CBV).
These effects are consequence of energy consumption by neural
and glial brain cells, leading to an increased ratio of oxy- to de-
oxyhaemoglobin (for which blood-oxygenation-level is the obvious
complement under normal conditions) in the vessels, capillaries
and surrounding tissues. Particularly, this energy consumption is
putatively accounted for neuron synapse activity, hence the assumed
relation between the BOLD signal and neural activity. However,
the BOLD time course signal has several transient features at
the onset and end of the stimulus: an initial dip and a post-
stimulus undershoot; that are not explained by the coupling of
flow and metabolism referred above. The initial dip, corresponding
to an increase in local deoxyhaemoglobin, has been interpreted
as evidence for an initial increase in oxygen extraction before
flow increase; and the post-stimulus undershoot as an elevated
oxygen extraction after the flow has returned to baseline. These
models for the transient features based on uncoupling, coupling and
reuncoupling of vascular response and CMRO2 provide a, possibly
rough but valuable, key element in generating a physiological model
that evokes an output similar to the HRF. In fact these interpretations
have been recently reinforced by multimodal fMRI studies [9].
Buxton et.al. [10] have done such a task, resulting in one of the
most interesting physiological models in the area, although there
is some strong skepticism on some of its base assumptions [9].
Still, this model is currently being extended and perfected, but has
not had much practical application contrary to the proposed gamma
function HRF’s. This is most probably due to two important features
of the latter: simplicity and computational efficiency.

In this paper we propose a simple linear model of the hemody-
namic response function based on a modulation of basic physio-
logical processes behind the BOLD signal, with the main objective
of being used as basis for fRMI activation mapping statistical
analysis. This has been done considering uncoupling, coupling
and reuncoupling processes of the vascular response and CMRO2

variables and accounting for neural demand and systemic feedback
control of vascular response. The final results were tested on real
data fMRI BOLD signal time-courses. A final Z-transform function
is presented, which has obvious frequency analysis advantages
providing computational processing efficiency.

II. MODEL PRESENTATION

Brain activation is accompanied by a series of physiologic alter-
ations, including focal changes in the vascular response (cerebral
brain flow and blood volume), blood oxygenation and cerebral



oxygen consumption. We have tried to encapsulate all of these
physiological variables in a simple based linear discrete model
that would translate their effects on a HRF estimation (see Fig.1).
The physiologically based hemodynamic (PBH) model input is
the neural activation, r(n) and the output is the BOLD contrast
signal, y(n). The reference value Ref is the baseline of the vascular
properties. Since this work is focused on incremental variations of
all its variables, this parameter is constantly null. All model blocks
are zero and first order linear functions, which provide empirically
reasonable approximations. Three main groups can be distinguished
in the PBH model: a brain group which modulates the neural and
glial cells oxygen consumption (CMRO2) and vascular response
demands; a vessel group which modulates the summed effect of
CBV and CBF vascular changes on the rate of deoxyhaemoglobin
concentration in and around blood vessels; a control group for the
systemic negative feedback control over vasodilatation.

Fig. 1. Block diagram of the proposed physiologically based hemodynamic
(PBH) model behind the HRF on BOLD fMRI data. It incorporates vascular
response demand and oxygen metabolism consumption by brain tissue,
vascular response producing changes in both CBV and CBF and systemic
negative feedback control system of the vascular response. Baseline vascular
properties and neural activation stimulus are considered in the Ref and r(n)
inputs respectively.

The PBH model was developed upon the fundamental consider-
ation of separate dynamics between CMRO2 and vascular response
features (CBV and CBF). This means that the transient initial
dip and poststimulus undershoot of the HRF are then modeled as
an uncoupling of these features, where the negative influence of
CMRO2 to the BOLD signal is not counterbalanced by the briefer
vascular response. This has been an old assumption [1] that has
recently gained strength through multimodal fMRI studies [9]. The
uncoupling considered indicates that the vascular response demand
is probably not due to the oxygen metabolism pathway, hence the
separation of both blocks of the PBH models brain group. Still,
they are both a consequence of the brain activity.

The dynamics of the actual vascular response are accounted in
the vessel group block function. This deals with the reasonable
assumption that, upon tissue demand for more blood delivery, the
vascular response to this request is delayed and constrained. Besides
these aspects, the gain in this block is also responsible for the
relation between the vascular response features and the amplitude
effect they cause on the BOLD signal. On the other hand, vascular
response demand by brain tissues is most likely bigger than their
needs, and alongside the vascular answering dynamic referred, there
is a systemic vascular response control modeled in the control group
that reduces the amplitude of the vascular response. Notice again
that the gain of this block reflect the amplitude impact on the BOLD

signal of the vasodilatation control.

III. MODEL ESTIMATION

The transfer function of the discrete time PBH model displayed
in Fig.1 is

H(z) =
(AV − B) + (a + v − bAV )z−1 − (avB)z−2

(1 − az−1)(1 − bz−1)(1 + C(s)V − vz−1)
(1)

which can re rewritten as follows

H(z) =
Y (z)

R(z)
=

b0 + b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2 + a3z−3
(2)

where

b0 =
AV − B

1 + V C(s)
(3)

b1 =
a + v − bAV

1 + V C(s)
(4)

b2 = − avB

1 + V C(s)
(5)

a1 = −(a + b +
v

1 + V C(s)
) (6)

a2 = ab + (a + b)
v

1 + V C(s)
(7)

a3 = −ab
v

1 + V C(s)
(8)

Assuming the simpler controller (more complex controllers will
be considered in the future), C(z) = K, the correspondent
difference equation is the following,

y(n) =
2X

k=0

bkr(n − k) −
3X

l=1

aly(n − l) (9)

The estimation of the parameters, bk e ak is performed with the
minimum square error (MSE) method,

p̂ = arg min
p

E(Y,R, p) (10)

where Y = y(0), y(1), ..., y(N − 1) is the vector with the N
experimental points, R = r(0), r(1), ..., r(N − 1) is the stim-
ulus signal that is unknown and must also be estimated, p =
[b0, b1, b2, a1, a2, a3] is the vector of parameter to be estimated
and E(Y, R, p) is the function to be minimized,

E(Y, R, p) =
NX

n=0

"
y(n) −

2X
k=0

bkr(n − k) +
3X

l=1

akr(n − k)

#

which can be written as follows using matrix notation,

E(Y,R, p) = (Y − Φp)T (Y − Φp) (11)

where Φ = [ΦR

... − ΦY ] with

ΦR =

0
BBBBBBBB@

r(0) 0 0
r(1) r(0) 0
r(2) r(1) r(0)
r(3) r(2) r(1)
r(4) r(3) r(2)
... ... ...

r(N − 1) r(N − 2) r(N − 3)
r(N) r(N − 1) r(N − 2)

1
CCCCCCCCA

.

ΦY =

0
BBBBBBBB@

0 0 0
y(0) 0 0
y(1) y(0) 0
y(2) y(1) y(0)
y(3) y(2) y(1)
... ... ...

y(N − 2) y(N − 3) y(N − 4)
y(N − 1) y(N − 2) y(N − 3)

1
CCCCCCCCA

.



The minimization of E(Y,R, p) is performed by finding its
stationary point, ∇pE(Y, R, p) = 0, with the following solution,

p̂ =
h
ΦT Φ

i−1

Φ| {z }
Ψ

Y (12)

where Ψ is called pseudoinverse of Φ. The stimulus r(n) is not
completely known and therefore must be estimated. It is assumed
that

r(n) =

(
1 0 ≤ n ≤ n0

0 otherwise
(13)

where n0 is unknown (notice that the data used in this paper [3]
was previously aligned and shifted).

For each data set five values of n0 were tested, n0 = [M, ..., M−
4] in which M is the time instant where the maximum of the ex-
perimental data occurs, that is, the position of the larger maximum.
The solution is obtained by choosing the set of parameters that lead
to the minimum error,

[p̂, n0] = arg min
p,n0

E(Y, R(n0), p) (14)

IV. EXPERIMENTAL RESULTS

To test the PBH model we used the same normalized data, as
used by the authors of [3]. As such it might also provide a means
of comparison to their results and remarks. Note that the data was
acquired in four different brain areas of twenty-seven male subjects
with no history of neuronal or psychiatric diseases. T2*-weighted
echo-planar images (EPI) were acquired at 4 Teslas, with variations
in the TR and time resolution. For a more complete description on
materials and methods used please see [3].

The experimental results are organized in three sets: i) data
with poststimulus undershot (Fig.4), ii) data without poststimulus
undershot (Fig.3) and iii) data that displays the initial dip (Fig.2).

For each experimental curve a set of modeled parameters was
estimated as well as the optimal stimulus duration, which is
unknown. Unfortunately, we did not had access to the paradigm
information. But even if we did, we do not have direct access to
the real duration time of the neural activation in each data sample.

From the displayed results it is concluded that the PBH model
manages to explain well, in a MSE basis, the experimental curves.
This provides a considerable confidence for the base assumptions
upon which our PBH model is built. Note that many of these
experimental data shapes rather deviate from the range of shapes
that the HRF gamma functions are able to produce. Conversely our
PBH model was successful in providing such form variability.

V. CONCLUSIONS

The characterization of brain regions from a functional point
of view can be performed by using BOLD contrast fMRI. This
technique uses the ratio of oxy- to deoxyhaemoglobin before and
after the application of an external stimulus, e.g. visual or auditive,
to identify the activated regions. The design of robust and reliable
detectors that discriminate activated from non-activated regions,
need accurate models for the HRF of the neural tissues. In the
literature, usually, this hemodynamic response is obtained by fitting
the experimental observations with known functions, e.g. gamma
functions.

In this paper we propose a linear model, called PBH model,
that describes the BOLD signal change after the application of an
external stimulus, based on the a priori knowledge and reasonable
assumptions of the physiologic behavior of the vascular and neural
tissues. The neuron oxygen consumption, the vascular response
demand induced by brain tissues and the vascular response process
itself are modeled by first order linear systems. The systemic vasodi-
latation control of the vessels is modeled by a simple proportional
controller.

Fig. 2. Results from the PBH model estimation with 4 experimental data
with initial dip. Red - real data; Blue - model; Black - stimulus.

Twelve experimental curves are presented and the corresponding
model estimated. The model parameters are estimated using the
minimum square error (MSE) method where the square error
between the model response and the observations is minimized.
Additionally, the true stimulus, which is also unknown, is also
estimated and displayed.

The PBH model successfully explains the observations and will
be incorporated in the activated region detector in the future.
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Fig. 3. Results from the PBH model estimation results with 4 experimental
data without undershoot. Red - real data; Blue - model; Black - stimulus.
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