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Lisbon, Portugal

ABSTRACT

In this paper we propose a reconstruction algorithm with
alignment for free-hand 3D ultrasound. A set of ultrasound
images with the associated positions and orientations are
stored and used to reconstruct a given region of interest
(ROI). In freehand ultrasound, the inspection planes are not
parallel nor uniformly spaced. The proposed reconstruc-
tion algorithm deals with this non uniform sampling of the
ROI and with the misalignment that arises due the position
measurement errors and due the natural displacement of the
organs during the medical exam. The acquired images are
aligned w.r.t. the reconstructed volume in a iterative pro-
cess, based on the optimization of a common energy func-
tion1.

1. INTRODUCTION

This paper describes an algorithm for volume reconstruction
from a set of ultrasound images corresponding to non par-
allel cross-sections of the human body[2]. The images are
obtained with a free-hand ultrasound acquisition system[3].
This acquisition system uses an electromagnetic spatial lo-
cator attached to the ultrasound probe, providing real time
measurements of the position and orientation of the probe.
This allows the computation of the 3D position of the image
pixels. The probe is manipulated by the medical doctor in a
free way.

The anatomy estimation in this context, presents three
main difficulties; i) speckle noise corrupting the ultrasound
images, ii) non uniform sampling of the volume of interest
(VOI) and iii) misalignment of the images due measurement
errors or organ displacements. Therefore, the reconstruction
algorithm must perform the following tasks: i) noise reduc-
tion, ii) interpolation and iii) alignment. These three tasks
are often performed in three different steps of the recon-
struction algorithm [3, 4, 5, 6].

In this paper we propose an algorithm, called alignment-
by-reconstruction, where the three different tasks are per-
formed simultaneously in a Bayesian framework with the
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MAP criterion [7]. An energy function is derived, based
on the posteriori density function, depending on the ob-
servations, volume coefficients and alignment parameters
[8]. The reconstruction is obtained by iteratively minimiz-
ing this energy w.r.t. the volume to be estimated and align-
ment parameters. Each iteration estimates new and improved
versions of the volume and the alignment parameters. These
two steps alternates until convergence is achieved. We stress
that both steps optimize the same energy function instead of
different adjustment criteria as it happens in many works.

The structure of the paper is the following: section 2
describes the experimental setup and formulates mathemat-
ically the reconstruction algorithm. Section 3 describes the
solution of the problem formulated in 2 and in section 4 we
present two application examples using synthetic and real
data. Section 5 concludes the paper.

2. PROBLEM FORMULATION

Let us consider a scalar function describing the acoustic
properties of the volume of interest (VOI), i.e., f : Ω → R
where Ω ∈ R3 is the VOI. The function f(x)is given by

f(x) = Φ(x)T F (1)

where Φ(x) = {φ1(x), φ2(x), ..., φN (x)}T is a N dimen-
sional vector of basis functions and F = {f1, f2, ..., fN} is
a set of coefficients to be estimated [9, 8]. The basis func-
tions are locally supported and are located at the nodes of a
3D regular grid as shown in fig. 1.

The reconstruction problem is the following: given a set
of observations Y = {yi, y2, ..., yM}, and the correspon-
dent locations X = {x1, x2, ..., xM} estimate the coeffi-
cients F that define the function f(x). Each observation yi

corresponds to a pixel of an observed cross section of the
VOI. This problem is solved in a Bayesian framework us-
ing the MAP criterion. The reconstruction algorithm must
deal with i) speckle noise that corrupts the ultrasound im-
ages (noise reduction), ii) lack of data and multiple obser-
vations resulting from the non uniform sampling of the VOI
(interpolation) and iii) position measurement errors and or-
gan displacements (alignment).
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(a) Linear combination of finite supported basis functions (1D).

(b) 3D regular grid.

Fig. 1. Discrete representation of the function f(x).

The function f(x) can be obtained by jointly minimiz-
ing an energy function w.r.t. F and T , i.e.,

[F̂ , T̂ ] = arg min
F,T

E(F, T ) (2)

where F is the set of coefficients defining the function to be
estimated, f(x), T is the set of alignment parameters and

E(F, T ) = − log(p(Y |F, T ))− log(p(F ))− log(p(T )). (3)
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Fig. 2. Alignment vector for pth cross-section.

1. p(Y |F, T ) is the data fidelity term accounting for the
speckle noise. Assuming statistical independency of
the observations [11] and a Rayleigh distribution for

the pixel intensities [10], the data fidelity term is

log(p(Y |F, T )) =
M∑

i=1

[
log

(
yi

f(xi + ti)

)
− y2

i

2f(xi + ti)

]
(4)

where ti is a displacement vector associated to ith
pixel yi.In fact we will assume that all the displace-
ment vectors associated to the same image are equal.
Therefore ti can be replaced by tp were p is the image
index.

2. p(F ) is the prior associated to the vector F to be
estimated and it plays an important role when there
is lack of data since it allows the estimation of non-
observed regions from the observed ones by interpo-
lation. In this paper we assume that f is smooth and
p(F ) is a Gibbs distribution with quadratic potential
functions [12], i.e.,

p(F ) =
1
Z

e−αU(F ) (5)

where α is the regularization parameter and U(F ) =∑
(p,q)∈S δ2

pq is the internal energy with δ2
pq = (fp −

fq)2. This energy is obtained by summing all square
differences among neighbouring nodes in the neigh-
borhood system S.

3. p(T ) is the distribution of the error displacement vec-
tors associated to the cross-sections, T = {t1, ..., tM}.
It is assumed that each displacement vector, tp =
dp

xup
x + dp

yup
y , belongs to the inspection plane with

up
x and up

y being vectors pointing along the two main
directions of the pth cross-section, as shown in Fig.2.
The coefficients dp

τ are considered independent and
normally distributed, dp = [dp

x, dp
y]T ∼ N (0, σ2I)

and therefore,

p(T ) = p(D) = C

L∏

k=1

e−
(dk

x)2+dk
y)2

2σ2 (6)

where L is the number of cross-sections and D =
[d1, d2, ..., dL].

3. RECONSTRUCTION

The solution of (2) is obtained by finding the stationary
point of E(F,D) w.r.t. F and D, i.e., ∇F,DE(F,D) = 0.
This is performed iteratively in two main steps,

∇F E(F, D̂t−1) = 0 → F̂t (7)
∇DE(D, F̂t) = 0 → D̂t (8)

where t denotes the tth iteration. These two steps alternates
until convergence is achieved.



Thus, the energy function is

E(F,D) =
N∑

i=1

[
y2

i

2f(x̂i)
− log

(
yi

f(x̂i)

)]
+

1
2σ2

L∑

k=1

(dp
x)2 + (dp

y)2 +

α
∑

(p,q)∈S

(fp − fq)2. (9)

where f(x) =
∑N

k=1 fkφk(x) and x̂i = xi + tp. To solve
the equations (7-8) we will use the Gauss-Seidel and fixed
point methods by optimizing the energy function w.r.t. each
parameter, fi or dp

τ at a time, dealing with all other un-
knowns as constants [13].

Thus

∂E(F, D)
∂fk

= 0 ⇒ f̂ t+1
k =

1
4αNv

M∑

i=1

θiφk(x̂i) + f̄ t
k (10)

∂E(F, D)
∂dp

τ
= 0 ⇒ (dp

τ )t+1 =
σ2

2

∑

i∈Ip

θi(∇f(x̂i).up
τ︸ ︷︷ ︸

dot product

) (11)

where θi = y2
i−2ft(x̂i)
(ft(x̂i))2

, Nv is the number of neighbors of

fk (in this case Nv = 6) and f̄ t
k = (1/Nv)

∑
(p∈Vk) f̂ t

p is
the average intensity in the neighborhood of fk. In the com-
putation of the alignment parameters, dp

τ , only the pixels
belonging to the pth cross-section are used.

The initialization of the unknowns is performed as fol-
lows,

f0
k = f̃ML

k dp
τ = 0

where f̃ML
k is an approximation of the maximum likelihood

estimates given by

f̃ML
k =

1
2

∑
i∈V (fk) y2

i φk(xi)∑
i∈V (fk) φk(xi)

(12)

where it was assumed that f(xi) ≈ fk when xi is in the
neighborhood of fk, V (fk).

Fig.3 shows the reconstruction results for two different
iterations using synthetic data. Fig.3.a) shows an original
noisy image and Figs.3.b-c) show the corresponding cross-
sections extracted from the reconstruction results at the end
of iterations 1 and 8, respectively. Fig.3.d-e) displays the
energy function w.r.t the two alignment parameters for this
specific image in the first and 8th iterations respectively. As
shown, this energy surface becomes sharper along the iter-
ative process, which means that in the first iterations only
a coarse alignment is performed and as reconstruction im-
proves the alignment process also becomes more accurate.

.

Fig. 3. a)Noisy image and reconstruction results with align-
ment in the b) first iteration and in the c) 8th iteration. The
second line displays the energy function w.r.t the two align-
ment parameters in the d) first and e) 8th iterations respec-
tively

4. EXPERIMENTAL RESULTS

In this section two examples are presented with synthetic
and real data. The synthetic data is formed by a set of 50
images corrupted with white Rayleigh noise. These images
corresponds to co-planar cross-section of a cylinder with
radius r as shown in Fig.4. The coordinates of the image
center are modified by a random displacement with normal
distribution N (0, σ2). The reconstruction was performed
for several values of σ2 and for each value 20 experiments
were done. The bias and standard deviation of the alignment
errors were computed. Notice that in this case we know the
real position of each cross-section, allowing to compute the
final alignment error. The standard deviation of the align-
ment error is displayed in Fig.5. It is concluded from these
experiments that the displacement estimates are unbiased
and accurate alignment is achieved for σ < 0.8r.

In the experiments with real data, a set of 64 non paral-
lel cross-sections of a gall bladder is used. Figs.6 displays
a set of 3 noisy cross-sections (a) and the corresponding
cross-sections extracted from the reconstructed volumes in
two cases; (b) without and (c) with alignment compensa-
tion. Fig.7 displays two new cross sections, embracing the
whole VOI, extracted from both reconstructed volumes ob-
tained a) without and b) with alignment. This figure shows
the presence of artifacts resulting from the misalignment of
the images. As observed in the third line of Fig.6, these ar-
tifacts almost disappear when the alignment compensation
is included in the reconstruction algorithm.
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Fig. 4. Synthetic data. a) Co-planar cross-sections with
intensity Rayleigh noise and Gaussian position noise. A
new cross-section containing the original object is extracted
from the reconstructed volumes/images b)without and c)
with alignment.

5. CONCLUSION

In this paper we presented a reconstruction algorithm for
3D ultrasound based on a free-hand ultrasound acquisition
setup. The proposed reconstruction algorithm deals simul-
taneously with noise reduction (denoising), non uniform sam-
pling and lack of data (interpolation) and misalignments er-
rors due position measurement errors and organ displace-
ments.

The reconstruction algorithm is formulated in a Bayesian
framework, using the MAP criterion. This problem is solved
by minimizing an energy function w.r.t. the function to be

Fig. 5. Standard deviation of the alignment error, σe, as
function of the standard deviation of the misalignment error
σ, normalized by the radius r.

Fig. 6. Real data formed formed by 64 non-parallel cross-
sections of a gall bladder.

Fig. 7. New cross-section extracted from the reconstructed
volumes a)not using and b)using the alignment algorithm.

estimated an w.r.t. the alignment parameters. These two
steps alternates during the iterative algorithm until conver-
gence is achieved, i.e., the function describing the anatomy
in the VOI is simultaneously estimated with the alignment
parameters needed to compensate for the position measure-
ment errors and organ displacements.

Experimental results with synthetic and real data are
used to illustrate the application of the alignment by recon-
struction algorithm. In the case of synthetic data, monte-
carlo tests were performed to evaluate the capacity of the
alignment algorithm to compensate for different levels of
misalignment errors.

It is conclude, in both cases, that alignment plays a key
role to obtain an accurate reconstruction of the volume of
interest.
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