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Abstract— Heart tracking in ultrasound sequences is a difficult task due
to speckle noise, low SNR and lack of contrast. Therefore it is usually
difficult to obtain robust estimates of the heart cavities since feature
detectors produce a large number of outliers. This paper presents an
algorithm which combines two main operations: i) a novel denoising
algorithm based on the Lyapounov equation and ii) a robust tracker,
recently proposed by the authors, based on a model of the outlier features.
Experimental results are provided, showing that the proposed algorithm
is computationally efficient and leads to accurate estimates of the left
ventricle during the cardiac cycle.

I. INTRODUCTION

The estimation of the left ventricle (LV) boundary is useful from a
clinical point of view because it allows to extract relevant measures of
the heart dynamic behavior, among which we stress the ejection fraction
or local wall motion.

Ultrasound imaging, is one of the most used techniques to observe the
dynamics of the heart. However, the low signal-to-noise ratio (SNR) and
the multiplicative nature of the noise (speckle) corrupting the ultrasound
images, make the LV segmentation a difficult task.

Edge detection algorithms fail due to the presence of multiplicative
noise in heart ultrasound images. The strongest edges are often not located
on the endocardium (in some cases, there are no visual cue for the pres-
ence of the myocardium border). In [1] it is proposed the instantaneous
coefficient of variation (ICOV) providing good segmentation results, but
the so called problem of “edge dropout” still remain (particularly in the
diastole phase).

Therefore, noise reduction must be applied before edge detection.
Several techniques have been proposed to reduce the speckle noise
without distorting the relevant clinical details, e.g., Bayesian methods
[2,3], mixture distribution of the Rician pdf with the inverse Gaussian
as a mixture distribution (RilG) [4], soft thresholding [5], wavelet
based methods [6], wavelet soft-shrinking [7], or multiresolution based
techniques [8], median filtering [9], and anisotropic diffusion [10].

Even though the denoising algorithms significantly reduce the speckle
noise, advanced tracking techniques are needed to segment the LV
boundaries. Prior art in segmentation of echocardiographic sequences
of the heart includes active shape models [11,12], active contours [13]
and level set techniques [14]. Pairs of coupled contours have also been
used. The update methods use geometric restrictions (e.g., subspace
shape model), dynamic models and the measurements models e.g., using
heteroscedastic noise [15].

In this paper we join a novel denoising algorithm based on the
Lyapounov equation and a recent robust tracker [16]. The denoising
algorithm must to process a large number of ultrasound images in an
efficient way [17]. This is obtained showing that the solution of the
filtering process verifies a Lyapunov equation, which can be efficiently
by known algorithms.

The robustness of the tracker is obtained by using middle level features
(strokes), which are labelled as valid or invalid. Since the labels are
unknown they are replaced by their probabilities computed using a
probabilistic model of the observations. A data association filter is then
used to update the contour parameters under the presence of outliers.

The tracking algorithm proposed in the paper was assessed using a
set of image sequences, segmented by medical doctors. These images,
are used as a ground truth to compute FOM (figures of merit). The

performance of the tracker computed in this way is compared with other
tracking algorithms.

The paper is organized as follows: Section II describes the overall sys-
tem. Sections III, IV and V describe the pre-processing, feature detection
and tracking steps respectively. Section VI describes experimental and
section VII concludes the paper.

II. SYSTEM OVERVIEW

The proposed system aims is to track the boundary of the left ventricle
during the cardiac cycle. The system input is a sequences of ultrasound
images sampled at 25Hz.

The system performs three main operations (see Fig. 1); i) denoising: to
reduce the speckle noise and enhance the contrast; due to the large amount
of data to be processed a novel algorithm was developed to perform this
task, ii) feature detection: detects intensity transitions along orthogonal
lines to the contour (see Fig. 2). Transitions are obtained by applying a
matched filter to the intensity profiles and computing the local maxima
[18], and iii)tracking based on a robust tracking algorithm which fits a
deformable curve to the points detected in the image. This algorithm
must be able to deal with a large number of outliers and to interpolate
the boundary when no features are detected due to low contrast of the
heart boundary. This is specially important close to the apex and in the
presence of sudden motion changes (e.g., in the mitral valve). A recent
tracking algorithm is used in this step.
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Fig. 1. System overview.

III. PRE-PROCESSING

The performance of the tracker depends on the signal to noise ratio,
SNR, of the input images. The images have a low SNR due to the
presence of multiplicative noise (speckle). The speckle noise is modeled
with a Rayleigh distribution with space varying parameter [19].

The goal of the pre-processing step is to reduce the noise without losing
relevant information. In this paper a MAP criterion is used to estimate the
original images from the noisy observations. This approach, however, is
slow and computationally demanding. This difficulty is particulary severe
in the present problem because we are dealing with a large number of
ultrasound images.

In this paper we use a fast MAP denoising algorithm. The denoising
algorithm estimates the original image, F', by minimizing the following
energy function

E(Y,F) = —log(p(Y|F)p(F)) (D

where Y is the noisy image, p(Y'|F') is the observation model and p(F")
is the prior distribution of the unknown image.

Assuming conditional independence of the observations, at different
sites, we have p(Y|F) = Hg’Mp(yijlfij) where p(y|f) = %e*yz/zf
is the Rayleigh distribution.

Concerning the prior, a Gibbs density function with quadratic potential
functions is used, i.e.,

p(F) = e~ Spaes Gr=fa)® )



where (p,q) are neighboring nodes, defined in the neighboring system
S. o is a parameter and Z is a partition function.

The most probable solution is obtained by finding the global minimum
of E(Y, F). This task is usually difficult and time consuming. Therefore,
here, we will find a sub-optimal solution which assumes that the MAP
solution is a filtered version of the maximum likelihood solution.

The maximum likelihood estimates is obtained by solving

FME = argminp(Y|F) 3)
which leads to
2
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where fMZL is the kth pixel of image FME.
The smooth version of the ML estimates, is obtained by solving the
following quadratic problem

By = argmin [|F = FME|2 + o AF)? 5)

where ||AF||2 is the sum of all square diferences between neighboring
nodes. |AF||? is an approximation of the energy of the gradient and
therefore the minimizer of (5) is a smooth version of FML, where the
degree of smoothing is controlled by the parameter «.

The energy function to be minimized can be written as follows

E(F) = trace [(F — FMIYT(F _ FML)] +

o trace [(0F)T (0o F) + (FOR)T (FO,)] ©6)
where 0, and 6;, are n x n vertical and m x m horizontal difference

operators respectively. The stationary point of E(F') can be found by
solving

VpE(F)=F —FML 4 (¢, F + F¢p) =0 )

where ¢, = 6‘{ 0, and ¢p, = 050;1. After straightforward manipulations
we obtain

AF+FB+Q=0 3)

where A = 0.5, + a¢y, B = 0.5, + a¢y and Q = —FML_ T, and
I, are n and m dimensional identity matrices respectively.

The equation (8) is the so called Sylvester equation for which there are
efficient algorithms available in several scientific packages, e.g., MatLab
[20,21]. Fig.2 shows an example of de-noised ultrasound image using the

(a) (b)

Fig. 2. Image profile taken at the dashed line: (a) without (b) with denoising.

pre-processing described above. This 320 x 240 dimensional image was
obtained in about 5 seconds using the function lyap(A, B, Q) from the
MatLab package in a 2.8GHz Pentium 4 processor.

IV. FEATURE DETECTION

Feature detection aims to detect line segments belonging to the
boundary of the LV. This is done in two steps. First we detect intensity
transitions along lines orthogonal to the predicted contour (see Fig. 3).
This is done by template matching. Feature detection along the ith
direction is performed by computing the local minima of the function

T(to) = /t Ipi(t) — T(t, o) dt ©

where p;(t) is the image profile taken at the ith direction, ¢ denotes
the distance to the object boundary and T'(¢,to) is a template which is
obtained previously. The template 7" is obtained as follows: T'(¢) is equal
to the typical intensity of the object for ¢ < to and T'(t) is equal to the
background intensity for ¢ > tg. Afterwords, feature points detected at
consecutive lines are linked, forming image strokes.

Fig. 3. Feature detection along orthogonal lines.

V. TRACKING

A deformable curve (B-spline) is used to approximate the LV contour.
The parameters of the B-spline are estimated from the image features
obtained in the previous step using a tracking algorithm.

This is not an easy task since the tracker should be able to classify
the features as valid and invalid and track the contour using the invalid
features only. The Kalman filter fails in this problem since it is not able
to separate valid features from invalid ones.

In this paper we have used a data association filter called S-PDAF
which was recently proposed in [16]. This computes the probabilities of
each observation being valid using probabilistic models for the valid data
and outliers.

To avoid an exponential growth of hypothesis a simplifying assumption
is adopted: it is assumed that the state distribution given past observations
is Gaussian i.e.,

plek | Y = Mok @gp—1, Prjr—1] (10)

where & x_1, Prjr—1 are the mean and covariance of zj, given past
observations Y*~1,

The computation of the state estimate and uncertainty (state mean
and covariance matrix) given current and past observations, are given

as follows -

Tk = Bpjp—1 + O ik Kikvik
i=1

(1)

which is in fact similar to the Kalman filter. The only difference is that
we shall consider multiple data hypothesis (in (11) we have mj data
hypothesis). This is because we do not know which features belong to
the object contour or not. Fig. 3 display an example where we already
seen that some features belong or not to the left ventricle boundary.
Thus, for each stroke two labels are assigned: “1” which accounts for
valid segment; “0” which accounts for invalid one. Since the number of
label can be high, the features are grouped in segments (strokes) reducing
the labeling procedure.

In (11) &3 is the state vector K, v; are the Kalman gain and the
innovation respectively as in Kalman filter, and «;

o Ep(Hip | YF) (12)



Data Hypothesis S1 s2 83 «
Hy 0 0 0 0
H»> 0 0 1 0
Hg 0 1 0 0
Hy 0 1 1 0
Hs 1 0 0 0.01
Hg 1 0 1 0.03
Hr 1 1 0 0.03
Hg 1 1 1 0.93

Fig. 4. Data Hypothesis and association probabilities.

is the a posteriori probability of the i-th hypothesis H; ;. The interpre-
tation of equation (11) suggests that we have a bank of Kalman filters
each one specialized to each ith data hypothesis. Fig. 4 illustrates, in a
simple way, the idea of multiple data hypothesis. In this figure we can see
three grouping features (each color refers to a different grouping feature),
all belonging to the boundary of the left ventricle. In this case we have
eight data hypothesis (m; = 8). From this figure we concluded that all
the grouping features contribute in a significant way to represent the outer
boundary, having a weight agj = 0.93.

A recursive equation can also be derived for the covariance matrix (see
details in [16]).

mp mg
= . LA ~T 5 ~T
Pk|k = |:I — ZaZkK’LkCZi| Pk\k—l + Zalkxik\kxik\k — xk“gxk‘k

i=1 i=0
13)

VI. EXPERIMENTAL RESULTS

This section shows experimental results obtained with the proposed
tracker Three echocardiographic sequences of the left ventricle were used
in this study. Each sequence was obtained from a different patient. The
sequences lengths are: 450 images (25 cardiac cycles), 490 images (26
cardiac cycles), 470 images (19 cardiac cycles) and each image has 320 x
240 pixels.

The experiments involve three steps: ¢) the LV boundary was manually
defined by an expert in several images; i¢) all sequences were automat-
ically processed by the tracking algorithm proposed in the paper; i)
metrics between automatic and manual boundaries are computed for all
the sequences. The tests were performed under three options: no pre-
processing, median filtering preprocessing and Lyapounov pre-processing.

A. Ground Truth

We now describe the procedure to obtain the ground truth. An observer
provides a hand-labelled contours for the sequences. Four images in
each cardiac cycle are selected for hand labelling: two images in the
systole phase and other two images in the diastole phase. A total number
of 312 contours were manually generated (156 in each phase) for the
three sequences. The computer-generated boundaries (provided by the S-
PDAF tracker), are compared to the ground truth resulting in an error
measurement in each image.

B. Error Metrics

Shape metrics to compare computer-generated boundaries against the
boundaries outlined by the observer are now described.

The two curves are represented as sets of points X =
{x1,x2,...,xn, },and ¥V = {y1,y2,... ,yNy}, where Ny > N;. Each
x; and y; is a pair of coordinates of the point in the image plane.

The distance from a point x; to the curve ) is

d(xi, ¥) = min [ly; — || 14
The average distance from the contour model X" to the ground truth
boundary Y (ideal contour) is

1=
duv = F;d(xz:y) (15)

x

The Hausdorff distance between the two curves is defined as the
maximum distance from a point to the other curve [22]

dina (X, ) = max (max{d(x;, )} max{d(y;, X)})  (16)
Another metric which we use to measure the distortion between two
curves is based on the regions inside the two curves as proposed in [23]
in the context of ultrasound image segmentation. This metric is defined
by
(X UY) - (XNY))
HXUY)

where X, Y are binary images such that all pixels inside the curves have
label 1 and all the other pixels have label 0. This metric computed the
number of pixels which receive different labels and normalize it.

Fig. 5 shows the evolution of the metrics sequence. The first measure
(column (a) of the figure) belongs to the interval [0, 1], the remaining
ones are expressed in terms of pixels. The dashed line refers to the results
obtained by using a median filter in the pre-processing step. The solid
line represents the values obtained by the proposed method. We do not
show the metric for the estimated obtained without pre-processing since
the results are much worse. Fig. 5 shows the results at specific frames.
These frames corresponds to the time instants when the cardiac phase
switch from systole to the diastole and vice-versa. This figure also depicts
the situation when the tracker has difficulties to represent the apex of the
ventricle.

Fig. 5 shows that the denoising technique proposed herein has a better
performance compared with the median filter (the solid line is under
the dashed line) most of the time. The second order statistics of the
contour metrics are shown in Tables I, II, III. Table IV shows the average
computation time associated to the tracker in seconds. We conclude that
the proposed pre-processing method has three advantages: i) the mean
error of the shape estimates is smaller than in the other cases; ii) the
variance of the error is (slightly) smaller and iii) allows a faster tracking
since less outlier features are detected in the image.

Fig. 6 show the number of outliers in each frame (for the sake of the
clarity 10% of the outliers frames are shown) for the case of the first
sequence shown in Fig. 5.

dg = a7

@ ® ©

Fig. 5. Metrics statistics for the first sequence, (a) dg, (b) dav, (€) dmaz-

without | Median | Lyapounov
Eldx] 0.25 0.21 0.16
var[dg] 0.007 0.004 0.002
Elda.] 4.49 3.94 3.42
var[d, ] 1.31 0.74 0.47
Eldmax] 12.86 11.18 8.80
var[d,, a1 18.63 13.10 9.64
TABLE 1

MEAN AND VARIANCE VALUES FOR THE METRICS SHOWN IN THE FIG. 5.

VII. CONCLUSIONS

This paper proposes a system for the tracking of the left ventricle using
two key operations. The first is a novel denoising algorithm based on the



without | Median | Lyapounov

Eldx] 0.20 0.17 0.14

var[d ] 0.004 0.001 0.001

Elda.] 3.88 3.86 3.22

var[da.] 1.21 0.76 0.65

Eldmax] 10.32 11.36 9.18

var[d,,qz] 17.51 17.53 17.13
TABLE II

MEAN AND VARIANCE VALUES FOR THE METRICS FOR THE SECOND
SEQUENCE.
without | Median | Lyapounov

Eldx] 0.21 0.17 0.14

var[dg] 0.014 0.004 0.002

Eld,.] 4.41 3.22 2.86

var[dg,] 11.6 0.81 0.52

Eldimaz] 12.25 8.40 7.39

var[d,,qz] 98.20 10.9 741
TABLE III

MEAN AND VARIANCE VALUES FOR THE METRICS FOR THE THIRD

SEQUENCE.

Lyapounov equation. The second is a robust tracker used to estimate the
evolution of the LV contour during in cardiac sequences. It is assumed
that some of the observations are outliers. Since we do not know which
ones are valid a probabilistic labeling is performed, based on a model of
the outlier features, and a data association filter is then used to update
the LV contour.

It is concluded from the experimental results that the proposed algo-
rithm manages to accurately track the heart motion in many ultrasound
images with a low contrast between the heart cavity and the miocardium.
It is also concluded that the denoising algorithm plays an important role
and significantly reduces the number of outliers.

Fig. 6. Number of outliers of the sequence shown in Fig. 5. Without pre-
processing (bold line) and with the proposed technique (dashed line).
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