Image denoising using the Lyapunov equation
from non-uniform samples

Joao M. Sanches and Jorge S. Marques

Instituto Superior Técnico / Instituto de Sistemas e Robdtica
jmrs@isr.ist.utl.pt

Abstract. This paper addresses two problems: an image denoising prob-
lem assuming dense observations and an image reconstruction problem
from sparse data. It shows that both problems can be solved by the
Sylvester/Lyapunov algebraic equation. The Sylvester/Lyapunov equa-
tion has been extensively studied in Control Theory and it can be effi-
ciently solved by well known numeric algorithms. This paper proposes
the use of these equations in image processing and describes simple and
fast algorithms for image denoising and reconstruction.

1 Introduction

Image reconstruction aims to recover images from a partial set of observations,
corrupted by noise. Several methods have been proposed to deal with this prob-
lem e.g., Bayesian methods [1], wavelets [2-4], anisotropic diffusion [5, 6], level
sets [7, 8]. Bayesian methods based on Markov random fields are among the most
popular. They require the specification of a prior model and a sensor model which
are chosen by the user or learned from the data. The image estimate is them
obtained by minimizing an energy function with a very high number of vari-
ables or by solving a huge set of linear equations. These operations are very
time consuming and they are carried out by suboptimal approaches (e.g., block
processing) or by iterative algorithms [1].

This paper proposes an alternative approach based on the Sylvester /Lyapunov
(SL) algebraic equation. We consider a denoising problem (all the pixels are ob-
served and corrupted by Gaussian noise) and an image reconstruction problem
(only sparse observations are available) and show that the original image can
be estimated in both cases using the SL equation, in a very simple way. In the
first case (denoising) the estimation requires the solution of a single SL equa-
tion. In the second case (sparse data), this equation appears embedded in an
iterative scheme which updates its parameters. Convergence is obtained after a
small number of iterations. Both procedures are easy to implement since there
are efficient algorithms to solve the SL equation (e.g., in Matlab). Experimen-
tal tests are presented in this paper showing that the proposed algorithms are
efficient and fast and lead to good reconstruction results.

The paper is organized as follows. In section 2 we address the image denois-
ing problem. Section 3 addresses the reconstruction problem from sparse and
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non uniform samples. This problem arises for instance in the case of freehand
3D ultrasound or confocal microscopy imaging. Section 4 shows examples using
synthetic data and section 5 concludes the paper.

2 Image reconstruction and denoising

This section addresses an image denoising problem with the SL equation. Let X
be a m x n matrix, representing an unknown image and let

Y =X+T (1)

be a noisy observation of X where I' ~ N (0, 0%I) is a random error with Gaussian
distribution. We wish to estimate X from the noisy image Y. The matrix X is
assumed to be a Markov Random Field (MRF) which means that it has a Gibbs
distribution, p(X) = %e‘aU(X) where Z is a normalization constant, o is a
regularization parameter and U(X) is the internal energy. This energy has the
form U(X) = }>, pev v(@p — zq) where V' is the set of all pairs of neighbors
and v(7) is a potential function.

In this paper we adopt a quadratic potential function, v(7) = 7
neighborhood system. Therefore, the internal energy is

2 and a 4-

UX) = tr [(0.X)7(0,X) + (0, X)) (0,XT)] = tr [XT (6] 0,)X + X (61 6,)X"]

where 6, and 6, are n x n and m x m difference operators. 8,X is a n x m
matrix with all vertical differences of neighboring pixels and 6,X7 is a m x
n-dimensional matrix with all the horizontal differences between neighboring
pixels. Both matrices, 8, and 6}, have the following structure

1 -10..000

110 .. .. 0

o= 0 -11....... 0 (2)
i 100
00 0.... ~11

If we adopt the MAP criterion, the estimate of X is

X = arg max E(X) (3)
where the energy function F(X) = log [p(Y|X)p(X)] is

BE(X) =tr | =(X - Y)T(X = Y) + ac® (XT(6760,)X + X(670,)XT)| (4)

1
2
The solution of (3) is obtained by finding a stationary point of E(X), which

obeys the equation

OE(X)
8xij

=0 (5)
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fori =1,...,n and j = 1,...,m. After straightforward manipulation (5) can be
written as

X - Y +200%(AX + XB) =0 (6)

where A = 670, and B = Gfﬁh are n X n and m X m matrices respectively. This
equation can be easily written in the form of a Sylvester equation

AX+XB+Q =0 (7)
where

A=1/2+2a0%A

B=1/2+2a0’B, (8)
@ = —Y and [ is the identity matrix. The reconstructed image can be obtained

by solving the Sylvester equation. In the case of square images, n = m, A =B
are square and symmetric matrices and (7) becomes the well known Lyapunov
equation.

The Lyapunov equation plays an important role in many branches of control
theory namely, in stability analysis, optimal control and stochastic control [9].
There are efficient algorithm to solve the SL equation, some are include in math-
ematical packages (e.g., in Matlab) [10-12]. Therefore, we can easily use one of
these algorithms to solve the image denoising problem.

It is important to stress that all the matrices used in (7) have low dimensions
(n x m, n x n or m x m) while a direct implementation of the MAP denoising
method involves the computation and inversion of a huge nm x nm matrix. This
is not possible in practice and has to be solved by iterative algorithms [1].

3 Image Reconstruction from sparse data

This section considers image reconstruction from sparse observations. It is as-
sumed that the observations are made at non-uniform positions in the image do-
main (see Fig. 1). We will address this problem assuming a continuous model for
the image. Let f : 2 — R, (2 C R?) be a continuous image to be estimated. We
will assume that f of obtained by interpolating a discrete image X = {x;} using
a set of interpolation functions. Therefore, f(z) belongs to finite dimension linear
space spanned by the set of interpolation functions: {¢1(2), p2(2), ..., nm(2)}

£2) = Y aii(2) ©

where x; are the coefficients to be estimated, associated with each basis function.
Herein, we assume that the basis functions, ¢;(z), are shifted versions of a known
function ¢(z) with finite supported, centered at the nodes of n x m 2D regular
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Fig. 1. 2D regular grid with a non-uniform sampling process.

grid, i.e., ¢;(2) = ¢(z — u;), where p; is the location of the i-th node (see Fig.
1).

Consider now a L-dimensional column vector of noisy observations, y = {y; }
taken at non-uniform locations z = {z;} given by y = F(z) + n where F(z) =
{f(21), f(22), e, f(z)}T and n = {ny,na,...,nr}? are L-dimensional column
vectors with n; ~ N(0,0?) being a Gaussian random variable. As before, the
MAP estimate of X is given by the minimization of the energy function (2).
Assuming that the observations are conditionally independent, the data fidelity
term is

L L
Ey = —log(p(y|X)) = log lH( (yil f(zi) ] %Z - (10)

=1 i=1

and the partial derivative of Iy with respect to each unknown, z,, is

L
%iy = Z —Yi ¢p 2;) = Z [Z Tbr(2:) ] ¢P(Zi) (11)
P i=1 i=1 Lk=1
= (l‘khpk) - dp,
k=1

where f(z) was replaced by (9), hpk = 3-;cv (1) P (20)0p(21), dp = 3 icv () Yi®Pp(2i),
V(p) is the neighborhood of =, and V (p, k) is the intersection of V(p) with V (k).
This derivative can be efficiently computed since the sum has only 8 terms dif-
ferent from zero, corresponding to the 8 neighbors of pixel p. Furthermore, it can
be expressed as a 2D convolution, of x,, with a space varying impulse response,
hp.r minus a difference term d,, 0Ey /0x), = hy i, * xp — dp. This can be written

in a compact way as,
OFy
X =HxX-D (12)

where * denotes the convolution of the discrete image X with the space varying
impulse response H. In practice this amounts to convolving X with the following
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space varying mask

hiji-1,j-1 hiji—15 hiji—1j+1
H(@,j)= | hijij—1  hijij higij+ (13)
Bijit1,5-1 Migit1,5 Pigit1j+1

which can be computed at the beginning once we know the sampling points.
There are several equal coefficients among these masks due to symmetry. Ap-
proximately only half of the coeflicients have to be computed. The derivative of
the energy is therefore,

dE

EizO:HxX—D+2w2MX+XmZO (14)
This equation, as before, can be written as a SL equation,
AX+XB+Q(X)=0 (15)

where A and B are obtained from (8) and Q@ = H+*X — X — D.

In this case, Q(X) depends on X which means that the solution can not be
obtained in one iteration. Therefore, an iterative algorithm is proposed. In each
iteration a new estimate of X, X; is obtained from the previous estimate of X,
X;—1 by solving

AX +XB+ Q(X;-1) =0 (16)

where @ = [H(p) — 6(p)] * Xy—1 — D. Equation (16) is iteratively solved until
convergence is achieved.

a)

Fig. 2. Image denoising using a synthetic 64 x 64 pixel image. a)Original, b)noisy with
zero mean additive Gaussian noise (¢ = 0.25), c)denoised image. Processing times
530.12 and 5.31 seconds using the VECT and the LYAP methods respectively.

When there is no overlap of basis functions, which is usually the case in image
processing (square pixels), all coefficients hy, = 0 for k # p. In this case, the
computation of the term H(p) x X is replaced by a simpler computation of H.X
where ”.” denotes the Hadamard product and H), = ZiGV(p) ¢§(zi). Therefore,
in this case,

Q= > [#2(z)] —-1—4d, (17)

i€V (p)
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where p is a bi-dimensional index. In image denoising problems with regular grids
and without interpolation, there is only one observation per unknown. In this
case, H(p) = ,, that is, Q = —Y. In this particular case the denoising operation
can be performed by solving only once the equation AX+XB—Y = 0. Finally, in
the general case, it is possible to ignore the cross terms by making ¢, (x;) ok (x;) ~
0. In this case, the computation is strongly simplified with a minor degradation
of the results, where @ is computed using (17). The degradation resulting from
this simplification depends on the amount and spatial density of the data.

Fig. 3. Image reconstruction from sparse observations. a)0.1L samples (28.34dB),
b)0.5L samples (46.36dB) and c¢)0.75L samples where L = 2562 is the number of
pixels of the original 256 x 256 underlying image. (48.73dB).

4 Experimental results

In this section we present experimental results obtained with synthetic data in
a Pentium 4 PC running at 2.8GHz. Two methods are used and compared in
both methods. The first one, denoted VECT, vectorizes the images involved and
reconstructs the images accurately using direct or pseudo matrix inversion. In
the second method, denoted LYAP, we use the SL solver, without requiring the
matrix inversion.

Fig.2.a) shows the 64 x 64 noiseless image used in this experiment. It consists
of three constant regions and a smooth region where the intensity varies accord-
ing to a cosine function. Fig.2.b) shows the noisy image, with additive Gaussian
white noise with o = 0.25 and Fig.2.c) shows the denoised image. The results
using both methods are equal but the processing time was 530.12 seconds for
the VECT algorithm and 5.31 seconds for the LYAP method.
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The noiseless image was used to test the performance of both algorithms with
several image sizes and noise energy. Table 1 shows the simulation results for
several image dimensions, N x N, and for three values of noise: small (o0 = le™%),
medium (o = 0.15) and severe (o = 0.5). Several figures of merit are shown to
assess the algorithm performance: the signal to noise ratio (SNR), the minimized
energy values, E/, and the processing time for each experiment and for both
methods. Both algorithms produce the same result, same SNR and E (energy),
but the LYAP method clearly outperforms the VECT in terms of processing
time when N > 16. We note an unexpected jump in the processing time when
the image dimensions increase from N = 48 to N = 56. This results from the
fact that, for large enough images, the PC starts to use the HD virtual memory.
In addition the algorithm was also tested with non-uniform sampling with the

o=1le? o =0.15 =05
N[[SNR[ E [ time(s) [[SNR| E [ time(s) SNR| E time(s)
(dB) VECT [LYAP]|(dB) VECT [LYAP VECT [LYAP

8|/12.5/2.1| 0.00 | 0.04 ||12.4|2.2| 0.04 |0.49| 59| 40 | 0.03 |0.78
16((22.5| 5.5 | 0.08 | 0.06 |[22.3|5.8| 0.09 |0.32|17.9|10.4| 0.09 |0.17
24//28.1/8.5| 0.68 | 0.06||27.1/9.6| 0.72 |[0.76 |23.6]20.2| 0.72 | 0.54
32(/30.4|11.9| 3.91 | 0.07||29.1|13.8| 3.94 |0.06 |23.2|33.2| 3.93 | 0.08
40|/33.4|14.7| 14.46 | 0.07 |{31.5|17.7| 14.36 | 0.10 ||23.5]|48.7| 14.35 | 0.07
48|135.7|17.4| 43.85 | 0.08 |{33.9]21.6| 43.63 | 0.08 |[24.8]|65.9| 43.65 | 0.43
56|/ 36.8120.8|133.27| 4.50 || 34.9 |26.5| 120.26| 2.65 ||25.5| 82.8 | 120.31| 2.13
64|/ 38.4123.5/516.88| 7.85 ||36.3|31.1| 381.87| 4.89 |/25.1(110.9| 432.32| 5.80
Table 1. Simulation results for several image dimensions (N x N) and three different
noise energy values, o = {107%,1.5,0.5}.

LYAP method. Fig.3 shows the reconstruction results obtained with the LYAP
method for three different numbers of samples, a)0.1L, b)0.5L and ¢)0.75L,
where L = 2562 is the number of pixels of the original image. The SNR obtained
in these experiments was (28.34dB), (46.36dB) and (48.73dB) for 0.1L, 0.5L
and 0.75L samples respectively. The iterative LYAP method (see equation (16))
spent 24.3 seconds to generate the 256 x 256 reconstructed images. The method
was also applied to real images with good results as well.

5 Conclusions

This paper shows that image reconstruction and denoising with Gaussian noise
can be performed using the SL equation. This equation can be efficiently solved
by numeric methods leading to fast reconstruction and denoising algorithm. This
method avoids the use of huge nm X nm matrices and their vectorization and
inversion.

Experimental results comparing the proposed algorithm with a direct im-
plementation of image denoising and reconstruction show that important com-
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putational time savings are achieved. A comparizon with other state of the art
reconstruction algorithms in terms of computational efficientcy will be presented
in a future work.

Appendix - Basic algorithm

An exact and non-iterative optimization algorithm may be derived by vector-
izing the matrices involved, that is, making x = wvect(X). The corresponding
energy function is E(x) = 3(F(z) — y)'(F(z) — y) + ac?((Avx)T(Ayx) +
(Apx)T(Apx)) where Ay and Ay are NM x NM difference matrices, F(z)
and y are L-dimensional column vectors, x is a IN M-dimensional column vector

and F'(z) = ¥(z)x where ¥ is the following L x NM matrix

¢1(21) anm(zl)
w=| . . . (18)

61(21) . duml(z1)

The minimizer of F(x) is x = (VT¥ + 2a0?(AL Ay + AL Ap))~'wTy. This
computation of x is difficult in practice because of the huge dimensions of the
matrices involved.
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