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Abstract. The Papoulis-Gerchberg algorithm has been extensively used
to solve the missing data problem in band-limited signals. The interpo-
lation of low-pass signals with this algorithm can be done if the signal
bandwidth is known. In practice, the signal bandwidth is unknown and
has to be estimated by the user, preventing an automatic application of
the Papoulis-Gerchberg algorithm. In this paper, we propose a method to
automatically find this parameter, avoiding the need of the user interven-
tion during the reconstruction process. Experimental results are presented
to illustrate the performance of the proposed algorithm.

1 Introduction

The reconstruction of signals after a non uniform sampling of the oriiginal
signal is a key problem in many areas such as communications, medical
imaging, geophysics and astronomy. The reconstruction of a signal without
a priori information is an ill-posed problem because the observed signals
are often incomplete and only some samples are observed. For this reason,
we require some information about signal for a successful reconstruction.
In this work, we assume that signal is low-pass.

Several methods were proposed [4-8] to reconstruct low-pass signals from
a set of non-uniform samples e.g., using Fourier Analysis and Wavelets in
order to interpolate the signal. The Papoulis-Gerchberg algorithm (P-G)
[1-3] is a popular technique. It amounts to alternatively applying the space
and frequency information available about the signal until it converges.
However, this algorithm requires the knowledge of the signal bandwidth.
This parameter must be determined by the user by a manual way. This
paper tries to avoid this procedure and provides an algorithm to auto-
matically obtain the bandwidth estimate therefore making the P-G fully
automatic.

2 Formulation Problem and Notation

A discrete signal with N samples can be described by a N-dimensional
complex vector x. The elements of the vector are denoted by z[0], z[1],
z[2], ..., [N — 1] and correspond to samples of the signal.



The Discrete Fourier Transform (DFT) of the signal € C" is the vector
X e CV given by

> 2n
X[k] = z[n)e TN, (1)

n=0

Because the DFT is a linear map in CV, the expression (1) can be repre-
sented in matrix form,

X = Fx, (2)

where F'is a N x N matrix and each element is given by

o
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In this work, we will only consider band-limited signals. The DFT of these
signals presents the following property [9]

X[i]=0,ieS 3)

where S is a proper and fixed nonempty subset of {0,1,...,N — 1}. The
set of band-limited signals that verify (3) is a linear subspace of C*. The
dimension of this subspace is equal to the cardinal of the complement of S
and it is often denoted as the signals bandwidth. The signals are low-pass
if the complement of S can be written as follows

{0yU{1,2,. . M}U{N-M+1,N—M~+2,..,N—1}

In this case, the signal is characterized by the DC coefficient and by the
first M harmonics. If the number of known samples L satisfies (4),

L>2M+1 (4)

the signal’s reconstruction without error is possible.
The signals considered in this work are low-pass ones. Therefore, they can
be written as follows

r = Bz (5)
where B= F 'I'F and I" is a N x N diagonal matrix defined by:
I' = diag|1l . .
M1’s M1’s

The problem we intent to solve is to reconstruct the low-pass signal z[n]
knowing a subset of its samples given by

y= Dz (6)

where D is diagonal matrix with binary diagonal coefficients: d;; = 1 if
the ¢ — th sample is observed and d;; = 0 otherwise. It is important to say
that we assume that M is unknown.



3 The Papoulis-Gerchberg Algorithm

Let z[n] be a low-pass signal with M +1 harmonics. The Papoulis-Gerchberg
algorithm reconstructs the signal if the condition (4) is satisfied and the
M value is known. The algorithm starts with an initial signal estimate

&1 =y (6).
The iterative process consists of three steps.
1. Filter &; with a low-pass filter, eliminating the components with fre-
quencies higher than the frequency of the M — th harmonic.

Zi+l1 = Bpcii (7)
2. Insert known samples in the estimative.
Ziyr = Ds+ (I — D)zip1 (8)

3. Verify if the process converged or not. If not, return to the first step
and consider ¢ =7+ 1.
The matrix Bpg performs the low-pass filtering operation and it is defined
by

Bpg = F'T'pgF (9)

where

I' = diag[1, },_{Z.,_},(L 0, }l{Z"—]‘}

Mpgl's Mpgl's

is a N x N diagonal matrix and Mpg is the bandwith estimate.

When the signal bandwidth is known, Mpg = M and Bpg = B.

The algorithm convergence is proved in [1]. In this paper, the stop criterion
is based on the L; norm between signals of two consecutive estimations.

iX
N

n=1

lyi+1ln] —yslnl| < & (10)

where ¢ is a threshold specified by the user.

4 The Estimation of Signal Bandwidth

4.1 Motivation

As mentioned before, a perfect reconstruction of a non uniform sampled
signal can be obtained by the Papoulis-Gerchberg algorithm if the number
of observed samples is enough (satisfies (4)) and if the M value is known.
However, in many situations, this last condition is not true and it becomes
important to use an alternative way to solve the problem.

In order to motivate this problem we shown in Fig. 1(a) a discrete low-pass
signal with 256 samples and bandwidth M = 40. The Fourier spectrum of
the original signal is shown in figure 1(c). The signal was then randomly
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Fig. 1: Synthetic example: 60% of all samples are known.
(a) Original signal (b) Known samples (c) DFT

sampled: 60% of the samples are known and the others remain unknown
(see Fig. 1(b)).

Before we describe the new method, it is relevant to discuss the importance
of the signal bandwidth M. Figure 2 presents the SNR results of the
estimates obtained by the P-G using Mp¢ values ranging between 1 and
the largest integer satisfying (4). In this figure, we can see that a correct
reconstruction (high SNR) of the original signal is obtained for a small
range of Mpg values, close to the true value of the bandwidth M. When
Mpg is lower or much higher than M, the P-G estimate does not converge
to the original signal.

When the Mpg value (9) is lower than M, the reconstructed signal Z[n]
has a low-pass spectrum

X[i]=0,i€T (11)

where T O S. This means that we wish to find a signal that contains
the known samples and less harmonics than the original. Due to this last
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restriction, the original signal is not in the complement of the subspace T'
and the mentioned algorithm does not converge to this signal because the
step 2 creates discontinuities in the time domain.

When the Mpg value is greater than M the reconstructed signal is low-
pass with

X[i]=0,ieV (12)

where V' C S. In this case, the complement of the subspace V' contains the
original signal = but the P-G will nor probably converge to the original
signal x since there is an infinite number of signals in the subspace V
satisfying (12) for the known samples.
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Fig. 2: Reconstruction performance SNR as function of the filter
Bpg cut frequency

The signal to noise ratio, presented in Fig. 2, provides a valuable informa-
tion about the signal bandwidth. However it cannot be used in practice
because we do not know the original signal. An alternative technique must
be used instead as discussed in section 4.2.

4.2 The proposed method

The main goal of the proposed method is to reconstruct the original signal
from a set of non uniform samples, without knowing the signal bandwidth.
The strategy followed in this paper consists of finding the lowest M that
leads to a low-pass signal estimate (12) with the known samples. In other
words, we wish to find a signal that contains known samples and is defined
by the smallest number of Fourier coefficients (2M + 1).

This is performed by applying the P-G algorithm for all M values such
that inequality (4) holds. For each Mp¢g value, the percentage of energy
contained in the signal’s high frequencies is calculated as well as the log
energy ratio

E
glk] = logio =2 | k=0,1,...,|L/2] (13)
T



where Ej and Er are the high frequency and the total energies, respec-
tively, defined as follows

> -k 2
Er(k) = [X7[m]] (14)
NX+1 R
En(k) = | X" [m]|? (15)
m=h+1

where X* is Fourier transform of the signal . This signal is obtained by
the P-G algorithm with Mpg = k. The log energy ratio function provides
very useful information about the signal bandwidth.

The bandwidth estimate proposed in this paper is the value of k which
minimizes the difference g[k] — g[k — 1]. It has been experimentally found
that the first difference of the energy ratio g[k] has its largest fall for
k = M. This estimate is not the unique Mpc that allows to obtain a low
pass signal but it is the first one. With this strategy, we find the smallest
linear subspace (the complement of V') that contains the low pass signal
verifying (6).

To illustrate the estimation of M, we show, in Fig. 3, the log energy ratio
function obtained for the sampled signal presented in the Fig. 1(b).

Fig.3: The log energy ratio function for the example in figure 1(b)

The smallest difference between two consecutive values of g[k] is shown
with a bold line. In this case, the bandwidth estimate is equal to the true
value M = 40.

This method can be extended to 2D low-pass signals in several ways e.g.,
considering a 2D signal as a set 1D low-pass signals. In the case of images
we can independently apply this method to columns or rows or use a joint
estimation procedure.



5 Results

To evaluate the proposed method, several experiments were performed
with synthetic signals and real signals. Two experiments will be shown
in this section. In the first experiment we have generated 2000 random
signals with length N = 256 and bandwidth M = 40 and applied the
algorithm to each of them.

The signals were generated as follows. First we split the time domain
into a set of intervals with random lengths. Then, for each interval we
generated one of the following signals: constant, linear or sinusoid with
random parameters. Finally, we eliminated the high frequency components
to guarantee that the signal is low pass with bandwidth M = 40.
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Fig. 4: Histogram of M values estimated with 6 = 1073
and 80% of known samples

Figures 4 and 5 display the histogram of the bandwidth estimates for
several values of ¢ (see (10)) and percentage of unknown samples. The
performance of the algorithm depends on both parameters. We observe a
smooth degradation of the performance when the number of observations
decreases from 80% to 40% of N.

Evaluating results presented in these figures, we can say that the percent-
age of known samples affects the method’s performance, but even when
we have a small set of known samples (40% when the lowest percentage to
satisfy (4) is 31,6%) the method gives 60% of correct answers (Fig. 5(a))
and most of the errors are small.

Concerning the parameter ¢, small values of § lead to better estimates.
However, the estimation method becomes slower because we have to per-
form L iterations.

Table 1, shows the mean and standard deviation of SNR results of the
estimated signals obtained by the method for unknown M and the P-G
algorithm for known M. The two methods lead to indistinguishable results
when the percentage of known samples is 50%, 60%, 70%, 80%. Only in the
case 40% of known samples we observe a difference of 3dB between the
reconstructions performed with known and unknown M.
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Fig. 5: Histograms of M values estimated with § = 107%: (a) 40% of
known samples (b) 60% of known samples (c) 80% of known samples

Table 1: Results of the P-G algorithm for the case of known
bandwidth and unknown bandwidth

Known Samples M known M unknown
(%) Mean(dB)|STD(dB)|Mean(dB)[STD(dB)
40 24,2 15,3 21,5 16,3
50 56,9 21,7 56,0 22,9
60 82,9 14,7 82,9 14,9
70 97,3 10,3 97,3 10,3
80 108,0 7,7 108,0 7,8

The proposed method was used to reconstruct real signal and images from
an incomplete set of samples. To illustrate the method’s performance in
the case of images we applied the proposed algorithm to the Lena image
with 15% of unknown samples (see Fig. 6(a)).

We created an enlarged version of the Lena image with 512 x 512 pix-
els and bandwidth M = 128. This was done by padding with zeros an
initial version of the Lena image with 256 x 256 and zeroing the high fre-



quency coefficients of the Fourier spectrum. We then applied the proposed

algorithm to each row independently.
In this case, the Fig. 6(a) has 512 x 512 pixels and M = 128.

Fig. 6: Non uniform sampling: (a) Original image (b) Sampled
image with 85% of known samples

Figure 7(b) shows the histogram of the M estimates for the image’s rows.
The Fig. 7(a) displays the reconstructed image obtained with the proposed
method which is indistinguishable from the original. A SNR=30 dB was
obtained.
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Fig. 7: Method’s results: (a) Estimated image (b) Histogram of M values

For a better evaluation of the method’s performance, we show a detail of
the eye. The original image (Fig. 8(a)) and the reconstructed image (Fig.
8(c)) are almost undistinguishable.

6 Conclusions
This paper presents a method to estimate the signal bandwidth for non-

uniform sampled signal. This allows an automatic reconstruction of non-
uniform sampled signal using the Papoulis-Gerchberg algorithm, when the



(a) (c)

Fig. 8: Eye Reconstruction: (a) Original image (b) Sampled image
(c) Estimated image

bandwidth is unknown. Very good experimental results are obtained with
synthetic and real signals.
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